Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1689 2023-09-05 10:38:21 |
2 layout + 30 word(s) 1719 2023-09-06 08:07:34 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Kourtidou, C.; Tziomalos, K. Risk Factors for Stroke in Chronic Kidney Disease. Encyclopedia. Available online: https://encyclopedia.pub/entry/48811 (accessed on 05 August 2024).
Kourtidou C, Tziomalos K. Risk Factors for Stroke in Chronic Kidney Disease. Encyclopedia. Available at: https://encyclopedia.pub/entry/48811. Accessed August 05, 2024.
Kourtidou, Christodoula, Konstantinos Tziomalos. "Risk Factors for Stroke in Chronic Kidney Disease" Encyclopedia, https://encyclopedia.pub/entry/48811 (accessed August 05, 2024).
Kourtidou, C., & Tziomalos, K. (2023, September 05). Risk Factors for Stroke in Chronic Kidney Disease. In Encyclopedia. https://encyclopedia.pub/entry/48811
Kourtidou, Christodoula and Konstantinos Tziomalos. "Risk Factors for Stroke in Chronic Kidney Disease." Encyclopedia. Web. 05 September, 2023.
Risk Factors for Stroke in Chronic Kidney Disease
Edit

Patients with chronic kidney disease (CKD) have a higher risk ofboth ischemic and hemorrhagic stroke. This association appears to be partly independent from the higher prevalence of established risk factors for stroke in patients with CKD, including hypertension and atrial fibrillation.

chronic kidney disease stroke hypertension dyslipidemia thrombosis

1. Atrial Fibrillation and Stroke in Chronic Kidney Disease

Atrial fibrillation (AF) is an established risk factor for stroke [1]. Studies have demonstrated a much higher than previously suspected incidence of occult AF among patients with stroke [2][3].There is a positive relationship between AF and chronic kidney disease (CKD) regarding ischemic stroke risk [4][5]. A meta-analysis of 25 studies demonstrated that the prevalence of AF was 11.6% and the overall incidence was 2.7/100 patient-years in end stage renal disease (ESRD) patients [6]. Another large study found that the incidence rates of AF were 12.1, 7.3, and 5.0 per 1000 person-years in ESRD, CKD, and non-CKD patients, respectively [7]. In a study from China, AF was associated with a two-fold increased risk of ischemic stroke and a 325% increased risk of hemorrhagic stroke in patients with CKD [8]. Data from the international Dialysis Outcomes and Practice Patterns Study (DOPPS) showed that AF at study enrollment was positively associated with all-cause mortality and stroke [9]. The Stockholm CREAtinine Measurements (SCREAM) Project confirmed that AF was associated with a two-fold higher risk of stroke (both ischemic and hemorrhagic) in patients with CKD, and the stroke risk remained similar across all eGFR groups [10]. In a large prospective study, decreased eGFR (<45 mL/min per 1.73 m2) correlated with all-cause mortality, stroke recurrence, and greater disability in diabetic and non-diabetic patients with acute stroke followedup for 1 year [11]. In a nationwide prospective study in a Chinese population, the associations between low eGFR and risk of recurrent stroke, death, and poor functional outcome in stroke patients with AF were stronger than in those without AF [12].
AF and CKD have a bidirectional relationship, with the presence of CKD increasing the risk of incident AF and the presence of AF accelerating the development and progression of CKD [13][14]. The proposed underlying mechanisms of CKD and AF interaction are activation of the renin-angiotensin-aldosterone system (RAAS), uremic toxins, inflammation, myocardial remodeling and fibrosis, and dysregulated calcium homeostasis [13][15][16]. Up-regulation of the RAAS is involved in cardiac remodeling and may exert direct electrophysiological effects [17].
Regarding the management of AF in patients with CKD, a recent meta-analysis of 19 studies (n = 124,628) showed that direct oral anticoagulants (DOACs) reduced both the risk of stroke and major bleeding more than warfarin [18]. Among DOACs, apixaban was the safest and most effective in this population [18]. Another meta-analysis of eight RCTs and 46 observational studies reached similar conclusions and also reported that both DOACs and warfarin increase the risk of bleeding in patients on dialysis without reducing the risk of stroke versus no anticoagulation [19].

2. Prothrombotic State and Stroke in Chronic Kidney Disease

Non-paroxysmal AF and reduced GFR might predispose to the development of left atrium thrombus found on transesophageal echocardiography [20][21]. The pathogenetic mechanisms of thrombosis in these patients include platelet activation as well as the effects of uremic toxins on platelets [22][23][24][25]. However, platelet dysfunction is a key factor responsible for hemorrhagic complications in advanced kidney disease [22][26]. Multiple studies have shown that defects in fibrin formation and fibrinolysis serve as thrombogenic factors in CKD (Table 1) [27][28][29].
Table 1. Pathogenesis of prothrombotic state in chronic kidney disease.
Type of Study Population n Findings Ref.
Left atrial thrombus formation
Observational Patients undergoing transesophageal echocardiography 581 Every 10 mL/min/1.73 m2 decrease in estimated glomerular filtration rate correlated with left atrial thrombogenic milieu [23]
Observational Patients with AF 1033 GFR < 56 mL/min/1.73 m2 was an independent predictor of left atrial thrombus [22]
Platelet activation
Animal study Mice with CKD Not applicable Platelet hyperactivation was found in mice with CKD and was associated with high levels of serum indoxylsulfate [25]
Observational Patients on clopidogrel undergoing percutaneous coronary intervention 8410 Two-fold higher odds for high platelet reactivity associated with a creatinine clearance < 30 mL/min compared with ≥60 mL/min [26]
Fibrin formation and lysis
Cross-sectional Patients with AF 502 Impaired fibrinolytic capacity in patients with stages 3 to 4 CKD compared with controls [29]
Cross-sectional Patients with AF, with and without CKD, and healthy controls 56 Reduced eGFR was associated with reduced latency time and time to achieve maximum clot thickness [30]
Cross-sectional Patients with end-stage renal disease (ESRD) and controls 316 In ESRD, both time required to form (491 ± 177 vs. 378 ± 96 s, p < 0.001) and to lyse an occlusive platelet thrombus were prolonged (1820 vs. 1053 s, p < 0.001) [31]
Cross-sectional Patients undergoing hemodialysis, renal transplant recipients, and healthy controls 84 Increased platelet aggregability in CKD patients [26]

References

  1. Wolf, P.A.; Abbott, R.D.; Kannel, W.B. Atrial fibrillation as an independent risk factor for stroke: The Framingham Study. Stroke 1991, 22, 983–988.
  2. Sanna, T.; Diener, H.C.; Passman, R.S.; DiLazzaro, V.; Bernstein, R.A.; Morillo, C.A.; Rymer, M.M.; Thijs, V.; Rogers, T.; Beckers, F.; et al. Cryptogenic stroke and underlying atrial fibrillation. N. Engl. J. Med. 2014, 370, 2478–2486.
  3. Gladstone, D.J.; Spring, M.; Dorian, P.; Panzov, V.; Thorpe, K.E.; Hall, J.; Vaid, H.; O’Donnell, M.; Laupacis, A.; Côté, R.; et al. Atrial Fibrillation in Patients with Cryptogenic Stroke. N. Engl. J. Med. 2014, 370, 2467–2477.
  4. Ocak, G.; Khairoun, M.; Khairoun, O.; Bos, W.J.W.; Fu, E.L.; Cramer, M.J.; Westerink, J.; Verhaar, M.C.; Visseren, F.L. UCC-SMART study group Chronic kidney disease and atrial fibrillation: A dangerous combination. PLoS ONE 2022, 17, e0266046.
  5. Go, A.S.; Fang, M.C.; Udaltsova, N.; Chang, Y.; Pomernacki, N.K.; Borowsky, L.; Singer, D.E.; ATRIA Study Investigators. Impact of proteinuria and glomerular filtration rate on risk of thromboembolism in atrial fibrillation: The anticoagulation and risk factors in atrial fibrillation (ATRIA) study. Circulation 2009, 119, 1363–1369.
  6. Zimmerman, D.; Sood, M.M.; Rigatto, C.; Holden, R.M.; Hiremath, S.; Clase, C.M. Systematic review and meta-analysis of incidence, prevalence and outcomes of atrial fibrillation in patients on dialysis. Nephrol. Dial. Transplant. 2012, 27, 3816–3822.
  7. Liao, J.-N.; Chao, T.-F.; Liu, C.-J.; Wang, K.-L.; Chen, S.-J.; Lin, Y.-J.; Chang, S.-L.; Lo, L.-W.; Hu, Y.-F.; Tuan, T.-C.; et al. Incidence and risk factors for new-onset atrial fibrillation among patients with end-stage renal disease undergoing renal replacement therapy. Kidney Int. 2015, 87, 1209–1215.
  8. Zhang, C.; Gao, J.; Guo, Y.; Xing, A.; Ye, P.; Wu, Y.; Wu, S.; Luo, Y. Association of atrial fibrillation and clinical outcomes in adults with chronic kidney disease: A propensity score-matched analysis. PLoS ONE. 2020, 15, e0230189.
  9. Wizemann, V.; Tong, L.; Satayathum, S.; Disney, A.; Akiba, T.; Fissell, R.B.; Kerr, P.G.; Young, E.W.; Robinson, B.M. Atrial fibrillation in hemodialysis patients: Clinical features and associations with anticoagulant therapy. Kidney Int. 2010, 77, 1098–1106.
  10. Carrero, J.J.; Trevisan, M.; Sood, M.M.; Bárány, P.; Xu, H.; Evans, M.; Friberg, L.; Szummer, K. Incident Atrial Fibrillation and the Risk of Stroke in Adults with Chronic Kidney Disease: The Stockholm CREAtinine Measurements (SCREAM) Project. Clin. J. Am. Soc. Nephrol. 2018, 13, 1314–1320.
  11. Luo, Y.; Wang, X.; Matsushita, K.; Wang, C.; Zhao, X.; Hu, B.; Liu, L.; Li, H.; Liu, G.; Jia, Q.; et al. Associations Between Estimated Glomerular Filtration Rate and Stroke Outcomes in Diabetic Versus Nondiabetic Patients. Stroke 2014, 45, 2887–2893.
  12. Pan, Y.; Jing, J.; Chen, W.; Wang, Y.; He, Y. Association between impaired renal function and stroke outcome in patients with versus without atrial fibrillation. Eur. J. Neurol. 2018, 25, 1041–1048.
  13. Ding, W.Y.; Gupta, D.; Wong, C.F.; Lip, G.Y.H. Pathophysiology of atrial fibrillation and chronic kidney disease. Cardiovasc. Res. 2021, 117, 1046–1059.
  14. Wang, Y.; Yang, Y.; He, F. Insights into Concomitant Atrial Fibrillation and Chronic Kidney Disease. Rev. Cardiovasc. Med. 2022, 23, 105.
  15. Kumar, S.; Lim, E.; Covic, A.; Verhamme, P.; Gale, C.P.; Camm, A.J.; Goldsmith, D. Anticoagulation in Concomitant Chronic Kidney Disease and Atrial Fibrillation: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 74, 2204–2215.
  16. Suzuki, S.; Sagara, K.; Otsuka, T.; Kanou, H.; Matsuno, S.; Uejima, T.; Oikawa, Y.; Koike, A.; Nagashima, K.; Kirigaya, H.; et al. Estimated glomerular filtration rate and proteinuria are associated with persistent form of atrial fibrillation: Analysis in Japanese patients. J. Cardiol. 2013, 61, 53–57.
  17. Ehrlich, J.R.; Hohnloser, S.H.; Nattel, S. Role of angiotensin system and effects of its inhibition in atrial fibrillation: Clinical and experimental evidence. Eur. Heart J. 2006, 27, 512–518.
  18. Rhee, T.-M.; Lee, S.-R.; Choi, E.-K.; Oh, S.; Lip, G.Y.H. Efficacy and Safety of Oral Anticoagulants for Atrial Fibrillation Patients With Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 885548.
  19. Su, X.; Yan, B.; Wang, L.; Lv, J.; Cheng, H.; Chen, Y. Oral Anticoagulant Agents in Patients With Atrial Fibrillation and CKD: A Systematic Review and Pairwise Network Meta-analysis. Am. J. Kidney Dis. 2021, 78, 678–689.e1.
  20. Kapłon-Cieślicka, A.; Budnik, M.; Gawałko, M.; Peller, M.; Gorczyca, I.; Michalska, A.; Babiarz, A.; Bodys, A.; Uliński, R.; Żochowski, M.; et al. Atrial fibrillation type and renal dysfunction as important predictors of left atrial thrombus. Heart 2019, 105, 1310–1315.
  21. Kizawa, S.; Ito, T.; Akamatsu, K.; Ichihara, N.; Nogi, S.; Miyamura, M.; Kanzaki, Y.; Sohmiya, K.; Hoshiga, M. Chronic Kidney Disease as a Possible Predictor of Left Atrial Thrombogenic Milieu Among Patients with Nonvalvular Atrial Fibrillation. Am. J. Cardiol. 2018, 122, 2062–2067.
  22. Lutz, J.; Jurk, R.N.K. Platelets in Advanced Chronic Kidney Disease: Two Sides of the Coin. Semin. Thromb. Hemost. 2020, 46, 342–356.
  23. Yang, K.; Du, C.; Wang, X.; Li, F.; Xu, Y.; Wang, S.; Chen, S.; Chen, F.; Shen, M.; Chen, M.; et al. Indoxyl sulfate induces platelet hyperactivity and contributes to chronic kidney disease–associated thrombosis in mice. Blood 2017, 129, 2667–2679.
  24. Baber, U.; Mehran, R.; Kirtane, A.J.; Gurbel, P.A.; Christodoulidis, G.; Maehara, A.; Witzenbichler, B.; Weisz, G.; Rinaldi, M.J.; Metzger, D.C.; et al. Prevalence and impact of high platelet reactivity in chronic kidney disease: Results from the Assessment of Dual Antiplatelet Therapy with Drug-Eluting Stents registry. Circ. Cardiovasc. Interv. 2015, 8, e001683.
  25. Yagmur, E.; Frank, R.D.; Neulen, J.; Floege, J.; Mühlfeld, A.S. Platelet Hyperaggregability is Highly Prevalent in Patients With Chronic Kidney Disease: An Underestimated Risk Indicator of Thromboembolic Events. Clin. Appl. Thromb. 2015, 21, 132–138.
  26. Kaw, D.; Malhotra, D. Platelet dysfunction and end-stage renal disease. Semin. Dial. 2006, 19, 317–322.
  27. Matusik, P.T.; Heleniak, Z.; Papuga-Szela, E.; Plens, K.; Lelakowski, J.; Undas, A. Chronic Kidney Disease and Its Impact on a Prothrombotic State in Patients with Atrial Fibrillation. J. Clin. Med. 2020, 9, 2476.
  28. Ding, W.Y.; Davies, I.G.; Gupta, D.; Lip, G.Y.H. Relationship between Renal Function, Fibrin Clot Properties and Lipoproteins in Anticoagulated Patients with Atrial Fibrillation. Biomedicines 2022, 10, 2270.
  29. Sharma, S.; Farrington, K.; Kozarski, R.; Christopoulos, C.; Niespialowska-Steuden, M.; Moffat, D.; Gorog, D.A. Impaired thrombolysis: A novel cardiovascular risk factor in end-stage renal disease. Eur. Heart J. 2013, 34, 354–363.
  30. Muntner, P.; Anderson, A.; Charleston, J.; Chen, Z.; Ford, V.; Makos, G.; O’Connor, A.; Perumal, K.; Rahman, M.; Steigerwalt, S.; et al. Hypertension awareness, treatment, and control in adults with CKD: Results from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am. J. Kidney Dis. 2010, 55, 441–451.
  31. Kelly, D.M.; Rothwell, P.M. Does Chronic Kidney Disease Predict Stroke Risk Independent of Blood Pressure?: A Systematic Review and Meta-Regression. Stroke 2019, 50, 3085–3092.
  32. Yen, C.; Fan, P.; Lee, C.; Chen, J.; Kuo, G.; Tu, Y.; Chu, P.; Hsu, H.; Tian, Y.; Chang, C. Association of Low-Density Lipoprotein Cholesterol Levels During Statin Treatment with Cardiovascular and Renal Outcomes in Patients with Moderate Chronic Kidney Disease. J. Am. Heart Assoc. 2022, 11, e027516.
  33. Zhang, A.; Deng, W.; Zhang, B.; Ren, M.; Tian, L.; Ge, J.; Bai, J.; Hu, H.; Cui, L. Association of lipid profiles with severity and outcome of acute ischemic stroke in patients with and without chronic kidney disease. Neurol. Sci. 2021, 42, 2371–2378.
  34. Cholesterol Treatment Trialists’ (CTT) Collaboration; Herrington, W.; Emberson, J.; Mihaylova, B.; Blackwell, L.; Reith, C.; Solbu, M.; Mark, P.; Fellström, B.; Jardine, A.; et al. Impact of renal function on the effects of LDL cholesterol lowering with statin-based regimens: A meta-analysis of individual participant data from 28 randomised trials. Lancet Diabetes Endocrinol. 2016, 4, 829–839.
  35. Yan, Y.-L.; Qiu, B.; Wang, J.; Deng, S.-B.; Wu, L.; Jing, X.-D.; Du, J.-L.; Liu, Y.-J.; She, Q. High-intensity statin therapy in patients with chronic kidney disease: A systematic review and meta-analysis. BMJ Open 2015, 5, e006886.
  36. Chung, C.-M.; Lin, M.-S.; Hsu, J.-T.; Hsiao, J.-F.; Chang, S.-T.; Pan, K.-L.; Lin, C.-L.; Lin, Y.-S. Effects of statin therapy on cerebrovascular and renal outcomes in patients with predialysis advanced chronic kidney disease and dyslipidemia. J. Clin. Lipidol. 2017, 11, 422–431.e2.
  37. Crea, F. Dyslipidaemias in stroke, chronic kidney disease, and aortic stenosis: The new frontiers for cholesterol lowering. Eur. Heart J. 2021, 42, 2137–2140.
  38. Kastarinen, H.; Ukkola, O.; Kesäniemi, Y.A. Glomerular filtration rate is related to carotid intima-media thickness in middle-aged adults. Nephrol. Dial. Transplant. 2009, 24, 2767–2772.
  39. Buscemi, S.; Geraci, G.; Massenti, F.; Costa, F.; D’Orio, C.; Rosafio, G.; Maniaci, V.; Parrinello, G. Renal function and carotid atherosclerosis in adults with no known kidney disease. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 267–273.
  40. Kajitani, N.; Uchida, H.A.; Suminoe, I.; Kakio, Y.; Kitagawa, M.; Sato, H.; Wada, J. Chronic kidney disease is associated with carotid atherosclerosis and symptomatic ischaemic stroke. J. Int. Med Res. 2018, 46, 3873–3883.
  41. Desbien, A.M.; Chonchol, M.; Gnahn, H.; Sander, D. Kidney Function and Progression of Carotid Intima-Media Thickness in a Community Study. Am. J. Kidney Dis. 2008, 51, 584–593.
  42. Rizikalo, A.; Coric, S.; Matetic, A.; Vasilj, M.; Tocilj, Z.; Bozic, J. Association of Glomerular Filtration Rate and Carotid Intima-Media Thickness in Non-Diabetic Chronic Kidney Disease Patients over a 4-Year Follow-Up. Life 2021, 11, 204.
  43. Tanaka, M.; Abe, Y.; Furukado, S.; Miwa, K.; Sakaguchi, M.; Sakoda, S.; Kitagawa, K. Chronic Kidney Disease and Carotid Atherosclerosis. J. Stroke Cerebrovasc. Dis. 2012, 21, 47–51.
  44. Yu, F.P.; Zhao, Y.C.; Gu, B.; Hu, J.; Yang, Y.Y. Chronic Kidney Disease and Carotid Atherosclerosis in Patients with Acute Stroke. Neurologist 2015, 20, 23–26.
  45. Asp, A.M.; Wallquist, C.; Rickenlund, A.; Hylander, B.; Jacobson, S.H.; Caidahl, K.; Eriksson, M.J. Aspects of carotid structure and function in health and different stages of chronic kidney disease. Clin. Physiol. Funct. Imaging 2018, 38, 402–408.
  46. Hassan, M.O.; Dix-Peek, T.; Duarte, R.; Dickens, C.; Naidoo, S.; Vachiat, A.; Grinter, S.; Manga, P.; Naicker, S. Association of chronic inflammation and accelerated atherosclerosis among an indigenous black population with chronic kidney disease. PLoS ONE 2020, 15, e0232741.
  47. Zimmermann, J.; Herrlinger, S.; Pruy, A.; Metzger, T.; Wanner, C. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int. 1999, 55, 648–658.
  48. Recio-Mayoral, A.; Banerjee, D.; Streather, C.; Kaski, J.C. Endothelial dysfunction, inflammation and atherosclerosis in chronic kidney disease—A cross-sectional study of predialysis, dialysis and kidney-transplantation patients. Atherosclerosis 2011, 216, 446–451.
  49. Pelisek, J.; Hahntow, I.N.; Eckstein, H.-H.; Ockert, S.; Reeps, C.; Heider, P.; Luppa, P.B.; Frank, H. Impact of chronic kidney disease on carotid plaque vulnerability. J. Vasc. Surg. 2011, 54, 1643–1649.
  50. Pelisek, J.; Assadian, A.; Sarkar, O.; Eckstein, H.; Frank, H. Carotid Plaque Composition in Chronic Kidney Disease: A Retrospective Analysis of Patients Undergoing Carotid Endarterectomy. Eur. J. Vasc. Endovasc. Surg. 2010, 39, 11–16.
  51. Ravid, J.D.; Kamel, M.H.; Chitalia, V.C. Uraemic solutes as therapeutic targets in CKD-associated cardiovascular disease. Nat. Rev. Nephrol. 2021, 17, 402–416.
  52. Spence, J.D.; Urquhart, B.L. Cerebrovascular Disease, Cardiovascular Disease, and Chronic Kidney Disease: Interplays and Influences. Curr. Neurol. Neurosci. Rep. 2022, 22, 757–766.
  53. Assem, M.; Lando, M.; Grissi, M.; Kamel, S.; Massy, Z.A.; Chillon, J.-M.; Hénaut, L. The Impact of Uremic Toxins on Cerebrovascular and Cognitive Disorders. Toxins 2018, 10, 303.
  54. Jing, W.; Jabbari, B.; Vaziri, N.D. Uremia induces upregulation of cerebral tissue oxidative/inflammatory cascade, down-regulation of Nrf2 pathway and disruption of blood brain barrier. Am. J. Transl. Res. 2018, 10, 2137–2147.
  55. Deguchi, T.; Isozaki, K.; Yousuke, K.; Terasaki, T.; Otagiri, M. Involvement of organic anion transporters in the efflux of uremic toxins across the blood-brain barrier. J. Neurochem. 2006, 96, 1051–1059.
  56. Bobot, M.; Thomas, L.; Moyon, A.; Fernandez, S.; McKay, N.; Balasse, L.; Garrigue, P.; Brige, P.; Chopinet, S.; Poitevin, S.; et al. Uremic Toxic Blood-Brain Barrier Disruption Mediated by AhR Activation Leads to Cognitive Impairment during Experimental Renal Dysfunction. J. Am. Soc. Nephrol. 2020, 31, 1509–1521.
  57. Sarvari, S.; Moakedi, F.; Hone, E.; Simpkins, J.W.; Ren, X. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab. Brain Dis. 2020, 35, 851–868.
  58. Jing, Z.; Wei-Jie, Y.; Nan, Z.; Yi, Z.; Ling, W. Hemoglobin Targets for Chronic Kidney Disease Patients with Anemia: A Systematic Review and Meta-analysis. PLoS ONE 2012, 7, e43655.
  59. Liu, H.; Ye, Y.; Chen, Y.; Zhang, Y.; Li, S.; Hu, W.; Yang, R.; Zhang, Z.; Peng, H.; Lv, L.; et al. Therapeutic Targets for the Anemia of Predialysis Chronic Kidney Disease: A Meta-Analysis of Randomized, Controlled Trials. J. Investig. Med. 2019, 67, 1002–1008.
  60. Yotsueda, R.; Tanaka, S.; Taniguchi, M.; Fujisaki, K.; Torisu, K.; Masutani, K.; Hirakata, H.; Kitazono, T.; Tsuruya, K. Hemoglobin concentration and the risk of hemorrhagic and ischemic stroke in patients undergoing hemodialysis: The Q-cohort study. Nephrol. Dial. Transplant. 2018, 33, 856–864.
  61. Uchida, Y.; Nakano, T.; Kitamura, H.; Taniguchi, M.; Tsuruya, K.; Kitazono, T. Association between hyporesponsiveness to erythropoiesis-stimulating agents and risk of brain hemorrhage in patients undergoing hemodialysis: The Q-Cohort Study. Clin. Exp. Nephrol. 2023, 27, 79–88.
  62. Seliger, S.L.; Zhang, A.D.; Weir, M.R.; Walker, L.; Hsu, V.D.; Parsa, A.; Diamantidis, C.J.; Fink, J.C. Erythropoiesis-stimulating agents increase the risk of acute stroke in patients with chronic kidney disease. Kidney Int. 2011, 80, 288–294.
  63. Hung, P.; Yeh, C.; Hsiao, C.; Muo, C.; Hung, K.; Tsai, K. Erythropoietin Use and the Risk of Stroke in Patients on Hemodialysis: A Retrospective Cohort Study in Taiwan. J. Am. Heart Assoc. 2021, 10, e019529.
  64. Improving Global Outcomes (KDIGO) Anemia Work Group. KDIGO Clinical Practice Guideline for Anemia in Chronic Kidney Disease. Kidney Int. Suppl. 2012, 2, 279–335.
  65. Shanahan, C.M.; Crouthamel, M.H.; Kapustin, A.; Giachelli, C.M. Arterial calcification in chronic kidney disease: Keyroles for calcium and phosphate. Circ. Res. 2011, 109, 697–711.
  66. Jono, S.; McKee, M.D.; Murry, C.E.; Shioi, A.; Nishizawa, Y.; Mori, K.; Morii, H.; Giachelli, C.M. Phosphate Regulation of Vascular Smooth Muscle Cell Calcification. Circ. Res. 2000, 87, E10–E17.
  67. Abbasian, N. Vascular Calcification Mechanisms: Updates and Renewed Insight into Signaling Pathways Involved in High Phosphate-Mediated Vascular Smooth Muscle Cell Calcification. Biomedicines 2021, 9, 804.
  68. Giachelli, C.M.; Jono, S.; Shioi, A.; Nishizawa, Y.; Mori, K.; Morii, H. Vascular calcification and inorganic phosphate. Am. J. Kidney Dis. 2001, 38 (Suppl. S1), S34–S37.
  69. Martín, M.; Valls, J.; Betriu, A.; Fernández, E.; Valdivielso, J.M. Association of serum phosphorus with subclinical atherosclerosis in chronic kidney disease. Sex makes a difference. Atherosclerosis 2015, 241, 264–270.
  70. Betriu, A.; Martinez-Alonso, M.; Arcidiacono, M.V.; Cannata-Andia, J.; Pascual, J.; Valdivielso, J.M.; Fernández, E. Prevalence of subclinical atheromatosis and associated risk factors in chronic kidney disease: The NEFRONA study. Nephrol. Dial. Transplant. 2014, 29, 1415–1422.
  71. Yamada, S.; Tsuruya, K.; Taniguchi, M.; Tokumoto, M.; Fujisaki, K.; Hirakata, H.; Fujimi, S.; Kitazono, T. Association Between Serum Phosphate Levels and Stroke Risk in Patients Undergoing Hemodialysis: The Q-Cohort Study. Stroke 2016, 47, 2189–2196.
  72. Chen, T.-S.; Chen, C.-H.; Chen, C.-A.; Chou, L.-P.; Liu, C.-C. Low serum phosphate is associated with ischemic stroke in hemodialysis patients. Clin. Exp. Nephrol. 2018, 22, 1182–1187.
  73. Tagawa, M.; Hamano, T.; Nishi, H.; Tsuchida, K.; Hanafusa, N.; Fukatsu, A.; Iseki, K.; Tsubakihara, Y. Mineral Metabolism Markers Are Associated with Myocardial Infarction and Hemorrhagic Stroke but Not Ischemic Stroke in Hemodialysis Patients: A Longitudinal Study. PLoS ONE 2014, 9, e114678.
  74. Wright, C.B.; Dong, C.; Stark, M.; Silverberg, S.; Rundek, T.; Elkind, M.S.; Sacco, R.L.; Mendez, A.; Wolf, M. Plasma FGF23 and the risk of stroke: The Northern Manhattan Study (NOMAS). Neurology 2014, 82, 1700–1706.
  75. Memmos, E.; Sarafidis, P.; Pateinakis, P.; Tsiantoulas, A.; Faitatzidou, D.; Giamalis, P.; Vasilikos, V.; Papagianni, A. Soluble Klotho is associated with mortality and cardiovascular events in hemodialysis. BMC Nephrol. 2019, 20, 217.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : ,
View Times: 167
Revisions: 2 times (View History)
Update Date: 06 Sep 2023
1000/1000
Video Production Service