Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1619 2023-08-18 11:44:22 |
2 format Meta information modification 1619 2023-08-21 03:59:32 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Lucà, F.; Oliva, F.; Rao, C.M.; Abrignani, M.G.; Amico, A.F.; Di Fusco, S.A.; Caretta, G.; Di Matteo, I.; Di Nora, C.; Pilleri, A.; et al. Lipid-Lowering Therapy of Post-Acute Coronary Syndrome. Encyclopedia. Available online: https://encyclopedia.pub/entry/48215 (accessed on 19 November 2024).
Lucà F, Oliva F, Rao CM, Abrignani MG, Amico AF, Di Fusco SA, et al. Lipid-Lowering Therapy of Post-Acute Coronary Syndrome. Encyclopedia. Available at: https://encyclopedia.pub/entry/48215. Accessed November 19, 2024.
Lucà, Fabiana, Fabrizio Oliva, Carmelo Massimiliano Rao, Maurizio Giuseppe Abrignani, Antonio Francesco Amico, Stefania Angela Di Fusco, Giorgio Caretta, Irene Di Matteo, Concetta Di Nora, Anna Pilleri, et al. "Lipid-Lowering Therapy of Post-Acute Coronary Syndrome" Encyclopedia, https://encyclopedia.pub/entry/48215 (accessed November 19, 2024).
Lucà, F., Oliva, F., Rao, C.M., Abrignani, M.G., Amico, A.F., Di Fusco, S.A., Caretta, G., Di Matteo, I., Di Nora, C., Pilleri, A., Ceravolo, R., Rossini, R., Riccio, C., Grimaldi, M., Colivicchi, F., & Gulizia, M.M. (2023, August 18). Lipid-Lowering Therapy of Post-Acute Coronary Syndrome. In Encyclopedia. https://encyclopedia.pub/entry/48215
Lucà, Fabiana, et al. "Lipid-Lowering Therapy of Post-Acute Coronary Syndrome." Encyclopedia. Web. 18 August, 2023.
Lipid-Lowering Therapy of Post-Acute Coronary Syndrome
Edit

It has been consistently demonstrated that circulating lipids and particularly low-density lipoprotein cholesterol (LDL-C) play a significant role in the development of coronary artery disease (CAD). Several trials have been focused on the reduction of LDL-C values in order to interfere with atherothrombotic progression. Importantly, for patients who experience acute coronary syndrome (ACS), there is a 20% likelihood of cardiovascular (CV) event recurrence within the two years following the index event. 

lipid-lowering therapy (LLT) post-acute-coronary-syndrome PCSK9 inhibitors

1. Introduction

Dyslipidemia is a metabolic disorder determined by the concurrence of genetic conditions and unhealthy lifestyles [1].
A close relationship between the incidence of atherosclerosis and serum cholesterol levels has been well recognized [2], and increased values of low-density lipoprotein cholesterol (LDL-C) are the primary cause of the development and progression of atherosclerosis [3].
Indeed inflammation, LDL-C, platelet activation, and endothelial dysfunction have been considered the leading atherogenic factors [4][5]. Remarkably, it has been shown that LDL-C and circulating monocyte levels are linked, confirming the correlation between lipids, inflammatory status, and CAD progression [6][7].
Furthermore, it has been established that intensive lipid-lowering therapy (LLT) may improve plaque phenotype, contributing to plaque stabilization [8][9].
Moreover, it has been claimed that an intensive LLT is correlated with better outcomes in those patients who experienced ACS [10][11].
Consequently, the reduction [10][12] of circulating LDL-C is one of the most relevant goals to achieve for CVD prevention. This goal is achievable thanks to several effective pharmacological interventions currently available [13]. Table 1 summarizes the action of LLT.
Table 1. Main lipid-lowering drugs.
Drug Classes Mechanism of
Action
Expected
Proportional
LDL-C Reduction (vs. Placebo)
Main RCTs after ACS
Statins (Moderate Intensity): Atorvastatin 10–20 mg; Rosuvastatin 5–10 mg; Simvastatin 20–40 mg, etc. Inhibit the activity of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase 30% [14][15][16] FLORIDA [17], PACT [18], A to Z [19]
Statins (High Intensity): Atorvastatin 40–80 mg; Rosuvastatin 20–40 mg 50% [14][15][16] MIRACL [20], PROVE-IT TIMI 22 [10]
Ezetimibe Inhibits the Niemann–Pick C1-like 1 transmembrane protein 20% [16]  
Bempedoic Acid Inhibits adenosine triphosphate citrate lyase 15–25% [16] CLEAR ACS [21] (ongoing)
PCSK9-i (Alirocumab, Evolocumab) Monoclonal antibodies which selectively bind to extracellular PCSK9, preventing LDL-R degradation 60% [14][15][16] EVOPACS [22], EPIC-STEMI [23], VCU-AlirocRT [24]
PCSK9 siRNA (Inclisiran) Prevent the translation of PCSK9 messenger RNA 50% [16] VICTORION-INCEPTION (ongoing)
Statin + Ezetimibe Combined Maximum 65% [14][15][16] IMPROVE-IT [25]
Bempedoic Acid + Ezetimibe Combined 35% [16]  
High Intensity Statin + PCSK9-i Combined 75% [14][15][16]  
High Intensity Statin + Ezetimibe + PCSK9-i Combined 85% [14][15][16]  

1.1. Statins

Statin therapy has been shown to decrease all-cause mortality and 5-year incidence of major adverse cardiovascular events (MACE) by 12% and 21%, respectively, per mmol/L LDL-C reduced (roughly equivalent to 39 mg/dL) [26]. A 20% reduction of CV adverse events rate has been reported using statins compared with placebo and high-intensity statins compared with low-intensity statins for each LDL 1.0-mmol/L reduction [12].
Nowadays, statins are considered the first-line pharmacological therapy in order to manage dyslipidemia and reduce CV risk [27]. Some statins derive from fungal fermentation, such as lovastatin, pravastatin, and simvastatin [28], others from synthetic processes (atorvastatin, rosuvastatin) [28].
It has been shown that statins competitively inhibit the activity of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR), which converts 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) into mevalonic acid, a cholesterol precursor [29].
This phase is an early rate-limiting step in cholesterol biosynthesis. The binding of statins with HMG-CoA reductase is reversible [30].
As a result of statin activity, a non-linear dose-dependent LDL-C reduction occurs.
Considering the fact that mevalonate, derived from HMGR, is also the precursor of many other nonsteroidal isoprenoid compounds, such as farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (FPD), statins also affect the Ras-related small GTPase signaling pathway (Ras and Rho) [31].
Some of the statins’ pleiotropic effects are ascribed to the inhibition of these intracellular isoprenoid-dependent proteins [32]. Indeed, several cardioprotective effects of statins observed during chronic use have been thought to be not directly linked to cholesterol levels [33][34][35].
Anti-inflammatory activity has also been postulated [36]. A potent modulating effect on endothelial cell nitric oxide synthase (eNOS) resulting in the upregulation of eNOS enzyme and a decrease in nitric oxide (NO) production [36], as well as a reduction in cytokine C-reactive protein (CRP) levels, has been reported [20][37][38][39].
A large number of experimental and clinical studies investigated the potential additional effects of statins, postulating an improvement in endothelial function and vascular tone, plaque stabilization effects and anti-thrombotic activity, and reduction in oxidative stress [36].
An incremental lowering of LDL-C values, which has been shown in patients receiving intensive statin therapy compared with those treated with moderate-dose statins, results in a lower rate of nonfatal CV events [10][19][40][41][42]. Good tolerance has been generally reported in patients treated with statins, but 20% of intolerant patients reported statin intolerance syndrome with adverse effects on muscles, varying from myalgia to myopathy, myositis, and rhabdomyolysis [43][44]. Statin-induced intolerance may cause therapy interruption [45][46].
A rise in the risk of adverse CV outcomes has been reported in patients discontinuing statin therapy [47][48]. A genetic predisposition has been hypothesized to be involved in the development of statin-induced muscle failure [49].
However, safety issues associated with intensive statin therapy and the evidence of residual risk of recurrent CV events [50] have led to the introduction of additional non-statin therapies in clinical practice [51].

2. Ezetimibe

Ezetimibe joins a new drug class of selective cholesterol absorption inhibitors that block the internalization of cholesterol into enterocytes at the level of the brush border of the small intestine [52].
The ezetimibe-mediated inhibition of the Niemann–Pick C1-like 1 (NPC1L1) polytopic transmembrane protein results in reduced intestinal cholesterol absorption [53].
A 10–14% and 23–24% LDL-C plasma level reduction has been observed in patients treated with ezetimibe alone or in addition to statins, respectively [54][55]. Ezetimibe combined with a low dose of statins may represent a suitable option in case of symptoms of intolerance in patients treated with full doses of statins [54]. More recent studies have shown great results with ezetimibe and bempedoic acid co-therapy, with a 38% mean difference in LDL cholesterol level reduction compared to the placebo [56].
In the IMPROVE-IT trial, in high-risk patients post ACS, the combination strategy of ezetimibe 10 mg and simvastatin 40 mg proved to be superior to simvastatin 40 mg alone in lowering the recurrence of CV events, irrespective of baseline LDL-C levels [57]. An incremental beneficial effect of ezetimibe added to statin has been observed in patients with DM and in those without DM but at high risk of recurrent CV events [58].

3. Bempedoic Acid

Bempedoic acid has recently entered the pharmacological armamentarium for dyslipidemia treatment [59].
After its conversion to the active metabolite by acyl-CoA synthetase 1 (ACSVL1), exclusively expressed in liver cells, bempedoic acid lowers cholesterol synthesis by inhibiting adenosine triphosphate (ATP) citrate lyase, which, in the enzymatic cascade that leads to cholesterol synthesis, acts upstream of HMGCR.
Similarly to statins, reduced hepatic cholesterol synthesis induced by bempedoic acid leads to the upregulation of LDL-R expression and, consequently, reduction in LDL-C levels [60]. The reason why fewer muscular adverse effects have been associated with this therapy is that bempedoic acid is a prodrug selectively activated in the hepatic tissue. In skeletal muscle, the prodrug can not be activated due to the absence of ACSVL1, explaining the reduction in adverse muscle effects mentioned above. Moreover, ATP citrate lyase downregulation and AMP-activated protein kinase (AMPK) upregulation improves glucose metabolism regulation [49] and reduces the inflammatory pathway and cytokine production [61]
The safety and efficacy of the long-term use of bempedoic acid have been investigated in several clinical trials, including Cholesterol Lowering via BEmpedoic Acid, an ACL-inhibiting Regimen (CLEAR) Tranquility [56], CLEAR Serenity [62], CLEAR Wisdom [62], and CLEAR Harmony [63][64]. At a daily dose of 180 mg, an LDL-C reduction from 17.4 to 28.5% was obtained [65].
Recently, in a trial that included 13,970 patients, 69.9% with a previous CV event with statin intolerance, the incidence of primary endpoint events (death from CV causes, nonfatal myocardial infarction, nonfatal stroke, or coronary revascularization) was 13% lower in the treated group. The incidences of gout and cholelithiasis were higher with bempedoic acid than with placebo (3.1% vs. 2.1% and 2.2% vs. 1.2%, respectively), as were the incidences of small increases in serum creatinine, uric acid, and hepatic enzyme levels [66].

4. PCSK9 Inhibitors

Proprotein convertase subtilisin-like kexin type 9 (PCSK9) is a serine protease mainly expressed in the liver that targets LDL-Rs, promoting their lysosomal degradation and decreasing circulating LDL-C clearance [67]. PCSK9 monoclonal antibodies (mAbs) selectively bind to extracellular PCSK9, preventing LDL-R degradation and lowering plasma LDL-C levels. Two fully human mAbs, Alirocumab and Evolocumab, have been approved by FDA and EMA [68].
Statin treatment increases circulating PCSK9 serum levels; consequently, the greatest effect of these mAbs has been observed when used in combination with statins [69]. A reduction in LDL-C plasma levels has been shown, of up to 65% for alirocumab and 80% for evolocumab, following an injection every 2 or 4 weeks [70].
PCSK9 mAbs were associated with a 20% lower risk of myocardial infarction, a 22% lower risk of ischemic stroke, and a 17% lower risk of coronary revascularization [71]. Their use was associated with a favorable safety profile without increasing risk of neurocognitive adverse events, liver enzyme elevations, rhabdomyolysis, or new-onset diabetes mellitus. According to the GLAGOV data [72], both molecules have been shown to favor morphological stabilization and reduction of carotid plaques [9][73][74][75][76], delaying ASCVD progression.

5. Inclisiran

Small interfering RNA (siRNA) molecules now represent the next generation of drugs designed to antagonize PCSK9. Inclisiran is an siRNA specific for PCSK9 that prevents the translation of PCSK9 messenger RNA, leading to decreased concentrations of the protein and lower concentrations of LDL cholesterol.
Inclisiran blocks the expression of a specific gene by selectively silencing the translation of PCSK9 messenger RNA (mRNA) [77], leading to a long-lasting reduction in LDL-C even up to 12 months [78][79]. It was thought that the reason why inclisiran has such long-term efficacy is that the silencing complex remained active even after mRNA degradation, resulting in a considerable and long-lasting reduction in plasma LDL-C levels [78]. Consequently, inclisiran has been considered an attractive therapeutic option, particularly for non-adherent patients [80]. What the impact of inclisiran on reducing lipoproteins and MACE is, has been largely investigated in the ORION/VICTORION studies [79][81][82][83][84][85][86][87][88][89][90][91][92][93][94][95], which evidenced a decrease in LDL-C over 1 year of 29.5–38.7% and 29.9–46.4% after a single dose and after two doses, respectively (p < 0.001). Moreover, Lp(a) has been shown to significantly decrease.

References

  1. Costanza, M.C.; Cayanis, E.; Ross, B.M.; Flaherty, M.S.; Alvin, G.B.; Das, K.; Morabia, A. Relative contributions of genes, environment, and interactions to blood lipid concentrations in a general adult population. Am. J. Epidemiol. 2005, 161, 714–724.
  2. Ference, B.A.; Graham, I.; Tokgozoglu, L.; Catapano, A.L. Impact of Lipids on Cardiovascular Health. J. Am. Coll. Cardiol. 2018, 72, 1141–1156.
  3. Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472.
  4. Libby, P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc. Res. 2021, 117, 2525–2536.
  5. Soehnlein, O.; Libby, P. Targeting inflammation in atherosclerosis—From experimental insights to the clinic. Nat. Rev. Drug Discov. 2021, 20, 589–610.
  6. Bernelot Moens, S.J.; Neele, A.E.; Kroon, J.; van der Valk, F.M.; Van den Bossche, J.; Hoeksema, M.A.; Hoogeveen, R.M.; Schnitzler, J.G.; Baccara-Dinet, M.T.; Manvelian, G.; et al. PCSK9 monoclonal antibodies reverse the pro-inflammatory profile of monocytes in familial hypercholesterolaemia. Eur. Heart J. 2017, 38, 1584–1593.
  7. Stiekema, L.C.A.; Willemsen, L.; Kaiser, Y.; Prange, K.H.M.; Wareham, N.J.; Boekholdt, S.M.; Kuijk, C.; de Winther, M.P.J.; Voermans, C.; Nahrendorf, M.; et al. Impact of cholesterol on proinflammatory monocyte production by the bone marrow. Eur. Heart J. 2021, 42, 4309–4320.
  8. Nicholls, S.J.; Kataoka, Y.; Nissen, S.E.; Prati, F.; Windecker, S.; Puri, R.; Hucko, T.; Aradi, D.; Herrman, J.R.; Hermanides, R.S.; et al. Effect of Evolocumab on Coronary Plaque Phenotype and Burden in Statin-Treated Patients Following Myocardial Infarction. JACC Cardiovasc. Imaging 2022, 15, 1308–1321.
  9. Räber, L.; Ueki, Y.; Otsuka, T.; Losdat, S.; Häner, J.D.; Lonborg, J.; Fahrni, G.; Iglesias, J.F.; van Geuns, R.J.; Ondracek, A.S.; et al. Effect of Alirocumab Added to High-Intensity Statin Therapy on Coronary Atherosclerosis in Patients With Acute Myocardial Infarction: The PACMAN-AMI Randomized Clinical Trial. JAMA 2022, 327, 1771–1781.
  10. Cannon, C.P.; Braunwald, E.; McCabe, C.H.; Rader, D.J.; Rouleau, J.L.; Belder, R.; Joyal, S.V.; Hill, K.A.; Pfeffer, M.A.; Skene, A.M. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N. Engl. J. Med. 2004, 350, 1495–1504.
  11. Giugliano, R.P.; Pedersen, T.R.; Park, J.G.; De Ferrari, G.M.; Gaciong, Z.A.; Ceska, R.; Toth, K.; Gouni-Berthold, I.; Lopez-Miranda, J.; Schiele, F.; et al. Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: A prespecified secondary analysis of the FOURIER trial. Lancet 2017, 390, 1962–1971.
  12. Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; Simes, J.; et al. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681.
  13. Goldstein, J.L.; Brown, M.S. The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 431–438.
  14. Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188.
  15. Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337.
  16. Krychtiuk, K.A.; Ahrens, I.; Drexel, H.; Halvorsen, S.; Hassager, C.; Huber, K.; Kurpas, D.; Niessner, A.; Schiele, F.; Semb, A.G.; et al. Acute LDL-C reduction post ACS: Strike early and strike strong: From evidence to clinical practice. A clinical consensus statement of the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Association of Preventive Cardiology (EAPC) and the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy. Eur. Heart J. Acute Cardiovasc. Care 2022, 11, 939–949.
  17. Liem, A.; van Boven, A.J.; Withagen, A.P.; Robles de Medina, R.M.; Veeger, N.J.; Tijssen, J.G. Fluvastatin in acute myocardial infarction: Effects on early and late ischemia and events: The FLORIDA trial. Circulation 2000, 102, 2672.
  18. Thompson, P.L.; Meredith, I.; Amerena, J.; Campbell, T.J.; Sloman, J.G.; Harris, P.J. Effect of pravastatin compared with placebo initiated within 24 hours of onset of acute myocardial infarction or unstable angina: The Pravastatin in Acute Coronary Treatment (PACT) trial. Am. Heart J. 2004, 148, e2.
  19. de Lemos, J.A.; Blazing, M.A.; Wiviott, S.D.; Lewis, E.F.; Fox, K.A.; White, H.D.; Rouleau, J.L.; Pedersen, T.R.; Gardner, L.H.; Mukherjee, R.; et al. Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: Phase Z of the A to Z trial. JAMA 2004, 292, 1307–1316.
  20. Schwartz, G.G.; Olsson, A.G.; Ezekowitz, M.D.; Ganz, P.; Oliver, M.F.; Waters, D.; Zeiher, A.; Chaitman, B.R.; Leslie, S.; Stern, T.; et al. Effects of atorvastatin on early recurrent ischemic events in acute coronary syndromes: The MIRACL study: A randomized controlled trial. JAMA 2001, 285, 1711–1718.
  21. Nicholls, S.; Lincoff, A.M.; Bays, H.E.; Cho, L.; Grobbee, D.E.; Kastelein, J.J.; Libby, P.; Moriarty, P.M.; Plutzky, J.; Ray, K.K. Rationale and design of the CLEAR-outcomes trial: Evaluating the effect of bempedoic acid on cardiovascular events in patients with statin intolerance. Am. Heart J. 2021, 235, 104–112.
  22. Koskinas, K.C.; Windecker, S.; Pedrazzini, G.; Mueller, C.; Cook, S.; Matter, C.M.; Muller, O.; Häner, J.; Gencer, B.; Crljenica, C.; et al. Evolocumab for Early Reduction of LDL Cholesterol Levels in Patients With Acute Coronary Syndromes (EVOPACS). J. Am. Coll. Cardiol. 2019, 74, 2452–2462.
  23. Mehta, S.R.; Pare, G.; Lonn, E.M.; Jolly, S.S.; Natarajan, M.K.; Pinilla-Echeverri, N.; Schwalm, J.D.; Sheth, T.N.; Sibbald, M.; Tsang, M.; et al. Effects of routine early treatment with PCSK9 inhibitors in patients undergoing primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: A randomised, double-blind, sham-controlled trial. EuroIntervention 2022, 18, e888–e896.
  24. Trankle, C.R.; Wohlford, G.; Buckley, L.F.; Kadariya, D.; Ravindra, K.; Markley, R.; Park, T.S.; Potere, N.; Van Tassell, B.W.; Abbate, A. Alirocumab in Acute Myocardial Infarction: Results From the Virginia Commonwealth University Alirocumab Response Trial (VCU-AlirocRT). J. Cardiovasc. Pharmacol. 2019, 74, 266–269.
  25. Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397.
  26. Baigent, C.; Keech, A.; Kearney, P.M.; Blackwell, L.; Buck, G.; Pollicino, C.; Kirby, A.; Sourjina, T.; Peto, R.; Collins, R.; et al. Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005, 366, 1267–1278.
  27. Lloyd-Jones, D.M.; Morris, P.B.; Ballantyne, C.M.; Birtcher, K.K.; Daly, D.D.; DePalma, S.M.; Minissian, M.B.; Orringer, C.E.; Smith, S.C. 2017 Focused Update of the 2016 ACC Expert Consensus Decision Pathway on the Role of Non-Statin Therapies for LDL-Cholesterol Lowering in the Management of Atherosclerotic Cardiovascular Disease Risk. J. Am. Coll. Cardiol. 2017, 70, 1785–1822.
  28. Manzoni, M.; Rollini, M. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biotechnol. 2002, 58, 555–564.
  29. Trub, A.G.; Wagner, G.R.; Anderson, K.A.; Crown, S.B.; Zhang, G.F.; Thompson, J.W.; Ilkayeva, O.R.; Stevens, R.D.; Grimsrud, P.A.; Kulkarni, R.A.; et al. Statin therapy inhibits fatty acid synthase via dynamic protein modifications. Nat. Commun. 2022, 13, 2542.
  30. Burnett, J.R.; Barrett, P.H.; Vicini, P.; Miller, D.B.; Telford, D.E.; Kleinstiver, S.J.; Huff, M.W. The HMG-CoA reductase inhibitor atorvastatin increases the fractional clearance rate of postprandial triglyceride-rich lipoproteins in miniature pigs. Arter. Thromb. Vasc. Biol. 1998, 18, 1906–1914.
  31. Arnaud, C.; Veillard, N.R.; Mach, F. Cholesterol-independent effects of statins in inflammation, immunomodulation and atherosclerosis. Curr. Drug Targets Cardiovasc. Haematol. Disord. 2005, 5, 127–134.
  32. Zhou, Q.; Liao, J.K. Pleiotropic effects of statins—Basic research and clinical perspectives. Circ. J. 2010, 74, 818–826.
  33. Silverman, M.G.; Ference, B.A.; Im, K.; Wiviott, S.D.; Giugliano, R.P.; Grundy, S.M.; Braunwald, E.; Sabatine, M.S. Association Between Lowering LDL-C and Cardiovascular Risk Reduction Among Different Therapeutic Interventions: A Systematic Review and Meta-analysis. JAMA 2016, 316, 1289–1297.
  34. Schulz, R. Pleiotropic effects of statins. J. Am. Coll. Cardiol. 2005, 45, 1292–1294.
  35. Buchwald, H.; Varco, R.L.; Matts, J.P.; Long, J.M.; Fitch, L.L.; Campbell, G.S.; Pearce, M.B.; Yellin, A.E.; Edmiston, W.A.; Smink, R.D., Jr.; et al. Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. Report of the Program on the Surgical Control of the Hyperlipidemias (POSCH). N. Engl. J. Med. 1990, 323, 946–955.
  36. Lefer, D.J. Statins as potent antiinflammatory drugs. Circulation 2002, 106, 2041–2042.
  37. Albert, M.A.; Danielson, E.; Rifai, N.; Ridker, P.M. Effect of statin therapy on C-reactive protein levels: The pravastatin inflammation/CRP evaluation (PRINCE): A randomized trial and cohort study. JAMA 2001, 286, 64–70.
  38. Ridker, P.M.; Rifai, N.; Pfeffer, M.A.; Sacks, F.M.; Moye, L.A.; Goldman, S.; Flaker, G.C.; Braunwald, E. Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events (CARE) Investigators. Circulation 1998, 98, 839–844.
  39. Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M., Jr.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 2008, 359, 2195–2207.
  40. LaRosa, J.C.; Grundy, S.M.; Waters, D.D.; Shear, C.; Barter, P.; Fruchart, J.C.; Gotto, A.M.; Greten, H.; Kastelein, J.J.; Shepherd, J.; et al. Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N. Engl. J. Med. 2005, 352, 1425–1435.
  41. Pedersen, T.R.; Faergeman, O.; Kastelein, J.J.; Olsson, A.G.; Tikkanen, M.J.; Holme, I.; Larsen, M.L.; Bendiksen, F.S.; Lindahl, C.; Szarek, M.; et al. High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction: The IDEAL study: A randomized controlled trial. JAMA 2005, 294, 2437–2445.
  42. Cannon, C.P.; Steinberg, B.A.; Murphy, S.A.; Mega, J.L.; Braunwald, E. Meta-analysis of cardiovascular outcomes trials comparing intensive versus moderate statin therapy. J. Am. Coll. Cardiol. 2006, 48, 438–445.
  43. Zhang, H.; Plutzky, J.; Skentzos, S.; Morrison, F.; Mar, P.; Shubina, M.; Turchin, A. Discontinuation of statins in routine care settings: A cohort study. Ann. Intern. Med. 2013, 158, 526–534.
  44. Mancini, G.B.; Baker, S.; Bergeron, J.; Fitchett, D.; Frohlich, J.; Genest, J.; Gupta, M.; Hegele, R.A.; Ng, D.; Pearson, G.J.; et al. Diagnosis, Prevention, and Management of Statin Adverse Effects and Intolerance: Canadian Consensus Working Group Update (2016). Can. J. Cardiol. 2016, 32, S35–S65.
  45. Lin, I.; Sung, J.; Sanchez, R.J.; Mallya, U.G.; Friedman, M.; Panaccio, M.; Koren, A.; Neumann, P.; Menzin, J. Patterns of Statin Use in a Real-World Population of Patients at High Cardiovascular Risk. J. Manag. Care Spec. Pharm. 2016, 22, 685–698.
  46. Cheeley, M.K.; Saseen, J.J.; Agarwala, A.; Ravilla, S.; Ciffone, N.; Jacobson, T.A.; Dixon, D.L.; Maki, K.C. NLA scientific statement on statin intolerance: A new definition and key considerations for ASCVD risk reduction in the statin intolerant patient. J. Clin. Lipidol. 2022, 16, 361–375.
  47. Tong, L.S.; Hu, H.T.; Zhang, S.; Yan, S.Q.; Lou, M. Statin withdrawal beyond acute phase affected outcome of thrombolytic stroke patients: An observational retrospective study. Medicine 2015, 94, e779.
  48. Serban, M.-C.; Colantonio, L.D.; Manthripragada, A.D.; Monda, K.L.; Bittner, V.A.; Banach, M.; Chen, L.; Huang, L.; Dent, R.; Kent, S.T.; et al. Statin Intolerance and Risk of Coronary Heart Events and All-Cause Mortality Following Myocardial Infarction. J. Am. Coll. Cardiol. 2017, 69, 1386–1395.
  49. Siddiqui, M.K.; Maroteau, C.; Veluchamy, A.; Tornio, A.; Tavendale, R.; Carr, F.; Abelega, N.U.; Carr, D.; Bloch, K.; Hallberg, P.; et al. A common missense variant of LILRB5 is associated with statin intolerance and myalgia. Eur. Heart J. 2017, 38, 3569–3575.
  50. Preiss, D.; Seshasai, S.R.; Welsh, P.; Murphy, S.A.; Ho, J.E.; Waters, D.D.; DeMicco, D.A.; Barter, P.; Cannon, C.P.; Sabatine, M.S.; et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: A meta-analysis. JAMA 2011, 305, 2556–2564.
  51. Ginsberg, H.N.; Elam, M.B.; Lovato, L.C.; Crouse, J.R., 3rd; Leiter, L.A.; Linz, P.; Friedewald, W.T.; Buse, J.B.; Gerstein, H.C.; Probstfield, J.; et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N. Engl. J. Med. 2010, 362, 1563–1574.
  52. Nutescu, E.A.; Shapiro, N.L. Ezetimibe: A selective cholesterol absorption inhibitor. Pharmacotherapy 2003, 23, 1463–1474.
  53. Xie, P.; Jia, L.; Ma, Y.; Ou, J.; Miao, H.; Wang, N.; Guo, F.; Yazdanyar, A.; Jiang, X.C.; Yu, L. Ezetimibe inhibits hepatic Niemann-Pick C1-Like 1 to facilitate macrophage reverse cholesterol transport in mice. Arter. Thromb. Vasc. Biol. 2013, 33, 920–925.
  54. Pirillo, A.; Catapano, A.L.; Norata, G.D. Niemann-Pick C1-Like 1 (NPC1L1) Inhibition and Cardiovascular Diseases. Curr. Med. Chem. 2016, 23, 983–999.
  55. Morrone, D.; Weintraub, W.S.; Toth, P.P.; Hanson, M.E.; Lowe, R.S.; Lin, J.; Shah, A.K.; Tershakovec, A.M. Lipid-altering efficacy of ezetimibe plus statin and statin monotherapy and identification of factors associated with treatment response: A pooled analysis of over 21,000 subjects from 27 clinical trials. Atherosclerosis 2012, 223, 251–261.
  56. Ballantyne, C.M.; Banach, M.; Mancini, G.B.J.; Lepor, N.E.; Hanselman, J.C.; Zhao, X.; Leiter, L.A. Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: A randomized, placebo-controlled study. Atherosclerosis 2018, 277, 195–203.
  57. Oyama, K.; Giugliano, R.P.; Blazing, M.A.; Park, J.G.; Tershakovec, A.M.; Sabatine, M.S.; Cannon, C.P.; Braunwald, E. Baseline Low-Density Lipoprotein Cholesterol and Clinical Outcomes of Combining Ezetimibe With Statin Therapy in IMPROVE-IT. J. Am. Coll. Cardiol. 2021, 78, 1499–1507.
  58. Giugliano, R.P.; Cannon, C.P.; Blazing, M.A.; Nicolau, J.C.; Corbalán, R.; Špinar, J.; Park, J.G.; White, J.A.; Bohula, E.A.; Braunwald, E. Benefit of Adding Ezetimibe to Statin Therapy on Cardiovascular Outcomes and Safety in Patients With Versus Without Diabetes Mellitus: Results From IMPROVE-IT (Improved Reduction of Outcomes: Vytorin Efficacy International Trial). Circulation 2018, 137, 1571–1582.
  59. Colivicchi, F.; Di Fusco, S.A.; Scicchitano, P.; Caldarola, P.; Murrone, A.; Valente, S.; Urbinati, S.; Roncon, L.; Amodeo, V.; Aspromonte, N. Updated clinical evidence and place in therapy of bempedoic acid for hypercholesterolemia: ANMCO position paper. J. Cardiovasc. Med. 2021, 22, 162–171.
  60. Kosmas, C.E.; Pantou, D.; Sourlas, A.; Papakonstantinou, E.J.; Echavarria Uceta, R.; Guzman, E. New and emerging lipid-modifying drugs to lower LDL cholesterol. Drugs Context 2021, 10, 2021-8-3.
  61. Filippov, S.; Pinkosky, S.L.; Lister, R.J.; Pawloski, C.; Hanselman, J.C.; Cramer, C.T.; Srivastava, R.A.K.; Hurley, T.R.; Bradshaw, C.D.; Spahr, M.A.; et al. ETC-1002 regulates immune response, leukocyte homing, and adipose tissue inflammation via LKB1-dependent activation of macrophage AMPK. J. Lipid Res. 2013, 54, 2095–2108.
  62. Laufs, U.; Banach, M.; Mancini, G.B.J.; Gaudet, D.; Bloedon, L.T.; Sterling, L.R.; Kelly, S.; Stroes, E.S.G. Efficacy and Safety of Bempedoic Acid in Patients With Hypercholesterolemia and Statin Intolerance. J. Am. Heart Assoc. 2019, 8, e011662.
  63. Ray, K.K.; Bays, H.E.; Catapano, A.L.; Lalwani, N.D.; Bloedon, L.T.; Sterling, L.R.; Robinson, P.L.; Ballantyne, C.M. Safety and Efficacy of Bempedoic Acid to Reduce LDL Cholesterol. N. Engl. J. Med. 2019, 380, 1022–1032.
  64. Ballantyne, C.M.; Banach, M.; Bays, H.E.; Catapano, A.L.; Laufs, U.; Stroes, E.S.G.; Robinson, P.; Lei, L.; Ray, K.K. Long-Term Safety and Efficacy of Bempedoic Acid in Patients With Atherosclerotic Cardiovascular Disease and/or Heterozygous Familial Hypercholesterolemia (from the CLEAR Harmony Open-Label Extension Study). Am. J. Cardiol. 2022, 174, 1–11.
  65. Sirtori, C.R.; Yamashita, S.; Greco, M.F.; Corsini, A.; Watts, G.F.; Ruscica, M. Recent advances in synthetic pharmacotherapies for dyslipidaemias. Eur. J. Prev. Cardiol. 2020, 27, 1576–1596.
  66. Nissen, S.E.; Lincoff, A.M.; Brennan, D.; Ray, K.K.; Mason, D.; Kastelein, J.J.P.; Thompson, P.D.; Libby, P.; Cho, L.; Plutzky, J.; et al. Bempedoic Acid and Cardiovascular Outcomes in Statin-Intolerant Patients. N. Engl. J. Med. 2023, 388, 1353–1364.
  67. Tibolla, G.; Norata, G.D.; Artali, R.; Meneghetti, F.; Catapano, A.L. Proprotein convertase subtilisin/kexin type 9 (PCSK9): From structure-function relation to therapeutic inhibition. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 835–843.
  68. Ferri, N. Phage display for targeting PCSK9. EBioMedicine 2021, 65, 103267.
  69. Nozue, T. Lipid Lowering Therapy and Circulating PCSK9 Concentration. J. Atheroscler. Thromb. 2017, 24, 895–907.
  70. Bergeron, N.; Phan, B.A.; Ding, Y.; Fong, A.; Krauss, R.M. Proprotein convertase subtilisin/kexin type 9 inhibition: A new therapeutic mechanism for reducing cardiovascular disease risk. Circulation 2015, 132, 1648–1666.
  71. Guedeney, P.; Giustino, G.; Sorrentino, S.; Claessen, B.E.; Camaj, A.; Kalkman, D.N.; Vogel, B.; Sartori, S.; De Rosa, S.; Baber, U.; et al. Efficacy and safety of alirocumab and evolocumab: A systematic review and meta-analysis of randomized controlled trials. Eur. Heart J. 2019, 43, e17–e25.
  72. Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; et al. Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients: The GLAGOV Randomized Clinical Trial. JAMA 2016, 316, 2373–2384.
  73. Sun, J.; Lepor, N.E.; Cantón, G.; Contreras, L.; Hippe, D.S.; Isquith, D.A.; Balu, N.; Kedan, I.; Simonini, A.A.; Yuan, C.; et al. Serial magnetic resonance imaging detects a rapid reduction in plaque lipid content under PCSK9 inhibition with alirocumab. Int. J. Cardiovasc. Imaging 2021, 37, 1415–1422.
  74. Lepor, N.E.; Sun, J.; Canton, G.; Contreras, L.; Hippe, D.S.; Isquith, D.A.; Balu, N.; Kedan, I.; Simonini, A.A.; Yuan, C.; et al. Regression in carotid plaque lipid content and neovasculature with PCSK9 inhibition: A time course study. Atherosclerosis 2021, 327, 31–38.
  75. Aranzulla, T.C.; Piazza, S.; Ricotti, A.; Musumeci, G.; Gaggiano, A. CARotid plaqUe StabilizatiOn and regression with evolocumab: Rationale and design of the CARUSO study. Catheter. Cardiovasc. Interv. 2021, 98, E115–E121.
  76. Nicholls, S.J.; Nissen, S.E.; Prati, F.; Windecker, S.; Kataoka, Y.; Puri, R.; Hucko, T.; Kassahun, H.; Liao, J.; Somaratne, R.; et al. Assessing the impact of PCSK9 inhibition on coronary plaque phenotype with optical coherence tomography: Rationale and design of the randomized, placebo-controlled HUYGENS study. Cardiovasc. Diagn. Ther. 2021, 11, 120–129.
  77. Khvorova, A. Oligonucleotide Therapeutics—A New Class of Cholesterol-Lowering Drugs. N. Engl. J. Med. 2017, 376, 4–7.
  78. Merćep, I.; Friščić, N.; Strikić, D.; Reiner, Ž. Advantages and Disadvantages of Inclisiran: A Small Interfering Ribonucleic Acid Molecule Targeting PCSK9-A Narrative Review. Cardiovasc. Ther. 2022, 2022, 8129513.
  79. Ray, K.K.; Stoekenbroek, R.M.; Kallend, D.; Nishikido, T.; Leiter, L.A.; Landmesser, U.; Wright, R.S.; Wijngaard, P.L.; Kastelein, J.J. Effect of 1 or 2 doses of inclisiran on low-density lipoprotein cholesterol levels: One-year follow-up of the ORION-1 randomized clinical trial. JAMA Cardiol. 2019, 4, 1067–1075.
  80. Di Fusco, S.A.; Maggioni, A.P.; Bernelli, C.; Perone, F.; De Marzo, V.; Conte, E.; Musella, F.; Uccello, G.; De Luca, L.; Gabrielli, D. Inclisiran: A New Pharmacological Approach for Hypercholesterolemia. Rev. Cardiovasc. Med. 2022, 23, 375.
  81. Hovingh, G.K.; Lepor, N.E.; Kallend, D.; Stoekenbroek, R.M.; Wijngaard, P.L.J.; Raal, F.J. Inclisiran Durably Lowers Low-Density Lipoprotein Cholesterol and Proprotein Convertase Subtilisin/Kexin Type 9 Expression in Homozygous Familial Hypercholesterolemia: The ORION-2 Pilot Study. Circulation 2020, 141, 1829–1831.
  82. Leiter, L.A.; Teoh, H.; Kallend, D.; Wright, R.S.; Landmesser, U.; Wijngaard, P.L.J.; Kastelein, J.J.P.; Ray, K.K. Inclisiran Lowers LDL-C and PCSK9 Irrespective of Diabetes Status: The ORION-1 Randomized Clinical Trial. Diabetes Care 2019, 42, 173–176.
  83. Ray, K.K.; Landmesser, U.; Leiter, L.A.; Kallend, D.; Dufour, R.; Karakas, M.; Hall, T.; Troquay, R.P.; Turner, T.; Visseren, F.L.; et al. Inclisiran in Patients at High Cardiovascular Risk with Elevated LDL Cholesterol. N. Engl. J. Med. 2017, 376, 1430–1440.
  84. Koenig, W.; Ray, K.K.; Landmesser, U.; Leiter, L.A.; Schwartz, G.G.; Wright, R.S.; Conde, L.G.; Han, J.; Raal, F.J. Efficacy and safety of inclisiran in patients with cerebrovascular disease: ORION-9, ORION-10, and ORION-11. Am. J. Prev. Cardiol. 2023, 14, 100503.
  85. Wright, R.S.; Collins, M.G.; Stoekenbroek, R.M.; Robson, R.; Wijngaard, P.L.; Landmesser, U.; Leiter, L.A.; Kastelein, J.J.; Ray, K.K.; Kallend, D. Effects of renal impairment on the pharmacokinetics, efficacy, and safety of inclisiran: An analysis of the ORION-7 and ORION-1 studies. Mayo Clin. Proc. 2020, 95, 77–89.
  86. Ray, K.K.; Troquay, R.P.; Visseren, F.L.; Leiter, L.A.; Wright, R.S.; Vikarunnessa, S.; Talloczy, Z.; Zang, X.; Maheux, P.; Lesogor, A. Long-term efficacy and safety of inclisiran in patients with high cardiovascular risk and elevated LDL cholesterol (ORION-3): Results from the 4-year open-label extension of the ORION-1 trial. Lancet Diabetes Endocrinol. 2023, 11, 109–119.
  87. Stoekenbroek, R.M.; Kallend, D.; Wijngaard, P.L.; Kastelein, J.J. Inclisiran for the treatment of cardiovascular disease: The ORION clinical development program. Future Cardiol. 2018, 14, 433–442.
  88. Katsiki, N.; Vrablik, M.; Banach, M.; Gouni-Berthold, I. Inclisiran, Low-Density Lipoprotein Cholesterol and Lipoprotein (a). Pharmaceuticals 2023, 16, 577.
  89. Kallend, D.; Stoekenbroek, R.; He, Y.; Smith, P.F.; Wijngaard, P. Pharmacokinetics and pharmacodynamics of inclisiran, a small interfering RNA therapy, in patients with hepatic impairment. J. Clin. Lipidol. 2022, 16, 208–219.
  90. U.S. National Library of Medicine. Trial to Assess the Effect of Long Term Dosing of Inclisiran in Subjects With High CV Risk and Elevated LDL-C (ORION-8).
  91. Ray, K.K.; Wright, R.S.; Kallend, D.; Koenig, W.; Leiter, L.A.; Raal, F.J.; Bisch, J.A.; Richardson, T.; Jaros, M.; Wijngaard, P.L.J.; et al. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N. Engl. J. Med. 2020, 382, 1507–1519.
  92. Raal, F.J.; Kallend, D.; Ray, K.K.; Turner, T.; Koenig, W.; Wright, R.S.; Wijngaard, P.L.J.; Curcio, D.; Jaros, M.J.; Leiter, L.A.; et al. Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. N. Engl. J. Med. 2020, 382, 1520–1530.
  93. Samuel, E.; Watford, M.; Egolum, U.O.; Ombengi, D.N.; Ling, H.; Cates, D.W. Inclisiran: A first-in-class siRNA therapy for lowering low-density lipoprotein cholesterol. Ann. Pharmacother. 2023, 57, 317–324.
  94. van den Bosch, S.E.; Corpeleijn, W.E.; Hutten, B.A.; Wiegman, A. How Genetic Variants in Children with Familial Hypercholesterolemia Not Only Guide Detection, but Also Treatment. Genes 2023, 14, 669.
  95. Scicchitano, P.; Milo, M.; Mallamaci, R.; De Palo, M.; Caldarola, P.; Massari, F.; Gabrielli, D.; Colivicchi, F.; Ciccone, M.M. Inclisiran in lipid management: A literature overview and future perspectives. Biomed. Pharmacother. 2021, 143, 112227.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , , , , , , , , , , , ,
View Times: 258
Revisions: 2 times (View History)
Update Date: 21 Aug 2023
1000/1000
ScholarVision Creations