Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 2313 2023-09-26 09:41:38 |
2 format layout + 1 word(s) 2314 2023-10-07 05:15:44 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Pitea, M.; Canale, F.A.; Porto, G.; Verduci, C.; Utano, G.; Policastro, G.; Alati, C.; Santoro, L.; Imbalzano, L.; Martino, M. miRNA in Graft-Versus-Host-Disease. Encyclopedia. Available online: https://encyclopedia.pub/entry/49638 (accessed on 18 May 2024).
Pitea M, Canale FA, Porto G, Verduci C, Utano G, Policastro G, et al. miRNA in Graft-Versus-Host-Disease. Encyclopedia. Available at: https://encyclopedia.pub/entry/49638. Accessed May 18, 2024.
Pitea, Martina, Filippo Antonio Canale, Gaetana Porto, Chiara Verduci, Giovanna Utano, Giorgia Policastro, Caterina Alati, Ludovica Santoro, Lucrezia Imbalzano, Massimo Martino. "miRNA in Graft-Versus-Host-Disease" Encyclopedia, https://encyclopedia.pub/entry/49638 (accessed May 18, 2024).
Pitea, M., Canale, F.A., Porto, G., Verduci, C., Utano, G., Policastro, G., Alati, C., Santoro, L., Imbalzano, L., & Martino, M. (2023, September 26). miRNA in Graft-Versus-Host-Disease. In Encyclopedia. https://encyclopedia.pub/entry/49638
Pitea, Martina, et al. "miRNA in Graft-Versus-Host-Disease." Encyclopedia. Web. 26 September, 2023.
miRNA in Graft-Versus-Host-Disease
Edit

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a clinically challenging modality for the treatment of many hematologic diseases such as leukemia, lymphoma, and myeloma. Graft-versus-host disease (GVHD) is a common complication after allo-HSCT and remains a major cause of morbidity and mortality, limiting the success of a potentially curative transplant. Several microRNAs (miRNAs) have recently been shown to impact the biology of GVHD. They are molecular regulators involved in numerous processes during T-cell development, homeostasis, and activation, and contribute to the pathological function of T-cells during GvHD.

miRNAs GVHD graft-versus-host disease

1. Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative treatment for various hematological malignancies and non-malignant diseases. One of the most frequent complications of allo-HSCT is graft-versus-host disease (GVHD), a clinical syndrome in which the graft recognizes the transplant recipient as foreign. GVHD is the most serious complication of allogeneic hematopoietic cell transplantation; it can cause damage to organs and systems and can lead to death. The term graft-versus-host disease (GVHD) to define this disorder is due to Morton Simonsen and was first described in 1959 [1].
Billingham defines three crucial requirements for the development of GVHD, which are: (1) the graft must contain immunocompetent cells, (2) the host must possess allo-antigens that can be recognized as foreign by the immunocompetent cells in the graft, and (3) the host must be unable to mount an appropriate immune response against the graft [2]. Risk factors for GVHD include incompatible HLA match, advanced age of recipient/donor, multiparous female donor to male recipient, use of peripheral blood stem cell grafts rather than bone marrow, intensity of regimen conditioning, and CMV serological status [3]. GVHD has classically been divided into acute (aGVHD) or chronic (cGVHD) subtypes based on the time of onset before or after posttransplant day 100. Acute GVHD has several grades (grade 0–4), depending on the number and extent of organ involvement. Patients with grade 3 or 4 GVHD have a poor prognosis [4].
Thanks to the recently developed prophylactic strategies [5], incidences of aGvHD grades 2–4 decreased from 40% to 28% and the overall survival (OS) of patients experiencing GVHD has improved [6], but there is still a need for further progress. On the other hand, cGvHD remains the prevailing cause of non-relapse mortality (NRM) in patients surviving longer than two years after allo-HCT. New insight into the pathogenesis of GVHD could be the basis for the development of novel immunosuppressive therapies for the treatment of GvHD which are more effective and therefore able to decrease the administration of corticosteroids and lower the NRM of patients following allogeneic HSCT.

References

  1. Billingham, R.; Brent, L. Quantitative studies on tissue transplantation immunity: Induction of tolerance in newborn mice and studies on the phenomenon of runt disease. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 1959, 242, 439–477.
  2. Billingham, R. The biology of graft-versus-host reactions. Harvey Lect. 1966, 62, 21–78.
  3. Zeiser, R.; Blazar, B.R. Acute Graft-versus-Host Disease-Biologic Process, Prevention, and Therapy. N. Engl. J. Med. 2017, 377, 2167–2179.
  4. Filipovich, A.H.; Weisdorf, D.; Pavletic, S.; Socie, G.; Wingard, J.R.; Lee, S.J.; Martin, P.; Chien, J.; Przepiorka, D.; Couriel, D.; et al. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol. Blood Marrow Transplant. 2005, 11, 945–956.
  5. Penack, O.; Marchetti, M.; Ruutu, T.; Aljurf, M.; Bacigalupo, A.; Bonifazi, F.; Ciceri, F.; Cornelissen, J.; Malladi, R.; Duarte, R.F.; et al. Prophylaxis and management of graft versus host disease after stem-cell transplantation for haematological malignancies: Updated consensus recommendations of the European Society for Blood and Marrow Transplantation. Lancet Haematol. 2020, 7, e157–e167.
  6. Greinix, H.T.; Eikema, D.J.; Koster, L.; Penack, O.; Yakoub-Agha, I.; Montoto, S.; Chabannon, C.; Styczynski, J.; Nagler, A.; Robin, M.; et al. Improved outcome of patients with graft-versus-host disease after allogeneic hematopoietic cell transplantation for hematologic malignancies over time: An EBMT mega-file study. Haematologica 2022, 107, 1054–1063.
  7. Cortez, M.A.; Bueso-Ramos, C.; Ferdin, J.; Lopez-Berestein, G.; Sood, A.K.; Calin, G.A. MicroRNAs in body fluids–the mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 2011, 8, 467–477.
  8. Wang, K.; Yuan, Y.; Cho, J.H.; McClarty, S.; Baxter, D.; Galas, D.J. Comparing the microRNA spectrum between serum and plasma. PLoS ONE 2012, 7, e41561.
  9. Ranganathan, P.; Heaphy, C.E.; Costinean, S.; Stauffer, N.; Na, C.; Hamadani, M.; Santhanam, R.; Mao, C.; Taylor, P.A.; Sandhu, S.; et al. Regulation of acute graft-versus-host disease by microRNA-155. Blood 2012, 119, 4786–4797.
  10. Rodriguez, A.; Vigorito, E.; Clare, S.; Warren, M.V.; Couttet, P.; Soond, D.R.; van Dongen, S.; Grocock, R.J.; Das, P.P.; Miska, E.A.; et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007, 316, 608–611.
  11. O’Connell, R.M.; Taganov, K.D.; Boldin, M.P.; Cheng, G.; Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl. Acad. Sci. USA 2007, 104, 1604–1609.
  12. Ceppi, M.; Pereira, P.M.; Dunand-Sauthier, I.; Barras, E.; Reith, W.; Santos, M.A.; Pierre, P. MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-derived dendritic cells. Proc. Natl. Acad. Sci. USA 2009, 106, 2735–2740.
  13. Testa, U.; Pelosi, E.; Castelli, G.; Labbaye, C. miR-146 and miR-155: Two Key Modulators of Immune Response and Tumor Development. Non-Coding RNA 2017, 3, 22.
  14. Xie, L.N.; Zhou, F.; Liu, X.M.; Fang, Y.; Yu, Z.; Song, N.X.; Kong, F.S. Serum microRNA155 is increased in patients with acute graft-versus-host disease. Clin. Transplant. 2014, 28, 314–323.
  15. Atarod, S.; Ahmed, M.M.; Lendrem, C.; Pearce, K.F.; Cope, W.; Norden, J.; Wang, X.N.; Collin, M.; Dickinson, A.M. miR-146a and miR-155 Expression Levels in Acute Graft-Versus-Host Disease Incidence. Front. Immunol. 2016, 7, 56.
  16. Schulte, L.N.; Westermann, A.J.; Vogel, J. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res. 2012, 41, 542–553.
  17. Taganov, K.D.; Boldin, M.P.; Chang, K.J.; Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 2006, 103, 12481–12486.
  18. Ranganathan, P.; Ngankeu, A.; Zitzer, N.; Leoncini, P.; Yu, X.; Casadei, L.; Challagundla, K.; Reichenbach, D.; Garman, S.; Ruppert, A.; et al. Serum miR-29a Is Upregulated in Acute Graft-versus-Host Disease and Activates Dendritic Cells through TLR Binding. J. Immunol. 2017, 198, 2500–2512.
  19. Stickel, N.; Prinz, G.; Pfeifer, D.; Hasselblatt, P.; Schmitt-Graeff, A.; Follo, M.; Thimme, R.; Finke, J.; Duyster, J.; Salzer, U.; et al. MiR-146a regulates the TRAF6/TNF-axis in donor T cells during GvHD. Blood 2014, 124, 2586–2595.
  20. Nahid, M.A.; Pauley, K.M.; Satoh, M.; Chan, E.K.L. MiR-146a is critical for endotoxin-induced tolerance. J. Biol. Chem. 2009, 284, 34590–34599.
  21. Crossland, R.E.; Norden, J.; Ghimire, S.; Juric, M.K.; Pearce, K.F.; Lendrem, C.; Collin, M.; Mischak-Weissinger, E.; Holler, E.; Greinix, H.T.; et al. Profiling Tissue and Biofluid miR-155-5p, miR-155*, and miR-146a-5p Expression in Graft vs. Host Disease. Front. Immunol. 2021, 12, 639171.
  22. Zeiser, R.; Blazar, B.R. Pathophysiology of chronic graft-versus-host disease and therapeutic targets. N. Engl. J. Med. 2017, 377, 2565–2579.
  23. Koenecke, C.; Krueger, A. MicroRNA in T-cell development and T-cell mediated acute graft-versus-host disease. Front. Immunol. 2018, 9, 992.
  24. Reikvam, H.; Vo, A.K.; Johansen, S.; Hemsing, A.L.; Solheim, M.H.; Mosevoll, K.A.; Tvedt, T.H.A.; Hatfield, K.J. MicroRNA serum profiles and chronic graft-versus-host disease. Blood Adv. 2022, 6, 5295–5306.
  25. Xu, Z.; Xiao, S.B.; Xu, P.; Xie, Q.; Cao, L.; Wang, D.; Luo, R.; Zhong, Y.; Chen, H.-C.; Fang, L.-R. miR-365, a novel negative regulator of interleukin-6 gene expression, is cooperatively regulated by Sp1 and NF-kappaB. J. Biol. Chem. 2011, 286, 21401–21412.
  26. Reikvam, H.; Olsnes, A.M.; Gjertsen, B.T.; Ersvar, E.; Bruserud, Ø. Nuclear factor-kappaB signaling: A contributor in leukemogenesis and a target for pharmacological intervention in human acute myelogenous leukemia. Crit. Rev. Oncog. 2009, 15, 1–41.
  27. Montoya, R.T.; López-Godino, O.; Garcia-Barbera, N.; Cifuentes-Riquelme, R.; Sola, M.; Heras, I.; Perotti, C.; Garcia, V.V.; González-Conejero, R.; Del Fante, C.; et al. Identification of circulating microRNA signatures as potential noninvasive biomarkers for prediction to response to extracorporeal photoapheresis in patients with graft versus host disease. Blood 2019, 134, 4466.
  28. Haftmann, C.; Stittrich, A.B.; Zimmermann, J.; Fang, Z.; Hradilkova, K.; Bardua, M.; Westendorf, K.; Heinz, G.A.; Riedel, R.; Siede, J.; et al. miR-148a is upregulated by Twist1 and T-bet and promotes Th1-cell survival by regulating the proapoptotic gene Bim. Eur. J. Immunol. 2015, 45, 1192–1205.
  29. Wang-Renault, S.F.; Boudaoud, S.; Nocturne, G.; Roche, E.; Sigrist, N.; Daviaud, C.; Tinggaard, A.B.; Renault, V.; Deleuze, J.-F.; Mariette, X.; et al. Deregulation of microRNA expression in purified T and B lymphocytes from patients with primary Sjögren’s syndrome. Ann. Rheum. Dis. 2018, 77, 133–140.
  30. Łacina, P.; Crossland, R.E.; Wielińska, J.; Czyż, A.; Szeremet, A.; Ussowicz, M.; Wróbel, T.; Dickinson, A.M.; Bogunia-Kubik, K. Differential expression of miRNAs from extracellular vesicles in chronic graft-versus-host-disease: A preliminary study. Adv. Clin. Exp. Med. 2023, 32, 539–544.
  31. He, Z.; Liao, Z.; Chen, S.; Li, B.; Yu, Z.; Luo, G.; Yang, L.; Zeng, C.; Li, Y. Downregulated miR-17, miR-29c, miR-92a and miR-214 may be related to BCL11B overexpression in T cell acute lymphoblastic leukemia. Asia-Pac. J. Clin. Oncol. 2018, 14, e259–e265.
  32. Lu, K.; Feng, F.; Yang, Y.; Liu, K.; Duan, J.; Liu, H.; Yang, J.; Wu, M.; Liu, C.; Chang, Y. High-throughput screening identified miR-7-2-3p and miR-29c-3p as metastasis suppressors in gallbladder carcinoma. J. Gastroenterol. 2020, 55, 51–66.
  33. Chen, G.; Zhou, T.; Li, Y.; Yu, Z.; Sun, L. p53 target miR-29c-3p suppresses colon cancer cell invasion and migration through inhibition of PHLDB2. Biochem. Biophys. Res. Commun. 2017, 487, 90–95.
  34. Toubai, T.; Sun, Y.; Reddy, P. GVHD pathophysiology: Is acute different from chronic?. Best Pract. Res. Clin. Haematol. 2008, 21, 101–117.
  35. Ball, L.M.; Egeler, R.M.; EBMT PaediatricWorking Party. Acute GvHD: Pathogenesis and classification. Bone Marrow Transplant 2008, 41 (Suppl. S2), S58–S64. .
  36. Jagasia, M.H.; Greinix, H.T.; Arora, M.; Williams, K.M.; Wolff, D.; Cowen, E.W.; Palmer, J.; Weisdorf, D.; Treister, N.S.; Cheng, G.S.; et al.et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graftversus- Host Disease: I. The 2014 Diagnosis and StagingWorking Group report. Biol. . Blood Marrow Transplant 2015, 21, 389–401.e1.
  37. Wolff, D.; Radojcic, V.; Lafyatis, R.; Cinar, R.; Rosenstein, R.K.; Cowen, E.W.; Cheng, G.S.; Sheshadri, A.; Bergeron, A.; Williams, K.M.; et al.et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IV. The 2020 Highly morbidforms report.. Transplant. Cell. Ther. 2021, 27, 817–835..
More
Information
Subjects: Transplantation
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , , , , , ,
View Times: 155
Revisions: 2 times (View History)
Update Date: 07 Oct 2023
1000/1000