Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 3049 2023-08-02 08:34:39 |
2 format correct Meta information modification 3049 2023-08-04 02:44:09 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
El-Sabrout, K.; Khalifah, A.; Ciani, F. Nutraceutical Plant Products on Rabbit Production and Health. Encyclopedia. Available online: https://encyclopedia.pub/entry/47533 (accessed on 10 September 2024).
El-Sabrout K, Khalifah A, Ciani F. Nutraceutical Plant Products on Rabbit Production and Health. Encyclopedia. Available at: https://encyclopedia.pub/entry/47533. Accessed September 10, 2024.
El-Sabrout, Karim, Ayman Khalifah, Francesca Ciani. "Nutraceutical Plant Products on Rabbit Production and Health" Encyclopedia, https://encyclopedia.pub/entry/47533 (accessed September 10, 2024).
El-Sabrout, K., Khalifah, A., & Ciani, F. (2023, August 02). Nutraceutical Plant Products on Rabbit Production and Health. In Encyclopedia. https://encyclopedia.pub/entry/47533
El-Sabrout, Karim, et al. "Nutraceutical Plant Products on Rabbit Production and Health." Encyclopedia. Web. 02 August, 2023.
Nutraceutical Plant Products on Rabbit Production and Health
Edit

Plant/botanical products are natural and vital substances widely used as dietary additives in livestock farms. They contain phytobiotics, phenols, flavonoids, tannins, and essential oils, which play a multitude of roles in a rabbit’s body. The nutritional and medicinal properties of these substances mainly influence animal performance by improving digestion and enhancing immunity/health. Additionally, several botanical products, including herbs, are considered phytogenic feed additives for livestock to improve growth performance and health status.

antioxidants by-products feed additives growth promoters immunostimulants

1. Effect of Nutraceutical Plant Products on Rabbit Production and Health Status

References

  1. Ciani, F.; Maruccio, L.; Cocchia, N.; d’Angelo, D.; Carotenuto, D.; Avallone, L.; Namagerdi, A.A.; Tafuri, S. Antioxidants in assisted reproductive technologies: An overview on dog, cat, and horse. J. Adv. Vet. Anim. Res. 2021, 8, 173–184.
  2. El-Sabrout, K.; Khalifah, A.; Mishra, B. Application of botanical products as nutraceutical feed additives for improving poultry health and production. Vet. World 2023, 16, 369–379.
  3. Dhama, K.; Latheef, S.K.; Mani, S.; Samad, H.A.; Karthik, K.; Tiwari, R.; Khan, R.U.; Alagawany, M.; Farag, M.R.; Alam, G.M.; et al. Multiple beneficial applications and modes of action of herbs in poultry health and production—A review. Int. J. Pharmacol. 2015, 11, 152–176.
  4. Yadav, A.; Kolluri, G.; Gopi, M.; Karthik, K.; Malik, Y.; Dhama, K. Exploring alternatives to antibiotics as health promoting agents in poultry—A review. J. Exp. Biol. Agric. Sci. 2016, 4, 368–383.
  5. Saki, A.A.; Aliarabi, H.; Hosseini Siyar, S.A.; Salari, J.; Hashemi, M. Effect of a phytogenic feed additive on performance, ovarian morphology, serum lipid parameters and egg sensory quality in laying hen. Vet. Res. Forum Int. Q. J. 2014, 5, 287–293.
  6. El-Ghousein, S.S.; Al-Beitawi, N.A. The effect of feeding of crushed thyme (Thymus valgaris L) on growth, blood constituents, gastrointestinal tract and carcass characteristics of broiler chickens. J. Poult. Sci. 2009, 46, 100–104.
  7. Fachini-Queiroz, F.C.; Kummer, R.; Estevão-Silva, C.F.; Carvalho, M.D.; Cunha, J.M.; Grespan, R.; Bersani-Amado, C.A.; Cuman, R.K. Effects of thymol and carvacrol, constituents of Thymus vulgaris L. essential oil, on the inflammatory response. Evid.-Based Complement. Altern. Med. 2012, 2012, 657026.
  8. Hosseinzadeh, S.; Jafarikukhdan, A.; Hosseini, A.; Armand, R. The application of medicinal plants in traditional and modern medicine: A review of Thymus vulgaris. Int. J. Clin. Med. 2015, 6, 635–642.
  9. Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and thyme essential oil-new insights into selected therapeutic applications. Molecules 2020, 25, 4125.
  10. Du, E.; Wang, W.; Gan, L.; Li, Z.; Guo, S.; Guo, Y. Effects of thymol and carvacrol supplementation on intestinal integrity and immune responses of broiler chickens challenged with Clostridium perfringens. J. Anim. Sci. Biotechnol. 2016, 7, 19.
  11. Fki, I.; Bouaziz, M.; Sahnoun, Z.; Sayadi, S. Hypocholesterolemic effects of phenolic-rich extracts of Chemlali olive cultivar in rats fed a cholesterol-rich diet. Bioorg. Med. Chem. 2005, 13, 5362–5370.
  12. Franz, C.; Baser, K.H.; Windisch, W.M. Essential oils and aromatic plants in animal feeding—A European perspective. A review. Flav. Fragr. J. 2010, 25, 327–340.
  13. Hashemipour, H.; Kermanshahi, H.; Golian, A.; Veldkamp, T. Metabolism and nutrition: Effect of thymol and carvacrol feed supplementation on performance, antioxidant enzyme activities, fatty acid composition, digestive enzyme activities, and immune response in broiler chickens. Poult. Sci. 2013, 92, 2059–2069.
  14. Chrastinová, L.; Chrenková, M.; Formelová, Z.; Poláĉiková, M.; Čobanová, K.; Lauková, A.; Glatzová, E.B.; Štrkolcová, G.; Kandričáková, A.; Rajský, M.; et al. Effect of combinative dietary zinc supplementation and plant thyme extract on growth performance and nutrient digestibility in the diet for growing rabbits. Slovak J. Anim. Sci. 2018, 51, 52–60.
  15. Acamovic, T.; Brooker, J.D. Biochemistry of plant secondary metabolites and their effects in animals. Proc. Nutr. Soc. 2005, 64, 403–412.
  16. Griela, E.; Paraskeuas, V.; Mountzouris, K.C. Effects of diet and phytogenic inclusion on the antioxidant capacity of the broiler chicken gut. Animals 2021, 11, 739.
  17. Bacova, K.; Zitterl-Eglseer, K.; Chrastinova, L.; Laukova, A.; Madarova, M.; Gancarcikova, S.; Sopkova, D.; Andrejcakova, Z.; Placha, I. Effect of Thymol addition and withdrawal on some blood parameters, antioxidative defence system and fatty acid profile in rabbit muscle. Animals 2020, 10, 1248.
  18. Ezzat Ahmed, A.; Alkahtani, M.A.; Abdel-Wareth, A.A. Thyme leaves as an eco-friendly feed additive improves both the productive and reproductive performance of rabbits under hot climatic conditions. Vet. Med.-Czech 2020, 65, 553–563.
  19. Abdel-Wareth, A.A.; Taha, E.M.; Südekum, K.H.; Lohakare, J. Thyme oil inclusion levels in a rabbit ration: Evaluation of productive performance, carcass criteria and meat quality under hot environmental conditions. Anim. Nutr. 2018, 4, 410–416.
  20. Benlemlih, M.; Barchan, A.; Aarab, A.; Bakkali, M.; Arakrak, A.; Laglaoui, A. Effect of Dietary Dried Fennel and Oregano and Thyme Supplementation on Zootechnical Parameters of Growing Rabbits. World Vet. J. 2020, 10, 332–337.
  21. Abdel-Wareth, A.A.; Metwally, A.E. Productive and physiological response of male rabbits to dietary supplementation with thyme essential oil. Animals 2020, 10, 1844.
  22. Abdelnour, S.A.; El-Ratel, I.T.; Peris, S.I.; El-Raghi, A.A.; Fouda, S.F. Effects of dietary thyme essential oil on blood haematobiochemical, redox status, immunological and reproductive variables of rabbit does exposed to high environmental temperature. Ital. J. Anim. Sci. 2022, 21, 51–61.
  23. Placha, I.; Chrastinova, L.; Laukova, A.; Cobanova, K.; Takacova, J.; Strompfova, V.; Chrenkova, M.; Formelova, Z.; Faix, S. Effect of thyme oil on small intestine integrity and antioxidant status, phagocytic activity and gastrointestinal microbiota in rabbits. Acta Vet. Hung. 2013, 61, 197–208.
  24. Alazab, A.; Ragab, M.; Fahim, H.; El Desoky, A.; Azouz, H.; Shazly, S. Effect of Spirulina platensis supplementation in growing rabbit’s diet on productive performance and economic efficiency. J. Anim. Poult. Prod. 2020, 11, 325–330.
  25. Gerencsér, Z.S.; Szendrő, Z.S.; Matics, Z.S.; Radnai, I.; Kovács, M.; Nagy, I.; Cullere, M.; Dal Bosco, A.; Dalle Zotte, A. Effect of dietary supplementation of Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris) on apparent digestibility and productive performance of growing rabbits. World Rabbit Sci. 2014, 22, 1–9.
  26. Dal Bosco, A.; Gerencsér, Z.; Szendrő, Z.; Mugnai, C.; Cullere, M.; Kovács, M.; Ruggeri, S.; Mattioli, S.; Castellini, C.; Dalle Zotte, A. Effect of dietary supplementation of Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris) on rabbit meat appearance, oxidative stability and fatty acid profile during retail display. Meat Sci. 2014, 96, 114–119.
  27. Kovács, M.; Tuboly, T.; Mézes, M.; Balogh, K.M.; Gerencsér, Z.; Matics, Z.; Dal Bosco, A.; Szendrő, Z.; Tornyos, G.; Hafner, D.; et al. Effect of Dietary Supplementation of Spirulina (Arthrospira Platensis) and Thyme (Thymus Vulgaris) on Serum Biochemistry, Immune Response and Antioxidant Status of Rabbits. Ann. Anim. Sci. 2016, 16, 181–195.
  28. El-Ratel, I.T.; El-Kholy, K.H.; Mousa, N.A.; El-Said, E.A. Impacts of selenium nanoparticles and spirulina alga to alleviate the deleterious effects of heat stress on reproductive efficiency, oxidative capacity and immunity of doe rabbits. Anim. Biotechnol. 2023, 1–14.
  29. Abd El-Azeem, A.E.; Al-Sagheer, A.A.; Daader, A.H.; Bassiony, S.M. Effect of dietary supplementation with betaine, thyme oil and their mixtures on productive performance of growing rabbits. Zagazig J. Agric. Res. 2019, 46, 815–828.
  30. El-Saadany, A.S.; El-Barbary, A.M.; Shreif, E.Y.; Elkomy, A.; Khalifah, A.M.; El-Sabrout, K. Pumpkin and garden cress seed oils as feed additives to improve the physiological and productive traits of laying hens. Ital. J. Anim. Sci. 2022, 21, 1047–1057.
  31. Bryan, R.M.; Shailesh, N.S.; Jill, K.W.; Steven, F.V.; Roque, L.E. Composition and physical properties of cress (Lepidium sativum L.) and field pennycress (Thlaspi arvense L.) oils. Ind. Crops Prod. 2009, 30, 199–205.
  32. Deshmukh, Y.R.; Thorat, S.S.; Mhalaskar, S.R. Influence of garden cress seed (Lepidium sativum L.) bran on quality characteristics of cookies. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 586–593.
  33. Al-Sayed, H.M.A.; Zidan, N.S.; Abdelaleem, M.A. Utilization of garden cress seeds (Lepidium sativum L.) as natural source of protein and dietary fiber in noodles. Int. J. Pharm. Res. Allied Sci. 2019, 8, 17–28.
  34. Alagawany, M.; Elnesr, S.S.; Farag, M.R.; El-Naggar, K.; Madkour, M. Nutrigenomics and nutrigenetics in poultry nutrition: An updated review. World’s Poult. Sci. J. 2022, 78, 377–396.
  35. Bilal, R.M.; Liu, C.; Zhao, H.; Wang, Y.; Farag, M.R.; Alagawany, M.; Hassan, F.U.; Elnesr, S.S.; Elwan, H.; Qiu, H.; et al. Olive oil: Nutritional applications, beneficial health aspects and its prospective application in poultry production. Front. Pharmacol. 2021, 12, 723040.
  36. Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants 2020, 9, 1309.
  37. Diwakar, B.T.; Dutta, P.K.; Lokesh, B.R.; Naidu, K.A. Physicochemical properties of garden cress (Lepidium sativum L.) seed oil. J. Am. Oil Chem. Soc. 2010, 87, 539–548.
  38. Zia-Ul-Haq, M.; Ahmad, S.; Calani, L.; Mazzeo, T.; Rio, D.D.; Pellegrini, N.; De Feo, V. Compositional study and antioxidant potential of Ipomoea hederacea Jacq. and Lepidium sativum L. seeds. Molecules 2012, 17, 10306–10321.
  39. Richardson, A.J. Omega-3 fatty acids in ADHD and related neuro-developmental disorders. Int. Rev. Psychiatry 2006, 18, 155–172.
  40. Shawle, K.; Urge, M.; Animut, G. Effect of different levels of Lepidium sativum L. on growth performance, carcass characteristics, hematology and serum biochemical parameters of broilers. SpringerPlus 2016, 5, 1441.
  41. Azene, M.; Habte, K.; Tkuwab, H. Nutritional, health benefits and toxicity of underutilized garden cress seeds and its functional food products: A review. Food Prod. Process Nutr. 2022, 4, 33.
  42. El-Gindy, Y.M.; Zahran, S.M.; Ahmed, M.H.; Idres, A.Y.; Aboolo, S.H.; Morshedy, S.A. Reproductive performance and milk yield of rabbits fed diets supplemented with garden cress (Lepidium sativum) seed. Sci. Rep. 2022, 12, 17083.
  43. Morshedy, S.A.; Zahran, S.M.; Sabir, S.A.; El-Gindy, Y.M. Effects of increasing levels of orange peel extract on kit growth, feed utilization, and some blood metabolites in the doe rabbits under heat stress conditions. Anim. Biotechnol. 2022, 1, 1–12.
  44. El Naggar, S.; El-Mesery, H.S. Azolla pinnata as unconventional feeds for ruminant feeding. Bull. Natl. Res. Cent. 2022, 46, 66.
  45. Abdelatty, A.M.; Mandouh, M.I.; Mousa, M.; Mansour, H.A.; Ford, H.R.; Shaheed, I.B.; Elolimy, A.A.; Prince, A.; El-Sawy, M.; AboBakr, H.; et al. Sun-dried Azolla leaf meal at 10% dietary inclusion improved growth, meat quality, and increased skeletal muscle Ribosomal protein S6 kinase β1 abundance in growing rabbit. Animal 2021, 15, 100348.
  46. Mishra, D.B.; Roy, D.; Kumar, V.; Bhattacharyya, A.; Kumar, M.; Kushwaha, R.; Vaswani, S. Effect of feeding different levels of Azolla pinnata on blood biochemicals, hematology and immunocompetence traits of Chabro chicken. Vet. World 2016, 9, 192–198.
  47. Al-Rekabi, M.M.; Ali, N.A.; Abbas, F.R. Effect of partial and total substitution for Azolla plant (Azolla pinnata) powder instead of soybean meal in broiler chickens diets on blood biochemical traits. Plant Arch. 2020, 20, 1344–1348.
  48. Nabi, F.; Arain, M.A.; Rajput, N.; Alagawany, M.; Soomro, J.; Umer, M.; Soomro, F.; Wang, Z.; Ye, R.; Liu, J. Health benefits of carotenoids and potential application in poultry industry: A review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1809–1818.
  49. Riaz, A.; Khan, M.S.; Saeed, M.; Kamboh, A.A.; Khan, R.U.; Farooq, Z.; Imran, S.; Farid, M.U. Importance of Azolla plant in poultry production. World’s Poult. Sci. J. 2022, 78, 789–802.
  50. Abou-Zeid, A.; Mohamed, F.F.; Radwan, M.S.M. Assessment of the nutritive value of dried Azolla hay as a possible feed ingredient for growing NZW rabbits. Egyptian J. Rabbit Sci. 2001, 11, 1–21.
  51. Anitha, K.C.; Rajeshwari, Y.B.; Prasanna, S.B.; Shilpa Shree, J. Nutritive Evaluation of Azolla as Livestock Feed. J. Exp. Biol. Agric. Sci. 2016, 4, 670–674.
  52. Sireesha, K.; Chakravarthi, M.K.; Naveen, Z.; Naik, B.R.; Babu, P.R. Carcass characteristics of New Zealand white rabbits fed with graded levels of Azolla (Azolla pinnata) in the basal diet. Int. J. Livest. Res. 2017, 7, 167–171.
  53. Abdelatty, A.M.; Mandouh, M.I.; Mohamed, S.A.; Busato, S.; Badr, O.A.; Bionaz, M.; Al-Mokaddem, A.K.; Moustafa, M.M.; Farid, O.A.; Al-Mokaddem, A.K. Azolla leaf meal at 5% of the diet improves growth performance, intestinal morphology and p70s6k1 activation, and affects cecal microbiota in broiler chicken. Animal 2021, 15, 100362.
  54. El-Deeb, M.; Fahim, H.N.; Shazly, S.A.; Ragab, M.S.; Alazab, A.; Beshara, M. Effect of Partially Substitution of Soybean Protein with Azolla (Azolla pinnata) on Productive Performance and Carcass Traits of Growing Rabbits. J. Anim. Poult. Prod. 2021, 12, 197–203.
  55. Govindarajan, V.S. Turmeric-chemistry, technology, and quality. Crit. Rev. Food Sci. Nutr. 1980, 12, 199–301.
  56. Sadeghi, A.A.; Moghaddam, M. The effects of turmeric, cinnamon, ginger and garlic powder nutrition on antioxidant enzymes’ status and hormones involved in energy metabolism of broilers during heat stress. Iran. J. Appl. Anim. Sci. 2018, 8, 125–130.
  57. Sugiharto, S. Alleviation of heat stress in broiler chicken using turmeric (Curcuma longa)—A short review. J. Anim. Behav. Biometeorol. 2020, 8, 215–222.
  58. Sharma, R.A.; Gescher, A.J.; Steward, W.P. Curcumin: The story so far. Eur. J. Cancer 2005, 41, 1955–1968.
  59. Zava, D.T.; Dollbaum, C.M.; Blen, M. Estrogen and progestin bioactivity of foods, herbs, and spices. Exp. Biol. Med. 1998, 217, 369–378.
  60. Lantz, R.C.; Chen, G.J.; Solyom, A.M.; Jolad, S.D.; Timmermann, B.N. The effect of turmeric extracts on inflammatory mediator production. Phytomedicine 2005, 12, 445–452.
  61. Alagawany, M.; Ashour, E.A.; Reda, F.M. Effect of dietary supplementation of garlic (Allium Sativum) and turmeric (Curcuma Longa) on growth performance, carcass traits, blood profile and oxidative status in growing rabbits. Ann. Anim. Sci. 2016, 16, 489–505.
  62. Sirotkin, A.V.; Kádasi, A.; Štochmaľová, A.; Baláži, A.; Földešiová, M.; Makovicky, P.J.; Chrenek, P.; Harrath, A.H. Effect of turmeric on the viability, ovarian folliculogenesis, fecundity, ovarian hormones and response to luteinizing hormone of rabbits. Animal 2017, 12, 1242–1249.
  63. Kaegon, S.G.; Dim, J.; George, O.S. Effects of graded levels of Turmeric (Curcuma longa) meal on the Serum metabolites of growing Rabbits. Niger. J. Anim. Sci. 2018, 20, 247–250.
  64. El-Rawi, E.; Jasim, A.Y.; Ibrahim, E. Effect of adding turmeric powder to local buck rabbit’s rations on some production and blood traits. In Proceedings of the 1st International Multi-Disciplinary Conference Theme: Sustainable Development and Smart Planning, IMDC-SDSP 2020, Cyperspace, Online. 28–30 June 2020.
  65. Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its’ effects on human health. Foods 2017, 6, 92.
  66. Mishra, B.; Jha, R. Oxidative stress in the poultry gut: Potential challenges and interventions. Front. Vet. Sci. 2019, 6, 60.
  67. Abu Hafsa, S.H.; Senbill, H.; Basyony, M.M.; Hassan, A.A. Amelioration of Sarcoptic Mange-Induced Oxidative Stress and Growth Performance in Ivermectin-Treated Growing Rabbits Using Turmeric Extract Supplementation. Animals 2021, 11, 2984.
  68. Okanlawon, E.O.; Bello, K.O.; Akinola, O.S.; Oluwatosin, O.; Irekhore, O.T.; Ademolue, R.O. Evaluation of growth, reproductive performance and economic benefits of rabbits fed diets supplemented with turmeric (Curcuma longa) powder. Egypt. Poult. Sci. J. 2020, 40, 701–714.
  69. Saleh, A.; Alzawqari, M. Effects of replacing yellow corn with olive cake meal on growth performance, plasma lipid profile, and muscle fatty acid content in broilers. Animals 2021, 11, 2240.
  70. Bouaziz, M.; Fki, I.; Jemai, H.; Ayadi, M.; Sayadi, S. Effect of storage on refined and husk olive oils composition: Stabilization by addition of natural antioxidants from Chemlali olive leaves. Food Chem. 2008, 108, 253–262.
  71. Kiritsakis, K.; Kontominas, M.G.; Kontogiorgis, C.; Litina, D.H.; Moustakas, A.; Kiritsakis, A. Composition and antioxidant activity of olive leaf extracts from Greek olive cultivars. J. Am. Oil Chem. Soc. 2010, 87, 369–376.
  72. Al-Harthi, M. The effect of different dietary contents of olive cake with or without Saccharomyces cerevisiae on egg production and quality, inner organs and blood constituents of commercial layers. Eur. Poult. Sci. 2015, 79, 83–87.
  73. Al-Harthi, M.A. The efficacy of using olive cake as a by-product in broiler feeding with or without yeast. Ital. J. Anim. Sci. 2016, 15, 512–520.
  74. Abd El-Moneim, A.E.; Sabic, E.M. Beneficial effect of feeding olive pulp and Aspergillus awamori on productive performance, egg quality, serum/yolk cholesterol and oxidative status in laying Japanese quails. J. Anim. Feed Sci. 2019, 28, 52–61.
  75. Ozcan, C.; Cimrin, T.; Yakar, Y.; Alasahan, S. Effects of olive cake meal on serum constituents and fatty acid levels in breast muscle of Japanese quail. S. Afr. J. Anim. Sci. 2020, 50, 874–880.
  76. Al-Harthi, M. The effect of olive cake, with or without enzymes supplementation, on growth performance, carcass characteristics, lymphoid organs and lipid metabolism of broiler chickens. Braz. J. Poult. Sci. 2017, 19, 83–90.
  77. Zhang, Z.F.; Kim, I.H. Effects of dietary olive oil on egg quality, serum cholesterol characteristics, and yolk fatty acid concentrations in laying hens. J. Appl. Anim. Res. 2014, 42, 233–237.
  78. Harwood, J.L.; Yaqoob, P. Nutritional and health aspects of olive oil. Eur. J. Lipid Sci. Technol. 2002, 104, 685–697.
  79. Silva, S.; Gomes, L.; Leitão, F.; Coelho, A.V.; Vilas Boas, L. Phenolic compounds and antioxidant activity of Olea europaea L. fruits and leaves. Food Sci. Technol. Int. 2006, 12, 385–396.
  80. Quintero-Flórez, A.; Sinausia Nieva, L.; Sánchez-Ortíz, A.; Beltrán, G.; Perona, J.S. The fatty acid composition of virgin olive oil from different cultivars is determinant for foam cell formation by macrophages. J. Agric. Food Chem. 2015, 63, 6731–6738.
  81. De La Lastra, C.; Barranco, M.; Motilva, V.; Herrerías, J. Mediterrranean diet and health biological importance of olive oil. Curr. Pharm. Des. 2001, 7, 933–950.
  82. Paiva-Martins, F.; Ribeirinha, T.; Silva, A.; Gonçalves, R.; Pinheiro, V.; Mourão, J.L.; Outor-Monteiro, D. Effects of the dietary incorporation of olive leaves on growth performance, digestibility, blood parameters and meat quality of growing pigs. J. Sci. Food Agric. 2014, 94, 3023–3029.
  83. Tarchoune, I.; Sgherri, C.; Eddouzi, J.; Zinnai, A.; Quartacci, M.F.; Zarrouk, M. Olive leaf addition increases olive oil nutraceutical properties. Molecules 2019, 24, 545.
  84. Turner, R.; Etiene, N.; Garcia-Alonso, M.; de Pascual-Teresa, S.; Minihane, A.M.; Weinberg, P.D.; Rimbach, G. Antioxidant and anti-atherogenic activities of olive oil phenolics. Int. J. Vitaminol. Nutr. Res. 2010, 75, 61–70.
  85. Kaya, S.; Kececi, T.; Haliloglu, S. Effects of zinc and vitamin A supplements on plasma levels of thyroid hormones, cholesterol, glucose and egg yolk cholesterol of laying hens. Res. Vet. Sci. 2001, 71, 135–139.
  86. Bar, A.; Vax, E.; Striem, S. Relationships among age, eggshell thickness and vitamin D metabolism and its expression in the laying hen. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 1999, 123, 147–154.
  87. Salama, W.A.; Basyony, M.M.; Suliman, M.A.; Matari, R.I.M.; Hassanein, H.A. Effect of feeding olive cake supplemented with or without bentonite on performance of growing rabbis. Egypt. J. Rabbit Sci. 2016, 26, 211–230.
  88. Dal Bosco, A.; Castellini, C.; Cardinali, R.; Mourvaki, E.; Moscati, L.; Battistacci, L.; Servili, M.; Taticchi, A. Olive cake dietary supplementation in rabbit: Immune and oxidative status. Ital. J. Anim. Sci. 2007, 6, 713–715.
  89. Younan, G.; Mohamed, M.; Morsy, W.A. Effect of dietary supplementation of olive leaf extract on productive performance, blood parameters and carcass traits of growing rabbits. Egypt. J. Nutr. Feeds 2018, 22, 173–182.
  90. Mattioli, S.; Dal Bosco, A.; Duarte, J.M.; D’amato, R.; Castellini, C.; Beone, G.M.; Fontanella, M.C.; Beghelli, D.; Regni, L.; Businelli, D.; et al. Use of Selenium-enriched olive leaves in the feed of growing rabbits: Effect on oxidative status, mineral profile and Selenium speciation of Longissimus dorsi meat. J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. 2019, 51, 98–105.
  91. Mattioli, S.; Rosignoli, P.; D’Amato, R.; Fontanella, M.C.; Regni, L.; Castellini, C.; Proietti, P.; Elia, A.C.; Fabiani, R.; Beone, G.M.; et al. Effect of Feed Supplemented with Selenium-Enriched Olive Leaves on Plasma Oxidative Status, Mineral Profile, and Leukocyte DNA Damage in Growing Rabbits. Animals 2020, 10, 274.
  92. Maranesi, M.; Dall’Aglio, C.; Acuti, G.; Cappelli, K.; Trabalza Marinucci, M.; Galarini, R.; Suvieri, C.; Zerani, M. Effects of dietary polyphenols from olive mill waste waters on inflammatory and apoptotic effectors in rabbit ovary. Animals 2021, 11, 1727.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , ,
View Times: 279
Revisions: 2 times (View History)
Update Date: 04 Aug 2023
1000/1000
ScholarVision Creations