Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 2391 2023-09-07 01:02:28 |
2 layout Meta information modification 2391 2023-09-07 02:23:36 | |
3 layout + 6 word(s) 2397 2023-09-11 10:52:20 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Saad, F.A.; Siciliano, G.; Angelini, C. Dystrophinopathy Diagnosis and Therapy. Encyclopedia. Available online: https://encyclopedia.pub/entry/48895 (accessed on 01 July 2024).
Saad FA, Siciliano G, Angelini C. Dystrophinopathy Diagnosis and Therapy. Encyclopedia. Available at: https://encyclopedia.pub/entry/48895. Accessed July 01, 2024.
Saad, Fawzy A., Gabriele Siciliano, Corrado Angelini. "Dystrophinopathy Diagnosis and Therapy" Encyclopedia, https://encyclopedia.pub/entry/48895 (accessed July 01, 2024).
Saad, F.A., Siciliano, G., & Angelini, C. (2023, September 07). Dystrophinopathy Diagnosis and Therapy. In Encyclopedia. https://encyclopedia.pub/entry/48895
Saad, Fawzy A., et al. "Dystrophinopathy Diagnosis and Therapy." Encyclopedia. Web. 07 September, 2023.
Dystrophinopathy Diagnosis and Therapy
Edit

Dystrophinopathies are x-linked muscular disorders that emerge from mutations in the Dystrophin gene, including Duchenne and Becker muscular dystrophy, and dilated cardiomyopathy. However, Duchenne muscular dystrophy interconnects with bone loss and osteoporosis, which are exacerbated by glucocorticoid therapy. Appropriate choice of steroids and regimen is crucial. Creatine kinase (CK) has a 71% potential of detecting female carriers that are increased by multiplex ligation-dependent probe amplification (MLPA) or dystrophin study in biopsy. Clinical neurologists need to relate to patients and families of patients with neurocognitive problems since mental retardation might be part of Duchenne's picture.

dystrophinopathies Duchenne muscular dystrophy Becker muscular dystrophy steroid carriers mental retardation

1. Introduction

Molecular cloning of the Dystrophin gene in 1985 [1][2] has revealed that its 14 kilobase messenger RNA comprises 79 exons extending over 2.4 megabases (2.4 centimorgans) of the human chromosome X [3][4]. The dystrophin protein contains four domains [5]: the amino-terminal, the rod, the cysteine-rich, and the carboxy-terminal domains.
Dystrophin and utrophin are muscle cytoskeletal proteins with similar molecular masses of 420 and 395 kDa, respectively. Furthermore, utrophin shares 80% homology with the dystrophin carboxy-terminal domain [6][7].
Approximately 75% of Dystrophin gene mutations are intragenic deletions (65%) or duplications (10%), while the remaining 25% are nucleotide variants, including nonsense and missense mutations, small insertions/deletions (indels), or splicing alterations [8][9]. Out-of-frame exon deletions/duplications and nonsense mutations generate transcripts with premature stop codons which would be degraded through a nonsense-mediated mRNA decay pathway [10][11].
The absence or deficiency of dystrophin due to mutations in the Dystrophin gene leads to a spectrum of dystrophinopathies including Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and dilated cardiomyopathy (DCM) in humans and animal models [12][13]. Cardiomyopathy is a common feature of DMD patients and influences the prognosis of the disease [14]. The prevalence of dilated cardiomyopathy in DMD patients rises from 59% to 90% depending on the age of the patients [15], and may reach 61% in BMD patients [16]. However, carriers of Dystrophin gene mutations may represent a rare distinct form of dilated cardiomyopathy without skeletal muscle abnormalities [17].
Dystrophinopathies are associated with elevated levels of serum creatine kinase (CK) beyond the background of metabolic myopathies [18][19][20]. DMD is the most severe phenotype, which usually manifests in childhood with a sequence of muscle degeneration leading to a loss of mobility before the teenage years. Conversely, BMD is a late-onset entity, therefore, patients with a mild BMD spectrum display symptoms after the age of 30 and stay mobile even into their 60s. However, left ventricular dilation and congestive heart failure are common causes of morbidity and a prevalent cause of death for BMD patients, which may occur early in their 40s. Melacini and colleagues illustrated that the deletion of exon 49 from the Dystrophin gene is associated with cardiac manifestation, which is characterized in BMD patients by early right ventricular involvement related or not to left ventricular weakening [21].
Dystrophinopathies are inherited in a sex-linked recessive manner, mainly affecting boys due to their single copy of chromosome X. As carrier girls have two copies of chromosome X, they are at increased risk for dilated cardiomyopathy. Although DMD and BMD are the common types of dystrophinopathies in boys, isolated dilated cardiomyopathy, myalgia, cramps, rhabdomyolysis, hypercKemia (elevated serum creatine kinase), are less common manifestations in carrier girls [22]. However, about 8–18% of carrier girls present with dilated cardiomyopathy, which could vary to a certain degree depending on whether the carrier girl manifests a DMD or BMD phenotype [20][23][24][25][26][27].

2. Diagnosis Technology

Prior to the molecular diagnosis era, diagnosis of muscular dystrophy patients and their carrier mothers has mainly relied on elevations of serum creatine kinase [28], and to a lesser degree on muscle histopathology [29] and haplotype (pedigree) analysis of the Dystrophin gene using restriction fragment length polymorphisms [30] or short tandem repeat polymorphisms [31].

2.1. Serum Creatine Kinase Assay

More than six decades ago, investigative studies provided evidence that serum creatine kinase (CK) is superior to other enzymes like aldolase, lactic dehydrogenase, glutamic oxalacetic transaminase, glutamic pyruvic transaminase, and phosphohexoseisomerase for the biochemical diagnosis of muscular dystrophy patients and their carrier mothers [28][32][33][34][35], allowing for the detection of preclinical cases of muscular dystrophy and disease prediction in infancy. Since then, the elevation of serum creatine kinase (CK) has been the prominent preclinical diagnostic tool and is still in use in the molecular diagnosis era [36].
Duchenne muscular dystrophy is always coupled with high levels of serum creatine kinase [20]. Yasmineh and colleagues have reported that serum creatine kinase in DMD patients reached around 867 U/L compared to 28 U/L of the healthy control group, which is thirty-one-fold higher than healthy subjects [37]. However, serum creatine kinase assay has the potential to diagnose up to 71% of DMD carriers [33]. In fact, normal serum creatine kinase levels in two DMD carriers with muscle histological abnormalities have been reported [38].
The molecular diagnosis era started with the cloning of the Dystrophin gene in 1985 [1][2]. Since then, the diagnosis of muscular dystrophy patients and their carrier mothers have relied on haplotype analysis, Southern blot analysis, immunological analysis, multiplex polymerase chain reaction (PCR), multiplex ligation-dependent probe amplification, Sanger DNA sequencing, and next-generation DNA sequencing.

2.2. Haplotype and Southern Blot Analyses

Molecular diagnosis of DMD was initiated four decades ago with haplotype (pedigree) analysis, using restriction fragment length polymorphisms (RFLP) related to the Dystrophin gene [39][40]. Furthermore, the use of Southern blotting and complementary DNA (cDNA) probe hybridization has detected several intragenic deletions and duplications in the Dystrophin gene [41][42][43][44][45][46][47][48][49].

2.3. Diagnostic Methods on Muscle Tissue

Immunohistochemical analysis of muscle biopsy cryosections reveals that human dystrophin antibodies react with an antigen in skeletal muscle sarcolemma. This immunoreactivity is faint or absent in the muscle fibers of DMD patients compared to the muscle fibers of healthy subjects. On immunoblots, dystrophin antibodies react with 400 kDa protein extracts of normal human muscle [50][51][52]. Protein truncation tests revealed that about 73% (19 out of 26) of BMD patients show a truncated dystrophin of abnormal molecular weight [52][53][54], leading to the presence of normal and shorter dystrophins in the muscle fibers of BMD asymptomatic carriers. However, in case of duplication, BMD patients show longer and normal dystrophins [44]. Also, a screening of 62 Becker muscular dystrophy patients revealed that 35 of them had dystrophin abnormalities [55]. Currently, there are six anti-human dystrophin antibodies for Western blotting that recognize the different domains of dystrophin; one is polyclonal and five are rabbit monoclonal antibodies available from various commercial sources. RNA sequencing (RNA-seq) is a valuable approach for dystrophin mutation detection [56][57][58][59].

2.4. Multiplex Ligation-Dependent Probe Amplification

Multiplex ligation-dependent probe amplification (MLPA) is widely employed to examine exonic duplications/deletions (dupdels) within the 79 exons of the Dystrophin gene [60][61][62][63][64][65][66][67], detecting up to 70% of exonic alterations. However, genetic diagnosis of the remaining 30% of DMD/BMD patients requires point mutation screening and DNA sequencing. Sanger DNA sequencing of the entire Dystrophin gene obtained from the analysis of reverse transcription (RT-PCR) from muscle Dystrophin mRNA (cDNA) is a powerful approach for detecting nucleotide alterations within the transcript of the Dystrophin gene [56][57].

2.5. Multiplex PCR

For more than a decade, the standard clinical diagnosis relied on the conventional multiplex PCR for a selected number of Dystrophin exons within the proximal (exons 3–9), and the distal (exons 45–55) deletion hotspots [68]; nonetheless, this multiplex PCR platform holds the power to confirm the presence of exonic deletions in about 98% of DMD/BMD boys [69][70]. Although effective and economical, this multiplex PCR platform was imperfect; because it did not include all the 79 exons of the Dystrophin gene, leaving the deletions border undefined and the reading frame ambiguous in many patients [71].
Soon after, semiquantitative multiplex PCR was able to detect intragenic duplications in DMD patients and girls carrying intragenic deletions within the Dystrophin gene [72][73]. About two decades later, semiquantitative fluorescent multiplex PCR for deletions and duplication detection was achieved [57]. The high-density single-strand PCR-based comparative genomic hybridization (CGH) array represents an effective high-throughput tool (DMD-CGH array) to detect Dystrophin gene exon deletions/duplications [74][75].

2.6. Point Mutations Screening

If the results of multiplex PCR and MLPA analyses do not reveal intragenic alterations (single or multiple exon deletions or duplications—dupdels), the next step is to screen PCR products for nucleotide alterations (point mutations) including nucleotide substitutions, deletions, or insertions using denaturing gradient gel electrophoresis [76][77], single strand conformation polymorphism analysis [78][79], double strand confirmation analysis [80][81], or DNA fingerprinting [82][83][84].
If the point mutations screening shows electrophoretic mobility alterations of certain PCR products (amplicons), the next step is to sequence these amplicons to identify nucleotide alterations. Furthermore, rapid direct sequencing of Dystrophin gene exons and flanking intronic regions, which is necessary to detect mutations affecting splice sites, became available in 2003 [16][85].

2.7. Next Generation DNA Sequencing

The next-generation DNA sequencing (NGS) platform is a valuable tool for the molecular diagnosis of dystrophinopathies [86][87][88][89][90][91]. The NGS platform combines a DNA sequencing apparatus (NovaSeq 6000, sequencer) and results analysis gear (SeqNext software, version number is 3.5.0). The NGS platform is able to simultaneously detect intragenic and nucleotide alterations of libraries obtained with the DMD MASTR kit (Agilent Technologies, Cheadle, UK).
The combination of MLPA and NGS is a valuable approach for detecting mutations in the Dystrophin gene in Peruvian patients suspected of muscular dystrophies [92]. Moreover, a comprehensive NGS assay for sequencing the entire 2.2 Mb Dystrophin gene holds the power to detect all copy number and sequence variants in both patients and carrier females [93].

3. Pharmacological Therapy

Since the first description of Duchenne muscular dystrophy in 1867 [94], various pharmacological efforts have failed to alter the natural course of the disease [95][96]. Recent updates of the pharmacological therapy for Duchenne muscular dystrophy are reported elsewhere [97].

3.1. Skeletal Muscle Care

The mainstay therapy of DMD patients is glucocorticoids (prednisone, prednisolone, and deflazacort), which target the glucocorticoid receptor to exert anti-inflammation effects by suppressing the NF-κB signaling pathway [98][99][100]. Glucocorticoids are usually administered in daily or intermittent doses; however, glucocorticoids have different efficacy and remarkable side effects [99][101][102], including weight gain, osteoporosis, cataracts, hypertension, and stunted bone growth [103][104][105][106][107]. Bonifati and colleagues suggest that the 1220 A to G (Asn363Ser—N363S) polymorphism in the Glucocorticoid receptor (GR) gene has a definite modulating effect on steroid response in DMD patients by inducing a long-term sensitivity to glucocorticoids [108].
In a randomized double-blind controlled trial, 28 DMD patients were treated with either deflazacort 2.0 mg/kg or placebo on alternate days. After 6 months of therapy, the deflazacort group showed significant progress in climbing stairs, rising from a chair, Gower’s maneuver, and walking. Moreover, these motor outcomes continued to meliorate during a two-year follow-up period. Additionally, the loss of ambulation of the deflazacort group was delayed for 12.7 months compared to placebo—33.2 versus 20.5 months, respectively [109]. Wissing and colleagues suggest that the cyclophilin inhibitor (Debio-025) is more effective than prednisone in reducing skeletal muscle pathology in the DMD mouse model [110], which is due to its ability to desensitize mitochondrial permeability pore and successive cellular necrosis. This observation suggests a latent mitochondrial dysfunction in DMD myoblasts [111].
Currently, vamorolone (VBP15), an innovative steroid, is being investigated as a potential alternative to corticosteroids (glucocorticoids and mineralocorticoids), aiming at maintaining the corticosteroids’ efficacy profile while diminishing their side effects [112][113][114]. Ataluren is approved in several countries for DMD therapy. Ataluren (Translarna—PTC124) is a disease-modifying molecule for stop codon read-through therapy, which could help up to 10–15% of the DMD patients carrying nonsense mutations plus those carrying out of frame mutations [20][115][116][117][118]. However, there is no pharmacological drug that can compensate for the lack of dystrophin in muscle fibers [96][97].
Corticosteroids (prednisone, prednisolone, and deflazacort) stabilize muscle strength for some time [106]. Although corticosteroid therapy improves muscle strength and function for DMD boys aged 5 to 15 years, their therapeutic efficacy in BMD is less obvious. Moreover, intermittent glucocorticoids combined with continuous oral steroid therapy significantly improve myocardial function in DMD, but not in BMD patients [119]. Merlini and colleagues reported that early corticosteroid treatment increases quadriceps muscle strength and prolongs the mobility of DMD boys [120]. Barp and colleagues identified a putative predictive value of the LTBP4 rs10880 genotype for delaying the onset of dilated cardiomyopathy with steroid therapy, which could help in deciding whether and how long to preserve therapy in non-ambulatory patients [121].

3.2. Cardiologic Care

Angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and β-blockers are the first-line cardioprotective prescriptions to prevent DMD cardiac manifestations [121][122][123][124]. While ACE inhibitors are used with or without beta blockers for cardiomyopathy in muscular dystrophy patients, congestive heart failure is treated with diuretics and oxygen. Nevertheless, cardiac transplantations are usually offered to DMD patients and symptomatic carriers with severe dilated cardiomyopathy [13][125][126]. Angiotensin II is involved in the fibrotic process of skeletal muscle and heart [127]. The ACE inhibitor perindopril is associated with lower mortality in young DMD patients with cardiomyopathy [128].

4. Standard Multidisciplinary Care

Duchenne muscular dystrophy affects multiple organs, thus, besides physiotherapy, a multidisciplinary approach for pulmonary, cardiac, and orthopedic care will be adopted.. Clinical neurologists need to relate to patients and families with neurologic problems since mental retardation might be part of Duchenne's picture. Duchenne muscular dystrophy patients suffer from skeletal muscle degeneration as well as lung and heart function limitations. However, advances in pulmonary care have significantly reduced respiratory complications [129]. The combination of yoga and early-age physiotherapy intervention improves pulmonary function in children with DMD [130]. Also, home exercise plays an important role in preventing early complications in patients with muscular dystrophy [131] and may increase their bone mass [132]. There is some general dietary advice such as on the consumption of micronutrients (multivitamins, calcium, vitamin D, high protein diet with low fat and carbohydrates) which should be part of a good dietary practice. However, DMD patients should always consult with their physicians for their nutrient requirements [129].

5. Gene Therapy

Duchenne muscular dystrophy gene therapy strategies are comprehensively reported elsewhere [95][97]. Eteplirsen, an antisense-oligonucleotide drug for exon 51 skipping from the Dystrophin gene, is available on the market after FDA approval in 2017 [133], however, there are reservations about its efficacy. Other FDA-approved exon-skipping drugs include ExonDys-51 for exon 51, VyonDys-53 and Viltolarsen for exon 53, and AmonDys-45 for exon 45 skipping [134]. Exon 51 skipping offers gene therapy for up to 14% of DMD patients [133]. Other antisense oligonucleotide drugs in the pipeline include casimersen for exon 45, golodirsen for exon 53, and suvodirsen for exon 51 skipping [135].
Prime gene editing alone is able to correct up to 89% of the genetic mutations causing genetic diseases [136]. Dystrophin restoration therapies have been developed using synthetic antisense oligonucleotides drugs (genetic medicine, genetic drugs, or gene drugs) to restore the reading frame by exon skipping or exon reframing for individuals with specific pathogenic variants in the Dystrophin gene [137][138][139]. Bello and colleagues conclude that patients with deletions ending at exon 51 (del X-51) or an exon 48 isolated deletion (del 48) have mild or asymptomatic BMD, while deletions starting at exon 45 (del 45-X) cause relatively severe weakness [16]. Similar to the deletion of exons 45–55 [140], the deletion of exons 10–25, 10–29, and 11–30 show dystrophin quantities similar to control [16], providing models for exon skipping of deletions within these exonic intervals.

References

  1. Monaco, A.P.; Bertelson, C.J.; Middlesworth, W.; Colletti, C.A.; Aldridge, J.; Fischbeck, K.H.; Bartlett, R.; Pericak-Vance, M.A.; Roses, A.D.; Kunkel, L.M. Detection of deletions spanning the Duchenne muscular dystro-phy locus using a tightly linked DNA segment. Nature 1985, 316, 842–845.
  2. Ray, P.N.; Belfall, B.; Duff, C.; Logan, C.; Kean, V.; Thompson, M.W.; Sylvester, J.E.; Gorski, J.L.; Schmickel, R.D.; Worton, R.G. Cloning of the breakpoint of an X;21 translocation associated with Duchenne muscular dystrophy. Nature 1985, 318, 672–675.
  3. Koenig, M.; Hoffman, E.P.; Bertelson, C.J.; Monaco, A.P.; Feener, C.; Kunkel, L.M. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 1987, 50, 509–517.
  4. Gherardi, S.; Bovolenta, M.; Passarelli, C.; Falzarano, M.S.; Pigini, P.; Scotton, C.; Neri, M.; Armaroli, A.; Osman, H.; Selvatici, R.; et al. Transcriptional and epigenetic analyses of the DMD locus reveal novel cis acting DNA elements that govern muscle dystrophin expression. Biochim. Biophys. Acta Gene Regul. Mech. 2017, 1860, 1138–1147.
  5. Olson, E.N. Toward the correction of muscular dystrophy by gene editing. Proc. Natl. Acad. Sci. USA 2021, 118, e2004840117.
  6. Hoffman, E.P.; Kunkel, L.M. Dystrophin abnormalities in Duchenne/Becker muscular dystrophy. Neuron 1989, 2, 1019.
  7. Tanaka, H.; Ishiguro, T.; Eguchi, C.; Saito, K.; Ozawa, E. Expression of a dystrophin-related protein associated with the skeletal muscle cell membrane. Histochemistry 1991, 96, 1–5.
  8. Fratter, C.; Dalgleish, R.; Allen, S.K.; Santos, R.; Abbs, S.; Tuffery-Giraud, S.; Ferlini, A. EMQN best practice guidelines for genetic testing in Dystrophinopathies. Eur. J. Hum. Genet. 2020, 28, 1141–1159.
  9. De Palma, F.D.E.; Nunziato, M.; D’Argenio, V.; Savarese, M.; Esposito, G.; Salvatore, F. Comprehensive Molecular Analysis of DMD Gene Increases the Diagnostic Value of Dystrophinopathies: A Pilot Study in a Southern Italy Cohort of Patients. Diagnostics 2021, 11, 1910.
  10. Amrani, N.; Sachs, M.S.; Jacobson, A. Early nonsense: mRNA decay solves a translational problem. Nat. Rev. Mol. Cell Biol. 2006, 7, 415–425.
  11. Puisac, B.; Teresa-Rodrigo, M.E.; Arnedo, M.; Gil-Rodríguez, M.C.; Pérez-Cerdá, C.; Ribes, A.; Pié, A.; Bueno, G.; Gómez-Puertas, P.; Pié, J. Analysis of aberrant splicing and nonsense-mediated decay of the stop codon mutations c.109G>T and c.504-505delCT in 7 patients with HMG-CoA lyase deficiency. Mol. Genet. Metab. 2013, 108, 232–240.
  12. Verhaart, I.E.; van Duijn, R.J.; den Adel, B.; Roest, A.A.; Verschuuren, J.J.; Aartsma-Rus, A.; van der Weerd, L. Assessment of cardiac function in three mouse Dystrophinopathies by magnetic resonance imaging. Neuromuscul. Disord. 2012, 22, 418–426.
  13. Del Rio-Pertuz, G.; Morataya, C.; Parmar, K.; Dubay, S.; Argueta-Sosa, E. Dilated cardiomyopathy as the initial presentation of Becker muscular dystrophy: A systematic review of published cases. Orphanet J. Rare Dis. 2022, 17, 194.
  14. Fayssoil, A.; Yaou, R.B.; Ogna, A.; Leturcq, F.; Nardi, O.; Clair, B.; Wahbi, K.; Lofaso, F.; Laforet, P.; Duboc, D.; et al. Clinical profiles and prognosis of acute heart failure in adult patients with Dystrophinopathies on home mechanical ventilation. ESC Heart Fail. 2017, 4, 527–534.
  15. Nigro, G.; Comi, L.I.; Politano, L.; Bain, R.J. The incidence and evolution of cardiomyopathy in Duchenne muscular dystrophy. Int. J. Cardiol. 1990, 26, 271–277.
  16. Bello, L.; Campadello, P.; Barp, A.; Fanin, M.; Semplicini, C.; Sorarù, G.; Caumo, L.; Calore, C.; Angelini, C.; Pegoraro, E. Functional changes in Becker muscular dystrophy: Implications for clinical trials in Dystrophinopathies. Sci. Rep. 2016, 6, 32439.
  17. Muntoni, F.; Di Lenarda, A.; Porcu, M.; Sinagra, G.; Mateddu, A.; Marrosu, G.; Ferlini, A.; Cau, M.; Milasin, J.; Melis, M.A.; et al. Dystrophin gene abnormalities in two patients with idiopathic dilated cardiomyopathy. Heart 1997, 78, 608–612.
  18. Berardo, A.; DiMauro, S.; Hirano, M. A diagnostic algorithm for metabolic myopathies. Curr. Neurol. Neurosci. Rep. 2010, 10, 118–126.
  19. Brandsema, J.F.; Darras, B.T. Dystrophinopathies. In Seminars in Neurology; Thieme Medical Publishers: New York, NY, USA, 2015; Volume 35, pp. 369–384.
  20. Topaloglu, H. Duchenne muscular dystrophy: A short review and treatment update. Iran. J. Child Neurol. 2021, 15, 9–15.
  21. Melacini, P.; Fanin, M.; Danieli, G.A.; Fasoli, G.; Villanova, C.; Angelini, C.; Vitiello, L.; Miorelli, M.; Buja, G.F.; Mostacciuolo, M.L.; et al. Cardiac involvement in Becker muscular dystrophy. J. Am. Coll. Cardiol. 1993, 22, 1927–1934.
  22. Suthar, R.; Kesavan, S.; Sharawat, I.K.; Malviya, M.; Sirari, T.; Sihag, B.K.; Saini, A.G.; Jyothi, V.; Sankhyan, N. The Expanding Spectrum of Dystrophinopathies: HyperCKemia to Manifest Female Carriers. J. Pediatr. Neurosci. 2021, 16, 206–211.
  23. Kamakura, K.; Kawai, M.; Arahata, K.; Koizumi, H.; Watanabe, K.; Sugita, H. A manifesting carrier of Duchenne muscular dystrophy with severe myocardial symptoms. J. Neurol. 1990, 237, 483–485.
  24. Politano, L.; Nigro, V.; Nigro, G.; Petretta, V.R.; Passamano, L.; Papparella, S.; Di Somma, S.; Comi, L.I. Development of cardiomyopathy in female carriers of Duchenne and Becker muscular dystrophies. JAMA 1996, 275, 1335–1338.
  25. Hoogerwaard, E.M.; van der Wouw, P.A.; Wilde, A.A.; Bakker, E.; Ippel, P.F.; Oosterwijk, J.C.; Majoor-Krakauer, D.F.; van Essen, A.J.; Leschot, N.J.; de Visser, M. Cardiac involvement in carriers of Duchenne and Becker muscular dystrophy. Neuromuscul. Disord. 1999, 9, 347–351.
  26. Grain, L.; Cortina-Borja, M.; Forfar, C.; Hilton-Jones, D.; Hopkin, J.; Burch, M. Cardiac abnormalities and skeletal muscle weakness in carriers of Duchenne and Becker muscular dystrophies and controls. Neuromuscul. Disord. 2001, 11, 186–191.
  27. Lim, K.R.Q.; Sheri, N.; Nguyen, Q.; Yokota, T. Cardiac Involvement in Dystrophin-Deficient Females: Current Understanding and Implications for the Treatment of Dystrophinopathies. Genes 2020, 11, 765.
  28. Richterich, R.; Rosin, S.; Aebi, U.; Rossi, E. Progressive Muscular Dystrophy. V. The Identification of the Carrier State in the Duchenne Type by Serum Creatine Kinase Determination. Am. J. Hum. Genet. 1963, 15, 133–154.
  29. Emery, A.E.H. Muscle histology in carriers of Duchenne muscular dystrophy. J. Med. Genet. 1965, 2, 1–7.
  30. Bakker, E.; Hofker, M.H.; Goor, N.; Mandel, J.L.; Wrogemann, K.; Davies, K.E.; Kunkel, L.M.; Willard, H.F.; Fenton, W.A.; Sandkuyl, L.; et al. Prenatal diagnosis and carrier detection of Duchenne muscular dystrophy with closely linked RFLPs. Lancet 1985, 1, 655–658.
  31. Abbs, S.; Roberts, R.G.; Mathew, C.G.; Bentley, D.R.; Bobrow, M. Accurate assessment of intragenic recombination frequency within the Duchenne muscular dystrophy gene. Genomics 1990, 7, 602–606.
  32. Dreyfus, J.C.; Schapira, G.; Schapira, F. Serum enzymes in the physiopathology of muscle. Ann. N. Y. Acad. Sci. 1958, 75, 235–249.
  33. Pearce, J.M.; Pennigton, R.J.; Walton, J.N. Serum enzyme studies in muscle disease, Part III. Serum creatine kinase activity in relatives of patients with Duchenne type of muscular dystrophy. J. Neurol. Neurosurg. Psychiatry 1964, 27, 181–185.
  34. Hughes, R.C.; Park, D.C.; Parsons, M.E.; O’Brien, M.D. Serum creatine kinase studies in the detection of carriers of Duchenne dystrophy. J. Neurol. Neurosurg. Psychiatry 1971, 34, 527–530.
  35. Skinner, R.; Emery, A.E. Letter: Serum-creatine-kinase levels in carriers of Becker muscular dystrophy. Lancet 1974, 2, 1023–1024.
  36. Kim, E.Y.; Lee, J.W.; Suh, M.R.; Choi, W.A.; Kang, S.W.; Oh, H.J. Correlation of Serum Creatine Kinase Level with Pulmonary Function in Duchenne Muscular Dystrophy. Ann. Rehabil. Med. 2017, 41, 306–312.
  37. Yasmineh, W.G.; Ibrahim, G.A.; Abbasnezhad, M.; Awad, E.A. Isoenzyme distribution of creatine kinase and lactate dehydrogenase in serum and skeletal muscle in Duchenne muscular dystrophy, collagen disease, and other muscular disorders. Clin. Chem. 1978, 24, 1985–1989.
  38. Roy, S.; Dubowitz, V. Carrier detection in Duchenne muscular dystrophy. A comparative study of electron microscopy, light microscopy and serum enzymes. J. Neurol. Sci. 1970, 11, 65–67.
  39. Hofker, M.H.; Wapenaar, M.C.; Goor, N.; Bakker, E.; van Ommen, G.J.; Pearson, P.L. Isolation of probes detecting restriction fragment length polymorphisms from X chromosomespecific libraries: Potential use for diagnosis of Duchenne muscular dystrophy. Hum. Genet. 1985, 70, 148–156.
  40. Bakker, E.; Bonten, E.J.; De Lange, L.F.; Veenema, H.; Majoor-Krakauer, D.; Hofker, M.H.; Van Ommen, G.J.; Pearson, P.L. DNA probe analysis for carrier detection and prenatal diagnosis of Duchenne muscular dystrophy: A standard diagnostic procedure. J. Med. Genet. 1986, 23, 573–580.
  41. Southern, E.M. An improved method for transferring nucleotides from electrophoresis strips to thin layers of ion-exchange cellulose. Anal. Biochem. 1974, 62, 317–318.
  42. Forrest, S.M.; Cross, G.S.; Flint, T.; Speer, A.; Robson, K.J.; Davies, K.E. Further studies of gene deletions that cause Duchenne and Becker muscular dystrophies. Genomics 1988, 2, 109–114.
  43. Gilgenkrantz, H.; Chelly, J.; Lambert, M.; Recan, D.; Barbot, J.C. Analysis of molecular deletions with cDNA probes in patients with Duchenne and Becker muscular dystrophy. Genomics 1989, 5, 574–580.
  44. Angelini, C.; Beggs, A.H.; Hoffman, E.P.; Fanin, M.; Kunkel, L.M. Enormous dystrophin in a patient with Becker muscular dystrophy. Neurology 1990, 40, 808–812.
  45. Herrmann, F.H.; Wulff, K.; Schütz, M.; Wehnert, M. Deletion screening and prenatal diagnosis of Duchenne muscular dystrophy using cDNA probes Cf 23a and Cf 56a. Eur. J. Pediatr. 1990, 149, 263–265.
  46. Gold, R.; Kress, W.; Bettecken, T.; Reichmann, H.; Müller, C.R. A 400-kb tandem duplication within the dystrophin gene leads to severe Becker muscular dystrophy. J. Neurol. 1994, 241, 331–334.
  47. Radosavljević, D.; Todorović, D.; Crkvenjakov, R. Deletion analysis of Duchenne muscular dystrophy using cDNA probes and multiplex PCR. Neurol. Croat. 1991, 40, 157–164.
  48. Vitiello, L.; Mostacciuolo, M.L.; Oliviero, S.; Schiavon, F.; Nicoletti, L.; Angelini, C.; Danieli, G.A. Screening for mutations in the muscle promoter region and for exonic deletions in a series of 115 DMD and BMD patients. J. Med. Genet. 1992, 29, 127–130.
  49. Southern, E.M. Blotting at 25. Trends Biochem. Sci. 2000, 25, 585–588.
  50. Zubrzycka-Gaarn, E.E.; Bulman, D.E.; Karpati, G.; Burghes, A.H.; Belfall, B.; Klamut, H.J.; Talbot, J.; Hodges, R.S.; Ray, P.N.; Worton, R.G. The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle. Nature 1988, 333, 466–469.
  51. Uchino, M.; Araki, S.; Miike, T. Electrophoretic studies of muscle proteins in Duchenne muscular dystrophy and other neuromuscular disorders--with special reference to the change of dystrophin. Jpn. J. Med. 1989, 28, 170–174.
  52. Sahashi, K.; Ibi, T.; Suoh, H.; Nakao, N.; Tashiro, M.; Marui, K.; Arahata, K.; Sugita, H. Immunostaining of dystrophin and utrophin in skeletal muscle of dystrophinopathies. Intern. Med. 1994, 33, 277–283.
  53. Voit, T.; Stuettgen, P.; Cremer, M.; Goebel, H.H. Dystrophin as a diagnostic marker in Duchenne and Becker muscular dystrophy. Correlation of immunofluorescence and western blot. Neuropediatrics 1991, 22, 152–162.
  54. Chevron, M.P.; Tuffery, S.; Echenne, B.; Demaille, J.; Claustres, M. Becker muscular dystrophy: Demonstration of the carrier status of a female by immunoblotting and immunostaining. Neuromuscul. Disord. 1992, 2, 47–50.
  55. Hoffman, E.P.; Kunkel, L.M.; Angelini, C.; Clarke, A.; Johnson, M.; Harris, J.B. Improved diagnosis of Becker muscular dystrophy by dystrophin testing. Neurology 1989, 39, 1011–1017.
  56. Roberts, R.G.; Bobrow, M.; Bentley, D.R. Point mutations in the dystrophin gene. Proc. Natl. Acad. Sci. USA 1992, 89, 2331–2335.
  57. Deburgrave, N.; Daoud, F.; Llense, S.; Barbot, J.C.; Récan, D.; Peccate, C.; Burghes, A.H.; Béroud, C.; Garcia, L.; Kaplan, J.C.; et al. Protein- and mRNA-based phenotype-genotype correlations in DMD/BMD with point mutations and molecular basis for BMD with nonsense and frameshift mutations in the DMD gene. Hum. Mutat. 2007, 28, 183–195.
  58. Bougé, A.L.; Murauer, E.; Beyne, E.; Miro, J.; Varilh, J.; Taulan, M.; Koenig, M.; Claustres, M.; Tuffery-Giraud, S. Targeted RNA-Seq profiling of splicing pattern in the DMD gene: Exons are mostly constitutively spliced in human skeletal muscle. Sci. Rep. 2017, 7, 39094.
  59. Falzarano, M.S.; Grilli, A.; Zia, S.; Fang, M.; Rossi, R.; Gualandi, F.; Rimessi, P.; El Dani, R.; Fabris, M.; Lu, Z.; et al. RNA-seq in DMD urinary stem cells recognized muscle-related transcription signatures and addressed the identification of atypical mutations by whole-genome sequencing. HGG Adv. 2021, 3, 100054.
  60. Gatta, V.; Scarciolla, O.; Gaspari, A.R.; Palka, C.; De Angelis, M.V.; Di Muzio, A.; Guanciali-Franchi, P.; Calabrese, G.; Uncini, A.; Stuppia, L. Identification of deletions and duplications of the DMD gene in affected males and carrier females by multiple ligation probe amplification (MLPA). Hum. Genet. 2005, 117, 92–98.
  61. Lalic, T.; Vossen, R.H.; Coffa, J.; Schouten, J.P.; Guc-Scekic, M.; Radivojevic, D.; Djurisic, M.; Breuning, M.H.; White, S.J.; den Dunnen, J.T. Deletion and duplication screening in the DMD gene using MLPA. Eur. J. Hum. Genet. 2005, 13, 1231–1234.
  62. Lai, K.K.; Lo, I.F.; Tong, T.M.; Cheng, L.Y.; Lam, S.T. Detecting exon deletions and duplications of the DMD gene using Multiplex Ligation-dependent Probe Amplification (MLPA). Clin. Biochem. 2006, 39, 367–372.
  63. Todorova, A.; Todorov, T.; Georgieva, B.; Lukova, M.; Guergueltcheva, V.; Kremensky, I.; Mitev, V. MLPA analysis/complete sequencing of DMD gene in a group of Bulgarian Duchenne/Becker muscular dystrophy patients. Neuromuscul. Disord. 2008, 18, 667–670.
  64. Wu, Y.; Yin, G.; Fu, K.; Wu, D.; Zhai, Q.; Du, H.; Huang, Z.; Niu, Y. Gene diagnosis for nine Chinese patients with DMD/BMD by multiplex ligation-dependent probe amplification and prenatal diagnosis for one of them. J. Clin. Lab. Anal. 2009, 23, 380–386.
  65. Murugan, S.; Chandramohan, A.; Lakshmi, B.R. Use of multiplex ligation-dependent probe amplification (MLPA) for Duchenne muscular dystrophy (DMD) gene mutation analysis. Indian J. Med. Res. 2010, 132, 303–311.
  66. Sansović, I.; Barišić, I.; Dumić, K. Improved detection of deletions and duplications in the DMD gene using the multiplex ligation-dependent probe amplification (MLPA) method. Biochem. Genet. 2013, 51, 189–201.
  67. Kim, S.H.; Hong, S.Y.; Lee, M.J.; Kang, K.M.; Park, J.E.; Shim, S.H.; Cha, D.H. Prenatal diagnosis of de novo DMD duplication by multiplex ligation-dependent probe amplification (MLPA) after noninvasive prenatal screening (NIPS) at 11 gestational weeks. Taiwan. J. Obstet. Gynecol. 2021, 60, 570–573.
  68. Echigoya, Y.; Lim, K.R.Q.; Nakamura, A.; Yokota, T. Multiple exon skipping in the Duchenne muscular dystrophy hot spots: Prospects and challenges. J. Pers. Med. 2018, 8, 41.
  69. Chamberlain, J.S.; Gibbs, R.A.; Ranier, J.E.; Nguyen, P.N.; Caskey, C.T. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res. 1988, 16, 11141–11156.
  70. Beggs, A.H.; Koenig, M.; Boyce, F.M.; Kunkel, L.M. Detection of 98% of DMD/BMD gene deletions by polymerase chain reaction. Hum. Genet. 1990, 86, 45–48.
  71. Newcomb, T.M.; Flanigan, K.M. Reassessing carrier status for dystrophinopathies. Neurol. Genet. 2016, 2, e108.
  72. Saad, F.A.; Galvagni, F.; Danieli, G.A. Rapid detection of human dystrophin gene mutations by multiplex semi-quantitave PCR. Basic Appl. Myol. 1993, 3, 229–231.
  73. Galvagni, F.; Saad, F.A.; Danieli, G.A.; Miorin, M.; Vitiello, L.; Mostacciuolo, M.L.; Angelini, C. A study on duplications of the dystrophin gene: Evidence of a geographical difference in the distribution of breakpoints by intron. Hum. Genet. 1994, 94, 83–87.
  74. Dhami, P.; Coffey, A.J.; Abbs, S.; Vermeesch, J.R.; Dumanski, J.P.; Woodward, K.J.; Andrews, R.M.; Langford, C.; Vetrie, D. Exon array CGH: Detection of copy-number changes at the resolution of individual exons in the human genome. Am. J. Hum. Genet. 2005, 76, 750–762.
  75. Bovolenta, M.; Neri, M.; Fini, S.; Fabris, M.; Trabanelli, C.; Venturoli, A.; Martoni, E.; Bassi, E.; Spitali, P.; Brioschi, S.; et al. A novel custom high density-comparative genomic hybridization array detects common rearrangements as well as deep intronic mutations in Dystrophinopathies. BMC Genom. 2008, 9, 572.
  76. Myers, R.M.; Fischer, S.G.; Maniatis, T.; Lerman, L.S. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis. Nucleic Acids Res. 1985, 13, 3111–3129.
  77. Lerman, L.S.; Silverstein, K.; Grinfeld, E. Searching for gene defects by denaturing gradient gel electrophoresis. Cold Spring Harb. Symp. Quant. Biol. 1986, 51 Pt 1, 285–297.
  78. Saeki, Y.; Ueno, S.; Yorifuji, S.; Sugiyama, Y.; Ide, Y.; Matsuzawa, Y. New mutant gene (transthyretin Arg 58) in cases with hereditary polyneuropathy detected by non-isotope method of single-strand conformation polymorphism analysis. Biochem. Biophys. Res. Commun. 1991, 180, 380–385.
  79. Saijo, T.; Ito, M.; Takeda, E.; Huq, A.H.; Naito, E.; Yokota, I.; Sone, T.; Pike, J.W.; Kuroda, Y. A unique mutation in the vitamin D receptor gene in three Japanese patients with vitamin D-dependent rickets type II: Utility of single-strand conformation polymorphism analysis for heterozygous carrier detection. Am. J. Hum. Genet. 1991, 49, 668–673.
  80. Saad, F.A.; Halliger, B.; Müller, C.R.; Roberts, R.G.; Danieli, G.A. Single base substitutions are detected by double strand conformation analysis. Nucleic Acids Res. 1994, 22, 4352–4353.
  81. Saad, F.A.; Mostacciuolo, M.L.; Trevisan, C.P.; Tomelleri, G.; Angelini, C.; Abdel Salam, E.; Danieli, G.A. Novel mutations and polymorphisms in the human dystrophin gene detected by double-strand conformation analysis. Hum. Mutat. 1997, 9, 188–190.
  82. Nürnberg, P.; Roewer, L.; Neitzel, H.; Sperling, K.; Pöpperl, A.; Hundrieser, J.; Pöche, H.; Epplen, C.; Zischler, H.; Epplen, J.T. DNA fingerprinting with the oligonucleotide probe (CAC)5/(GTG)5: Somatic stability and germline mutations. Hum. Genet. 1989, 84, 75–78.
  83. McClelland, M.; Welsh, J. DNA fingerprinting by arbitrarily primed PCR. Genome Res. 1994, 4, S59–S65.
  84. Yauk, C.L.; Quinn, J.S. Multilocus DNA fingerprinting reveals high rate of heritable genetic mutation in herring gulls nesting in an industrialized urban site. Proc. Natl. Acad. Sci. USA 1996, 93, 12137–12141.
  85. Flanigan, K.M.; von Niederhausern, A.; Dunn, D.M.; Alder, J.; Mendell, J.R.; Weiss, R.B. Rapid direct sequence analysis of the dystrophin gene. Am. J. Hum. Genet. 2003, 72, 931–939.
  86. Alame, M.; Lacourt, D.; Zenagui, R.; Mechin, D.; Danton, F.; Koenig, M.; Claustres, M.; Cossée, M. Implementation of a Reliable Next-Generation Sequencing Strategy for Molecular Diagnosis of Dystrophinopathies. J. Mol. Diagn. 2016, 18, 731–740.
  87. Ebrahimzadeh-Vesal, R.; Teymoori, A.; Azimi-Nezhad, M.; Hosseini, F.S. Next Generation Sequencing approach to molecular diagnosis of Duchenne muscular dystrophy; identification of a novel mutation. Gene 2018, 644, 1–3.
  88. Liu, C.; Deng, H.; Yang, C.; Li, X.; Zhu, Y.; Chen, X.; Li, H.; Li, S.; Cui, H.; Zhang, X.; et al. A resolved discrepancy between multiplex PCR and multiplex ligation-dependent probe amplification by targeted next-generation sequencing discloses a novel partial exonic deletion in the Duchenne muscular dystrophy gene. J. Clin. Lab. Anal. 2018, 32, e22575.
  89. Alcántara-Ortigoza, M.A.; Reyna-Fabián, M.E.; González-Del Angel, A.; Estandia-Ortega, B.; Bermúdez-López, C.; Cruz-Miranda, G.M.; Ruíz-García, M. Predominance of Dystrophinopathy Genotypes in Mexican Male Patients Presenting as Muscular Dystrophy with A Normal Multiplex Polymerase Chain Reaction DMD Gene Result: A Study Including Targeted Next-Generation Sequencing. Genes 2019, 10, 856.
  90. Nerakh, G.; Ranganath, P.; Murugan, S. Next-Generation Sequencing in a Cohort of Asian Indian Patients with the Duchenne Muscular Dystrophy Phenotype: Diagnostic Yield and Mutation Spectrum. J. Pediatr. Genet. 2021, 10, 23–28.
  91. Park, E.W.; Shim, Y.J.; Ha, J.S.; Shin, J.H.; Lee, S.; Cho, J.H. Diagnosis of Duchenne Muscular Dystrophy in a Presymptomatic Infant Using Next-Generation Sequencing and Chromosomal Microarray Analysis: A Case Report. Children 2021, 8, 377.
  92. Guevara-Fujita, M.L.; Huaman-Dianderas, F.; Obispo, D.; Sánchez, R.; Barrenechea, V.; Rojas-Málaga, D.; Estrada-Cuzcano, A.; Trubnykova, M.; Cornejo-Olivas, M.; Marca, V.; et al. MLPA followed by target-NGS to detect mutations in the dystrophin gene of Peruvian patients suspected of DMD/DMB. Mol. Genet. Genom. Med. 2021, 9, e1759.
  93. Nallamilli, B.R.R.; Chaubey, A.; Valencia, C.A.; Stansberry, L.; Behlmann, A.M.; Ma, Z.; Mathur, A.; Shenoy, S.; Ganapathy, V.; Jagannathan, L.; et al. A single NGS-based assay covering the entire genomic sequence of the DMD gene facilitates diagnostic and newborn screening confirmatory testing. Hum. Mutat. 2021, 42, 626–638.
  94. Duchenne, D. The pathology of paralysis with muscular degeneration (paralysie myosclerotique), or paralysis with apparent hypertrophy. Br. Med. J. 1867, 2, 541–542.
  95. Elangkovan, N.; Dickson, G. Gene Therapy for Duchenne Muscular Dystrophy. J. Neuromuscul. Dis. 2021, 8 (Suppl. S2), S303–S316.
  96. Wilton-Clark, H.; Yokota, T. Biological and genetic therapies for the treatment of Duchenne muscular dystrophy. Expert Opin. Biol. Ther. 2023, 23, 49–59.
  97. Saad, F.A.; Saad, J.F.; Siciliano, G.; Merlini, L.; Angelini, C. Duchenne Muscular Dystrophy Gene therapy. Curr. Gene Ther. 2022; in press.
  98. Reeves, E.K.; Rayavarapu, S.; Damsker, J.M.; Nagaraju, K. Glucocorticoid analogues: Potential therapeutic alternatives for treating inflammatory muscle diseases. Endocr. Metab. Immune Disord. Drug Targets 2012, 12, 95–103.
  99. Matthews, E.; Brassington, R.; Kuntzer, T.; Jichi, F.; Manzur, A.Y. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst. Rev. 2016, 2016, CD003725.
  100. Srinivasan, M.; Walker, C. Circadian Clock, Glucocorticoids and NF-κB Signaling in Neuroinflammation- Implicating Glucocorticoid Induced Leucine Zipper as a Molecular Link. ASN Neuro 2022, 14, 17590914221120190.
  101. De Luca, A. Pre-clinical drug tests in the mdx mouse as a model of dystrophinopathies: An overview. Acta Myol. 2012, 31, 40–47.
  102. Goemans, N.; Buyse, G. Current treatment and management of Dystrophinopathies. Curr. Treat. Options Neurol. 2014, 16, 287.
  103. Muntoni, F.; Fisher, I.; Morgan, J.E.; Abraham, D. Steroids in Duchenne muscular dystrophy: From clinical trials to genomic research. Neuromuscul. Disord. 2002, 12 (Suppl. S1), S162–S165.
  104. Bianchi, M.L.; Mazzanti, A.; Galbiati, E.; Saraifoger, S.; Dubini, A.; Cornelio, F.; Morandi, L. Bone mineral density and bone metabolism in Duchenne muscular dystrophy. Osteoporos. Int. 2003, 14, 761–767.
  105. Bianchi, B.; Matthews, D.J.; Clayton, G.H.; Carry, T. Corticosteroid treatment and functional improvement in Duchenne muscular dystrophy: Long-term effect. Am. J. Phys. Med. Rehabil. 2005, 84, 843–850.
  106. Angelini, C. The role of corticosteroids in muscular dystrophy: A critical appraisal. Muscle Nerve 2007, 2036, 424–435.
  107. Viviano, K.R. Glucocorticoids, Cyclosporine, Azathioprine, Chlorambucil, and Mycophenolate in Dogs and Cats: Clinical Uses, Pharmacology, and Side Effects. Vet. Clin. N. Am. Small Anim. Pract. 2022, 52, 797–817.
  108. Bonifati, D.M.; Witchel, S.F.; Ermani, M.; Hoffman, E.P.; Angelini, C.; Pegoraro, E. The glucocorticoid receptor N363S polymorphism and steroid response in Duchenne dystrophy. J. Neurol. Neurosurg. Psychiatry 2006, 77, 1177–1179.
  109. Angelini, C.; Pegoraro, E.; Turella, E.; Intino, M.T.; Pini, A.; Costa, C. Deflazacort in Duchenne dystrophy: Study of long-term effect. Muscle Nerve 1994, 17, 386–391.
  110. Wissing, E.R.; Millay, D.P.; Vuagniaux, G.; Molkentin, J.D. Debio-025 is more effective than prednisone in reducing muscular pathology in mdx mice. Neuromuscul. Disord. 2010, 20, 753–760.
  111. Pauly, M.; Daussin, F.; Burelle, Y.; Li, T.; Godin, R.; Fauconnier, J.; Koechlin-Ramonatxo, C.; Hugon, G.; Lacampagne, A.; Coisy-Quivy, M.; et al. AMPK activation stimulates autophagy and ameliorates muscular dystrophy in the mdx mouse diaphragm. Am. J. Pathol. 2012, 181, 583–592.
  112. Liu, X.; Wang, Y.; Gutierrez, J.S.; Damsker, J.M.; Nagaraju, K.; Hoffman, E.P.; Ortlund, E.A. Disruption of a key ligand-H-bond network drives dissociative properties in vamorolone for Duchenne muscular dystrophy treatment. Proc. Natl. Acad. Sci. USA 2020, 117, 24285–24293.
  113. Smith, E.C.; Conklin, L.S.; Hoffman, E.P.; Clemens, P.R.; Mah, J.K.; Finkel, R.S.; Guglieri, M.; Tulinius, M.; Nevo, Y.; Ryan, M.M.; et al. Efficacy and safety of vamorolone in Duchenne muscular dystrophy: An 18-month interim analysis of a non-randomized open-label extension study. PLoS Med. 2020, 17, e1003222.
  114. Guglieri, M.; Clemens, P.R.; Perlman, S.J.; Smith, E.C.; Horrocks, I.; Finkel, R.S.; Mah, J.K.; Deconinck, N.; Goemans, N.; Haberlova, J.; et al. Efficacy and Safety of Vamorolone vs Placebo and Prednisone among Boys with Duchenne Muscular Dystrophy: A Randomized Clinical Trial. JAMA Neurol. 2022, 79, 1005–1014.
  115. Dent, K.M.; Dunn, D.M.; von Niederhausern, A.C.; Aoyagi, A.T.; Kerr, L.; Bromberg, M.B.; Hart, K.J.; Tuohy, T.; White, S.; den Dunnen, J.T.; et al. Improved molecular diagnosis of dystrophinopathies in an unselected clinical cohort. Am. J. Med. Genet. Part A 2005, 134, 295–298.
  116. Bushby, K.; Finkel, R.; Wong, B.; Barohn, R.; Campbell, C.; Comi, G.P.; Connolly, A.M.; Day, J.W.; Flanigan, K.M.; Goemans, N.; et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve 2014, 50, 477–487.
  117. Chowdhury, H.M.; Siddiqui, M.A.; Kanneganti, S.; Sharmin, N.; Chowdhury, M.W.; Nasim, M.T. Aminoglycoside-mediated promotion of translation readthrough occurs through a non-stochastic mechanism that competes with translation termination. Hum. Mol. Genet. 2018, 27, 373–384.
  118. Landfeldt, E.; Lindberg, C.; Sejersen, T. Improvements in health status and utility associated with ataluren for the treatment of nonsense mutation Duchenne muscular dystrophy. Muscle Nerve 2020, 61, 363–368.
  119. Zhang, L.; Liu, Z.; Hu, K.Y.; Tian, Q.B.; Wei, L.G.; Zhao, Z.; Shen, H.R.; Hu, J. Early myocardial damage assessment in Dystrophinopathies using (99)Tc(m)-MIBI gated myocardial perfusion imaging. Ther. Clin. Risk Manag. 2015, 11, 1819–1827.
  120. Merlini, L.; Cecconi, I.; Parmeggiani, A.; Cordelli, D.M.; Dormi, A. Quadriceps muscle strength in Duchenne muscular dystrophy and effect of corticosteroid treatment. Acta Myol. 2020, 39, 200–206.
  121. Barp, A.; Bello, L.; Politano, L.; Melacini, P.; Calore, C.; Polo, A.; Vianello, S.; Sorarù, G.; Semplicini, C.; Pantic, B.; et al. Genetic Modifiers of Duchenne Muscular Dystrophy and Dilated Cardiomyopathy. PLoS ONE 2015, 10, e0141240.
  122. McNally, E.M.; Kaltman, J.R.; Benson, D.W.; Canter, C.E.; Cripe, L.H.; Duan, D.; Finder, J.D.; Groh, W.J.; Hoffman, E.P.; Judge, D.P.; et al. Contemporary cardiac issues in Duchenne muscular dystrophy. Working Group of the National Heart, Lung, and Blood Institute in collaboration with Parent Project Muscular Dystrophy. Circulation 2015, 131, 1590–1598.
  123. Birnkrant, D.J.; Bushby, K.; Bann, C.M.; Alman, B.A.; Apkon, S.D.; Blackwell, A.; Case, L.E.; Cripe, L.; Hadjiyannakis, S.; Olson, A.K.; et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: Respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018, 17, 347–361.
  124. Lee, H.; Song, J.; Kang, I.S.; Huh, J.; Yoon, J.A.; Shin, Y.B. Early prophylaxis of cardiomyopathy with beta-blockers and angiotensin receptor blockers in patients with Duchenne muscular dystrophy. Clin. Exp. Pediatr. 2022, 65, 507–509.
  125. Melacini, P.; Fanin, M.; Angelini, A.; Pegoraro, E.; Livi, U.; Danieli, G.A.; Hoffman, E.P.; Thiene, G.; Dalla Volta, S.; Angelini, C. Cardiac transplantation in a Duchenne muscular dystrophy carrier. Neuromuscul. Disord. 1998, 8, 585–590.
  126. Connuck, D.M.; Sleeper, L.A.; Colan, S.D.; Cox, G.F.; Towbin, J.A.; Lowe, A.M.; Wilkinson, J.D.; Orav, E.J.; Cuniberti, L.; Salbert, B.A.; et al. Characteristics and outcomes of cardiomyopathy in children with Duchenne or Becker muscular dystrophy: A comparative study from the Pediatric Cardiomyopathy Registry. Am. Heart J. 2008, 155, 998–1005.
  127. Cohn, R.D.; van Erp, C.; Habashi, J.P.; Soleimani, A.A.; Klein, E.C.; Lisi, M.T.; Gamradt, M.; ap Rhys, C.M.; Holm, T.M.; Loeys, B.L.; et al. Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat. Med. 2007, 13, 204–210.
  128. Duboc, D.; Meune, C.; Pierre, B.; Wahbi, K.; Eymard, B.; Toutain, A.; Berard, C.; Vaksmann, G.; Weber, S.; Bécane, H.M. Perindopril preventive treatment on mortality in Duchenne muscular dystrophy: 10 years’ follow-up. Am. Heart J. 2007, 154, 596–602.
  129. Shah, M.N.A.; Yokota, T. Cardiac therapies for Duchenne muscular dystrophy. Ther. Adv. Neurol. Disord. 2023, 16, 17562864231182934.
  130. Dhargave, P.; Nalini, A.; Nagarathna, R.; Sendhilkumar, R.; James, T.T.; Raju, T.R.; Sathyaprabha, T.N. Effect of Yoga and Physiotherapy on Pulmonary Functions in Children with Duchenne Muscular Dystrophy—A Comparative Study. Int. J. Yoga 2021, 14, 133–140.
  131. Harjpal, P.; Kovela, R.K.; Raipure, A.; Dandale, C.; Qureshi, M.I. The Refinement of Home Exercise Program for Children and Adolescents with Muscular Dystrophy in the Present COVID-19 Pandemic Scenario: A Scoping Review. Cureus 2022, 14, e29344.
  132. Saad, F.A. Novel insights into the complex architecture of osteoporosis molecular genetics. Ann. N. Y. Acad. Sci. 2020, 1462, 37–52.
  133. Aartsma-Rus, A.; Krieg, A.M. FDA Approves Eteplirsen for Duchenne Muscular Dystrophy: The Next Chapter in the Eteplirsen Saga. Nucleic Acid Ther. 2017, 27, 1–3.
  134. Verhaart, I.E.; Aartsma-Rus, A. Therapeutic developments for Duchenne muscular dystrophy. Nat. Rev. Neurol. 2019, 15, 373–386.
  135. Abreu, N.J.; Waldrop, M.A. Overview of gene therapy in spinal muscular atrophy and Duchenne muscular dystrophy. Pediatr. Pulmonol. 2021, 56, 710–720.
  136. Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019, 576, 149–157.
  137. Mizobe, Y.; Miyatake, S.; Takizawa, H.; Hara, Y.; Yokota, T.; Nakamura, A.; Takeda, S.; Aoki, Y. In vivo Evaluation of single-exon and multiexon skipping in mdx52 mice. Methods Mol. Biol. 2018, 1828, 275–292.
  138. Ousterout, D.G.; Kabadi, A.M.; Thakore, P.I.; Majoros, W.H.; Reddy, T.E.; Gersbach, C.A. Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat. Commun. 2015, 6, 6244.
  139. Chemello, F.; Chai, A.C.; Li, H.; Rodriguez-Caycedo, C.; Sanchez-Ortiz, E.; Atmanli, A.; Mireault, A.A.; Liu, N.; Bassel-Duby, R.; Olson, E.N. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci. Adv. 2021, 7, eabg4910.
  140. Ferreiro, V.; Giliberto, F.; Muñiz, G.M.; Francipane, L.; Marzese, D.M.; Mampel, A.; Roqué, M.; Frechtel, G.D.; Szijan, I. Asymptomatic Becker muscular dystrophy in a family with a multiexon deletion. Muscle Nerve 2009, 39, 239–243.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , ,
View Times: 287
Entry Collection: Neurodegeneration
Revisions: 3 times (View History)
Update Date: 11 Sep 2023
1000/1000
Video Production Service