Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 3527 2023-07-10 08:16:52 |
2 layout & references Meta information modification 3527 2023-07-12 10:45:59 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Keramari, V.; Karastogianni, S.; Girousi, S. Electroanalysis of Heavy Metal Ions. Encyclopedia. Available online: https://encyclopedia.pub/entry/46587 (accessed on 19 September 2024).
Keramari V, Karastogianni S, Girousi S. Electroanalysis of Heavy Metal Ions. Encyclopedia. Available at: https://encyclopedia.pub/entry/46587. Accessed September 19, 2024.
Keramari, Vasiliki, Sophia Karastogianni, Stella Girousi. "Electroanalysis of Heavy Metal Ions" Encyclopedia, https://encyclopedia.pub/entry/46587 (accessed September 19, 2024).
Keramari, V., Karastogianni, S., & Girousi, S. (2023, July 10). Electroanalysis of Heavy Metal Ions. In Encyclopedia. https://encyclopedia.pub/entry/46587
Keramari, Vasiliki, et al. "Electroanalysis of Heavy Metal Ions." Encyclopedia. Web. 10 July, 2023.
Electroanalysis of Heavy Metal Ions
Edit

The detection of toxic heavy metal ions, especially cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu), is a global problem due to ongoing pollution incidents and continuous anthropogenic and industrial activities. Therefore, it is important to develop effective detection techniques to determine the levels of pollution from heavy metal ions in various media. Electrochemical techniques, more specifically voltammetry, due to its properties, is a promising method for the simultaneous detection of heavy metal ions.

heavy metal ions modified electrode electroanalysis nanoparticles

1. Introduction

Most heavy metal ions exist naturally in the environment; however, some come from anthropogenic sources, such as some industries, agriculture, the burning of fossil fuels, insecticides, car exhausts, and sewage. These heavy metal ions in large quantities can become hazardous to the biological system. For example, cadmium (Cd), lead (Pb), zinc (Zn), and copper (Cu) affect the environment due to their non-biodegradability and accumulated toxicity [1].
In the ground, all of the inorganic elements that are necessary and essential for the normal growth and development of plants exist. Even though some heavy metal ions, such as copper (Cu) and zinc (Zn) etc., are necessary for various enzymatic functions, an excessive concentration of heavy metal ions can cause serious problems [2][3][4], as they can become toxic and dangerous, with serious environmental implications. Toxic heavy metal ions vary in their nature and mode of accumulation, either in the soil or in plants. Some of the sources of heavy metal ions in the soil are fertilizers, pesticides, and sewage sludge [5].
Toxic metals such as cadmium (Cd) and lead (Pb), as well as many others, can easily end up in the higher members of the biological food chain and, therefore, in humans, causing serious diseases such as gastrointestinal tract (GIT) infections, cardiovascular problems, bone problems, and even cancer [6][7]. On the other hand, equally serious are the effects that heavy metal ions have on the environment, e.g., soil pollution, which is one of the most important problems for the planet. The term “soil pollution” refers to the concentration of polluting substances in soil in quantities that cause a change in the composition of the soil, resulting in disturbances in the ecosystem.
In order to limit the negative effects that heavy metals ion have on both humans and the environment, it is necessary to accurately determine the concentrations of heavy metal ions in their sources of accumulation.
Over the years, various techniques have been established for the detection of heavy metal ions (HMIs), including inductively coupled plasma mass spectrometry (ICP-MS) [8], inductively coupled plasma optical emission spectrometry (ICP-OES) [9], inductively coupled plasma atomic emission spectrometry (ICP-AES) [10], flame atomic absorption spectrophotometry (FAAS) [11], and atomic absorption spectroscopy (AAS) [12], where sometimes the emphasis is on the parameters and sometimes on the choice of the analysis method. Although they provide high accuracy and sensitivity, spectrometric methods such as atomic absorption (AAS) and inductively coupled plasma mass spectrometry (ICP-MS) are accompanied by certain limitations, such as high costs and the fact that they are time-consuming and do not allow on-site measurements.

2. Electrodes

Initially, the measurement technique is selected, with the most used measurement techniques for detecting heavy metal ions being SW, SWASV, and DPASW. In the next step, the appropriate working electrode is selected, where carbonaceous electrodes are dominant. They appear to further improve the performance of the voltammetric methods, as they are flexible, offer a wide potential window, and have desirable conductive and surface properties that allow for the sensitive determination of analytes. The four most common are glassy carbon electrodes (GCE), graphite electrodes (GE), carbon paste electrodes (CPE), and screen-printed carbon electrodes (SPCE). These electrodes are widely used for the determination of heavy metal ion concentrations (Cd2+, Pb2+, and Zn2+), while some of the most common types of modified electrodes include, among others, nanoparticle-modified electrodes, chemically modified electrodes (using chemical modifiers such as bismuth (Bi) and, formerly, mercury (Hg)), carbon-based modified electrodes, and enzyme-modified electrodes.
Therefore, the appropriate electrode modifier is further investigated. In a recent study for the determination of lead, which is a heavy metal ion, and with GCE as the working electrode, modification was performed with BFS (blast furnace slag), which is an economically efficient process and a new material in the field of detection, with many promising results [13]. A typical electrochemical analytical system consists mainly of the following three parts: an electrochemical detection device, an electrochemical detection instrument, and an electrolyte. The electrochemical detection instrument usually consists of the following three electrodes: a working electrode (WE), a reference electrode (RE), and a counter electrode (CE). After modifying the surfaces of the Wes using different materials, they can be used for the specific detection of various types of metallic ions. A representative illustration of sample preparation is quoted schematically in Figure 1, where the main steps followed are shown. In some Wes, surface modification is necessary because the nature of the used electrode can greatly affect the sensitivity and the selectivity of the analytical procedure. For example, it is essential to polish the surface of a glassy carbon electrode (GCE) with a polishing cloth posing 0.1 mm and 0.005 mm alumina powder, inducing a mirror-like surface, which improves the analytical features of the detection procedure [14].
Figure 1. Sample preparation procedures for measurement.

3. Modifiers

3.1. Mercury (Hg)-Based Electrode Variants and Bismuth Electrode Modifiers for HM Detection

To investigate the toxicity caused by heavy metal ions in soil, atmosphere, and consequently human health, and with the goal of limiting it, both techniques of analytical chemistry, specifically voltammetry in this case, and “supporting” means such as mercury (Hg) and bismuth (Bi), have been used, while in recent years nanoparticles (NPs) have been used.
For many years, mercury was used as the material for the modification of working electrodes used in trace element detection due to its high sensitivity, reproducibility, and renewability. Mercury-based electrodes have been widely used for several decades in the detection of heavy metal ions using electrochemical techniques, thanks to their large cathodic window, reproducibility, sensitivity, and low background [15][16][17].
However, mercury is a heavy metal that has become increasingly unpopular for use, due to its intense toxicity and bioaccumulation in many species [17][18][19][20][21]. The danger associated with mercury-based electrodes is in their use, handling, and disposal due to their toxicity. In addition, it has been repeatedly shown that the absorption of Hg harms human health, as it can lead to many serious problems, such as neurological consequences (as it penetrates the blood–brain barrier), memory loss, insomnia, neuromuscular changes, and various effects on the renal system.
Over the years, various materials, such as noble metals (Pt, Pd, Au, and Ag) and other metals (Ru, Cu, Co, Ni, Pb, Sb, Bi, and Al), have been proposed and tested to replace mercury in the electrode modification process [22][23]. Although it is a heavy metal ion, the metal that prevailed is bismuth, due to its low toxicity [17][18][20][24][25], as well as its similar electroanalytical properties to mercury, such as a wide potential window, simple preparation, partial insensitivity to dissolved oxygen, and ability to form alloys with different metals [17][18][19][26][27]. Bismuth is also environmentally friendly [28] and has mostly succeeded in replacing mercury, as the latter is quite toxic. Therefore, around 2000, electrodes modified with bismuth were introduced that were constructed from a layer of bismuth deposited on a suitable substrate [18][29] and represented a very attractive alternative solution to the commonly used mercury electrodes [24]. Many different materials have been used as electrode substrates, such as carbon, glassy carbon, carbon fibers, carbon paste, graphite, wax-impregnated graphite, gold, and platinum [15][16][17][18][19][29][30][31][32]. The current peaks obtained in the voltammograms when using bismuth electrodes tend to be sharp and well-defined [24], allowing for the reliable, fast, and economical recognition and quantification of metals present in the sample. Due to its characteristics, bismuth can be used as a film in electrodes, such as in glassy carbon electrodes (GCEs), and then can be used in various sample analyses (environmental, biological, etc.).
Electrochemical detection focuses on developing new electrode materials with better properties compared to commercial electrodes. The performance of the voltammetric determination of heavy metal ions depends heavily on the properties of the working electrode. Working electrodes can be modified with different materials to allow for specific recognitions and concentrations of metal ions. Additionally, it has been reported that the deposition of metal membranes on nanocarbon materials can further improve the electrochemically active surface [33][34]. Among these, bismuth (Bi) film not only has low toxicity, high sensitivity, and a strong response signal, but it can also form binary or multiple-component alloys with heavy metal ions, which is a process that is analogical to the amalgamation with mercury, also enhancing the efficiency of the deposition at the surface (of either elemental mercury or bismuth).

3.2. Inorganic Materials as Electrode Modifiers for HM Detection

Another method for the detection of HMs is the surface modification of electrodes with inorganic materials, as this method can improve the sensitivity, stability, and selectivity of the electrode for HM ion detection. It has been found that inorganic nanoparticles modified on the electrode surface can adsorb more HM ions, thereby enhancing the specific surface area of the working electrode. They can also play a catalytic role in the deposition of HM ions on the electrode surface, thereby improving the electrochemical detection capability. However, a disadvantage of this is that inorganic nanoparticles are relatively expensive and challenging to produce on a large scale [35].
Some of the inorganic materials that have been successfully used for electrode modification and HM detection are metal and metal oxide nanoparticles, such as noble metal nanoparticles (e.g., AuNPs), bimetallic, and metal oxide nanoparticles. They have been employed to modify the electrode surface due to their favorable optical and electrical properties. They can be combined with other chemicals and biomolecules to construct various highly specialized electrochemical detection devices for HM ions. An example of this is the electrodeposition of AuNPs and Bi film on a screen-printed carbon electrode (SPCE) to obtain Bi/AuNP/SPCE, where the synergistic effect of the Bi membrane and AuNPs increased the surface area of the electrode, with good electrical conductivity. Using the differential-pulse anodic stripping voltammetry (DPASV) method, with detection limits of 50 ng/L (Zn2+), 20 ng/L (Pb2+), and 30 ng/L (Cu2+), the successful simultaneous detection of Zn2+, Pb2+, and Cu2+ in lake water was achieved [36].

3.3. Nanoparticles as Electrode Modifiers for HM Detection

Pollution from heavy metal ions is a significant issue, and, currently, the addition of NPs with electrochemical sensors has developed a significant and innovative analytical technique for the detection of heavy metal ions (HMs), as nanomaterials have been shown to offer remarkable properties as detection platforms. Nanomaterials could be considered as a promising tool for the scientific community to detect toxic heavy metal ions, due to their sensitivity and selectivity, fast response time, high sensitivity, and reproducibility, as well as the possibility of the simultaneous detection of HMs with very low detection and quantification limits [37]. Over time, many different modification techniques have been explored. Recent studies have shown that NP-modified electrodes can be very useful in electrochemical sensor technology if they are designed and constructed correctly [38]. Their surface area-to-volume ratio is high, and, in combination with the characteristics exhibited by NPs, such as those based on metals and metal oxides, polymers, and carbon, they can be beneficial for removing HMs from the environment [39].
Nanotechnology and nanoparticles (NPs) have transformed science and technology. Today, this field has advanced to such a degree that it allows the development of the production of nanoparticles using various physical, chemical, and even biological techniques. Among these techniques, the one that stands out and is preferred more in the industrial sector to produce nanoparticles is the biological method, due to its ease, the need for mild operating conditions, and the production of more environmentally friendly products and waste [40]. Most industries today exploit the chemical properties of nanoparticles, as they are unique compared to their counterparts in volume, which is determined by their size, shape, composition, and surface chemistry and can be adapted to various applications. Some of the most important chemical properties of nanoparticles are as follows [41]:
  • The high surface-to-volume ratio: NPs have a high surface-to-volume ratio, which makes them extremely reactive. This property can be used in various applications, such as catalysis and sensors.
  • Surface energy: The surface energy of NPs is high due to the presence of unsaturated surface atoms. This property affects the agglomeration, stability, and dispersion of NPs.
  • Electromagnetic properties: NPs can exhibit unique electromagnetic properties due to their size, shape, and composition. For example, gold NPs exhibit localized surface plasmon resonance, which can be used for sensing and imaging applications.
  • Surface chemistry: The surface chemistry of NPs can be tailored by modifying their surface functional groups, which can change their surface reactivity and chemical properties.
  • Oxidation-reduction properties: NPs can exhibit unique oxidation-reduction properties, due to their small size and large surface area. This can be utilized in various applications, including energy storage and conversion.
The synthesis of NPs using the bio reduction method has drawn scientific interest, as it has managed to overcome the drawbacks of using conventional chemical methods, such as thermodynamic stability, monodispersity, and particle formation [42]. The biogenic synthesis of NPs presents some advantages over chemical synthesis, such as the absence of the need for high temperatures, toxic chemicals, pressure, energy, radiation processes, laser ablation, and ultraviolet and ultrasonic fields, as well as the fact that the biomolecules required for NP synthesis are abundant and easily accessible, such as the availability in marine sources [43]. On the other hand, NPs produced from the noble metal group, such as gold (Au) and silver (Ag), exhibit interesting chemical and electromagnetic properties, such as chemical stability, conductivity, and good optical properties, due to their ability to interact with electromagnetic radiation [44][45].
NPs, due to their large surface area, are excellent electron mediators. Therefore, NPs suitable electrode surface modifier the improvement of the analytical characteristics of electrodes. For instance, silicon (Si)- and carbon-based nanoparticles and have been successfully used as electrode modifiers. By using this kind of modification, the behavior of these NPs improves, and the constructed electrochemical sensors can measure the analytes in nanoscale. Thus, the use of NPs as electrode surface modifiers increases the active surface area, catalytic activity, conductivity and makes the response of the used electrodes more rapid. These redesigned sensors can also exhibit size-dependent characteristics and can have better functional units [46]. Currently, the addition of these NPs to electrochemical sensors has developed a significant analytical technique for detecting heavy metal ions (HMs).
Gold is excellent for the fabrication of nanomaterials because gold nanoparticles (AuNPs) are characterized as excellent templates for the development of cutting-edge chemical and biological sensors, thanks to their unique physical and chemical properties. AuNPs can be easily produced and made very stable [47]. They also have exceptional optical-electronic properties, and, with the right linkers, they offer a high surface-to-volume ratio and great biocompatibility. Furthermore, AuNPs can provide a versatile substrate for attaching a wide variety of chemical or biological moieties, allowing the selective capture and detection of small molecules and biological targets. It must be stressed that, when HMs are analyzed, particularly mercury and lead, different materials are incorporated with AuNPs, while the same materials can also be used for the detection of Cd (II) and Pb(II) [48]. According to the composition conditions, gold nanoparticles (AuNPs) appear in a variety of shapes, such as spherical, which is the most common shape used in the electrochemical detection of heavy metals, with sizes ranging from 4 to 298 nm. Different composition shapes of AuNPs were tested for the detection of Pb (II). According to the literature, for Pb (II) detection, Dutta et al. synthesized nano-stars, which were prepared by mixing an auric chloride solution with 4-(2-hydroxyethyl)-l-piperazineethanesulfonic acid (HEPES) without stirring or agitation, and boiling the nano-stars for 5 min resulted in spherical nanoparticles. The same process was later used for the synthesis of gold nano-stars for Cd (II) detection [49]. To evaluate the concentrations of cadmium in different water sources (such as lake, sewage, tap water, and groundwater), a glassy carbon electrode was modified with AuNPs, l-cysteine, and reduced graphene oxide, and, by applying square-wave voltammetry, the best performance for Cd (II) detection was achieved. The same electrode also exhibited the highest reported sensitivity for Pb (II) detection [50].
Other NPs, such as superparamagnetic Fe3O4@EDTA, have been developed for the simultaneous adsorption and removal of Zn(II), Pb(II), and Cd(II) from different environmental water and soil samples. For this method, which has been proven to be simple, fast, effective, sensitive with high removal yields, reproducible, and repeatable, electrodes modified with polymeric EDTA were used for the detection of various metallic ions at different pH values [51]. Furthermore, after the adsorption process, easy separation is provided only by the application of an external magnetic field. In conclusion, this method is an effective and less time-consuming technique for the simultaneous adsorption and removal of heavy metal ion targets in different environmental water and soil samples [52]
Another category of NPs, AgNPs, which are used as electrode modifiers for the detection of heavy metal ions such as Cd(II) and Cu(II), have received significant attention due to some characteristics they exhibit, such as good electrical conductivity, high specific area, and an easy synthesis method [53][54]. It is supported by literature that, when the electrochemical technique is combined with nanomaterials, a very fast and efficient detection of heavy metal ions is obtained.
Summary of NPs-assisted detection of heavy metals ions is shown in Table 1.
Table 1. Summary of NP-assisted detection of heavy metal ions.
As can be seen, in addition to their electrocatalytic properties, these nanomaterial-based electrodes have the advantages of low cost, high sensitivity, and convenient functionality, making them highly promising for practical applications in heavy metal detection. However, further research is required in order to overcome potential issues and improve the stability and selectivity of these sensors.

3.4. Ion-Imprinted Polymers as Electrode Modifiers for HM Detection

The determination of heavy metals in water and food intended for human consumption has led to an alternative method based on the modification of a working electrode with ion-imprinted polymers (IIPs). By using IIPs immobilized on a carbon paste electrode (CPE), the determination of both cadmium and lead ions can be achieved. The base of an IIP-modified CPE (CPEs-IIP) is usually formed by modifying a binary mixture, to which ingredients such as imprinted polymers are added or incorporated. The quantity can range from 10% to 30% of the composite mass, allowing for several recognition sites on the electrode surface, which correlates with the current intensity received. Additionally, IIPs can also be immobilized on a glassy carbon electrode (GCE) surface to detect cadmium, lead, cadmium, and pseudo silver ions in drinking water and food samples. In recent years, there has been significant interest in the CPEs-IIP technique, as it represents a simple and cost-effective method for the detection and analysis of heavy metal ions (Cd2+ and Pb2+) in both drinking water and food. This makes it a highly promising technique for improving everyday life [62].

3.5. Speciation of HMs

The speciation of chemical heavy metals is an important factor that alters the toxicity of heavy metals. The potential mobility, bioavailability, and environmental behavior of heavy metals depend largely on their specific chemical forms and existing conditions. Depending on the existing environmental conditions, various types of metal can exist as metals and metalloids, which can be present as hydroxides, organometallic compounds, biomolecules, and other forms, such as inorganic ions in the form of cations (e.g., Cd(II), Pb(II)), or anions (e.g., As(III) and As(V)). The determination of these molecular species is called metal speciation. Considering the toxicity and the bioavailability of heavy metals, their speciation is often more significant than determining total HMs. However, there are few publications that address the analysis and determination of different forms of a specific heavy metal, despite there being significant progress in the development of fluorescence detectors for detecting the total concentration of HMs [60].
Most of the current notification analysis methods for HMs combine separation techniques, such as gas chromatography, high-performance liquid chromatography, and so on, as well as detection techniques such as atomic absorption spectroscopy, atomic emission spectroscopy, and inductively coupled plasma mass spectrometry [63]. Although these methods have many advantages, a significant limitation is their requirements for a series of complex pre-processing steps, which are time-consuming and laborious. Electrochemical techniques have been characterized as the easiest, fastest, and most economical for species analysis. Van den Berg implemented the speciation analysis of different metallic elements such as iron, molybdenum, copper, and so on, using electrochemical methods [64][65][66]. ASV has been successfully adopted as the most common method for the analysis of metallic species, especially for unstable species [63]. Although voltammetric methods yield excellent results for the analysis of the speciation of many metal ions, there are certain issues and limitations that need to be addressed promptly, such as the relationship between bioavailability and metal speciation, which remains ambiguous and requires further study [67].

References

  1. Aragay, G.; Pons, J.; Merkoçi, A. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chem. Rev. 2011, 111, 3433–3458.
  2. Wang, C.; Li, W.; Guo, M.; Ji, J. Ecological risk assessment on heavy metals ions in soils: Use of soil diffuse reflectance mid-infrared Fourier-transform spectroscopy. Sci. Rep. 2017, 7, 40709.
  3. Li, M.; Gou, H.; Al-Ogaidi, I.; Wu, N. Nanostructured sensors for detection of heavy metals ions: A review. ACS Sustain. Chem. Eng. 2013, 1, 713–723.
  4. Guascito, M.R.; Malitesta, C.; Mazzotta, E.; Turco, A. Inhibitive determination of metal ions by an amperometric glucose oxidase biosensor: Study of the effect of hydrogen peroxide decomposition. Sens. Actuators B Chem. 2008, 131, 394–402.
  5. Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy metals ions and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42.
  6. Xu, M.; Hadi, P.; Chen, G.; McKay, G. Removal of cadmium ions from wastewater using innovative electronic waste-derived material. J. Hazard. Mater. 2014, 273, 118–123.
  7. Yu, S.; Pang, H.; Huang, S.; Tang, H.; Wang, S.; Qiu, M.; Chen, Z.; Yang, H.; Song, G.; Fu, D. Recent advances in metal-organic framework membranes for water treatment: A review. Sci. Total Environ. 2021, 800, 149662.
  8. Koelmel, J.; Amarasiriwardena, D. Imaging of metal bioaccumulation in Hay-scented fern (Dennstaedtia punctilobula) rhizomes growing on contaminated soils by laser ablation ICP-MS. Environ. Pollut. 2012, 168, 62–70.
  9. Massadeh, A.M.; Alomary, A.A.; Mir, S.; Momani, F.A.; Haddad, H.I.; Hadad, Y.A. Analysis of Zn, Cd, As, Cu, Pb, and Fe in snails as bioindicators and soil samples near traffic road by ICP-OES. Environ. Sci. Pollut. Res. 2016, 23, 13424–13431.
  10. Rao, K.S.; Balaji, T.; Rao, T.P.; Babu, Y.; Naidu, G.R.K. Determination of iron, cobalt, nickel, manganese, zinc, copper, cadmium and lead in human hair by inductively coupled plasma-atomic emission spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 1333–1338.
  11. Daşbaşı, T.; Saçmacı, S.; Çankaya, N.; Soykan, C. A new synthesis, characterization and application chelating resin for determination of some trace metals in honey samples by FAAS. Food Chem. 2016, 203, 283–291.
  12. Siraj, K.; Kitte, S.A. Analysis of copper, zinc and lead using atomic absorption spectrophotometer in ground water of Jimma town of Southwestern Ethiopia. Int. J. Chem. Anal. Sci. 2013, 4, 201–204.
  13. Mourya, A.; Mazumdar, B.; Sinha, S.K. Determination and quantification of heavy metal ion be electrochemical method. J. Environ. Chem. Eng. 2019, 7, 103459.
  14. Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 2018, 178, 324–338.
  15. Domingos, R.F.; Huidobro, C.; Companys, E.; Galceran, J.; Puy, J.; Pinheiro, J. Comparison of AGNES (absence of gradients and Nernstian equilibrium stripping) and SSCP (scanned stripping chronopotentiometry) for trace metal speciation analysis. J. Electroanal. Chem. 2008, 617, 141–148.
  16. Aguilar, D.; Galceran, J.; Companys, E.; Puy, J.; Parat, C.; Authier, L.; Potin-Gautier, M. Non-purged voltammetry explored with AGNES. Phys. Chem. Chem. Phys. 2013, 15, 17510.
  17. Cao, L.; Jia, J. Sensitive determination of Cd and Pb by differential pulse stripping voltammetry with in situ bismuth-modified zeolite doped carbon paste electrodes. Electrochim. Acta 2008, 53, 2177.
  18. Kokkinos, C.; Raptis, I. A Economou and T Speliotis. Disposable micro-fabricated electrochemical bismuth sensors for the determination of Tl(I) by stripping voltammetry. Procedia Chem. 2009, 1, 1039.
  19. Economou, A. Bismuth-film electrodes: Recent developments and potentialities for electroanalysis. Trends Anal. Chem. 2005, 24, 334.
  20. Kokkinos, C.; Economou, A. Novel disposable bismuth-sputtered electrodes for the determination of trace metals by stripping voltammetry. Electrochem. Commun. 2007, 9, 2795.
  21. Hutton, E.; Ogorevc, B.; Hočevar, S.; Weldon, F.; Smyth, M.R.; Wang, J. An introduction to bismuth film electrode for use in cathodic electrochemical detection. Electrochem. Commun. 2001, 3, 707.
  22. Arduini, F.; Quintana, J. Bismuth-modified electrodes for lead detection. Trends Anal. Chem. 2010, 2–11, 1295.
  23. Pauliukaite, R.; Hocevar, S.; Ogorevc, B.; Wang, J. Characterization and Applications of a Bismuth Bulk Electrode. Electroanalysis 2004, 16, 719.
  24. Wang, J. Stripping Analysis at Bismuth Electrodes: A Review. Electroanalysis 2005, 17, 1341–1346.
  25. Xu, H.; Zeng, L. A Nafion-coated bismuth film electrode for the determination of heavy metals in vegetable using differential pulse anodic stripping voltammetry: An alternative to mercury-based electrodes. Food Chem. 2008, 109, 834.
  26. Hočevar, S.; Švancara, I.; Vytřas, K.; Ogorevc, B. Novel electrode for electrochemical stripping analysis based on carbon paste modified with bismuth powder. Electrochem. Acta 2005, 51, 706.
  27. Baldrianova, L.; Švancara, I.; Vlcek, M.; Economou, A.; Sotiropoulos, S. Effect of Bi(III) concentration on the stripping voltammetric response of in situ bismuth-coated carbon paste and gold electrodes. Electrochim. Acta 2006, 52, 481.
  28. Sam, K. The Disappearing Spoon (and Other True Tales of Madness, Love, and the History of the World from the Periodic Table of Elements); Back Bay Books: New York, NY, USA; Boston, MA, USA, 2011; pp. 158–160.
  29. Kokinos, C.; Economous, A. Lithographically fabricated disposable bismuth-film electrodes for the trace determination of Pb(II) and Cd(II) by anodic stripping voltammetry. Electrochim. Acta 2008, 53, 294.
  30. Economou, A. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements. Sensors 2018, 18, 1032.
  31. Aragay, G.; Pons, J.; Merkoçi, A. Enhanced electrochemical detection of heavy metals ions at heated graphite nanoparticle-based screen-printed electrodes. J. Mater. Chem. 2011, 21, 4326–4331.
  32. Mc Eleney, C.; Alves, S.; Mc Crudden, D. Novel determination of Cd and Zn in soil extract by sequential application of bismuth and gallium thin films at a modified screen-printed carbon electrode. Anal. Chim. Acta 2020, 1137, 94.
  33. Armenta, S.; Garrigues, S.; de la Guardia, M. Green Analytical Chemistry. Trends Anal. Chem. 2008, 27, 497.
  34. Yıldız, C.; Eskiköy Bayraktepe, D.; Yazan, Z. Highly sensitive direct simultaneous determination of zinc(II), cadmium(II), lead(II), and copper(II) based on in-situ-bismuth and mercury thin-film plated screen-printed carbon electrode. Mon. Chem. Chem. Mon. 2021, 152, 1527–1537.
  35. Wu, Q.; Bi, H.-M.; Han, X.-J. Research Progress of Electrochemical Detection of Heavy Metal Ions. Chin. J. Anal. Chem. 2021, 49, 330–340.
  36. Lu, Z.; Zhang, J.; Dai, W.; Lin, X.; Ye, J.; Ye, J. A screen-printed carbon electrode modified with a bismuth film and gold nanoparticles for simultaneous stripping voltammetric determination of Zn(II), Pb(II) and Cu(II). Microchim. Acta 2017, 184, 4731–4740.
  37. Okpara, E.C.; Fayemi, O.E.; Wojuola, O.B.; Onwudiwe, D.C.; Ebenso, E.E. Electrochemical detection of selected heavy metals in water: A case study of African experiences. RSC Adv. 2022, 12, 26319–26361.
  38. Hassan, M.H.; Khan, R.; Andreescu, S. Advances in Electrochemical Detection Methods for Measuring Contaminants of Emerging Concerns. Electrochem. Sci. Adv. 2021, 2, e2100184.
  39. Ali, Z.; Ullah, R.; Tuzen, M.; Ullah, S.; Rahim, A.; Saleh, T.A. Colorimetric sensing of heavy metals ions on metal doped metal oxide nanocomposites: A review. Trends Environ. Anal. Chem. 2023, 37, e00187.
  40. Ibraheem, I.B.M.; Abd-Elaziz, B.E.E.; Saad, W.F.; Fathy, W.A. Green biosynthesis of silver nanoparticles using marine Red Algae Acanthophora specifera and its antimicrobial activity. J. Nanomed. Nanotechnol. 2016, 7, 409.
  41. Joudeh, N.; Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnol. 2022, 20, 262.
  42. Li, S.; Niu, Y.; Chen, H.; He, P. Complete genome sequence of an Arctic Ocean bacterium Shewanella sp. Arc9-LZ with capacity of synthesizing silver nanoparticles in darkness. Mar. Genom. 2021, 56, 100808.
  43. Abdel-Raoof, A.M.; El-Shal, M.A.; Said, R.A.M.; Abostate, M.H.; Morshedy, S.; Emara, M.S. Versatile sensor modified with gold nanoparticles carbon paste electrode for anodic stripping determination of brexpiprazole: A voltammetric study. J. Electrochem. Soc. 2019, 166, B948.
  44. Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Chen, M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour. Technol. 2016, 214, 836–851.
  45. Panahi, A.; Levendis, Y.A.; Vorobiev, N.; Schiemann, M. Direct observations on the combustion characteristics of Miscanthus and Beechwood biomass including fusion and spherodization. Fuel Process. Technol. 2017, 166, 41–49.
  46. Huang, W.; Zhang, Y.; Li, Y.; Zeng, T.; Wan, Q.; Yang, N. Morphology-controlled electrochemical sensing of environmental Cd(2+) and Pb(2+) ions on expanded graphite supported CeO2 nanomaterials. Anal. Chim. Acta 2020, 1126, 63–71.
  47. Adeniji, T.M.; Stine, K.J. Nanostructure Modified Electrodes for Electrochemical Detection of Contaminants of Emerging Concern. Coatings 2023, 13, 381.
  48. Sawan, S.; Maalouf, R.; Errachid, A.; Jaffrezic-Renault, N. Metal and metal oxide nanoparticles in the voltammetric detection of heavy metals ions: A review. Trends Anal. Chem. 2020, 131, 116014.
  49. Lu, D.; Sullivan, C.; Brack, E.M.; Drew, C.P.; Kurup, P. Simultaneous voltammetric detection of cadmium(II), arsenic(III), and selenium(IV) using gold nanostar–modified screen-printed carbon electrodes and modified Britton-Robinson buffer. Anal. Bioanal. Chem. Anal. Bioanal. Chem. 2020, 412, 4113–4125.
  50. Jelić, D.; Zeljković, S.; Škundrić, B.; Mentus, S. Thermogravimetric study of the reduction of CuO–WO3 oxide mixtures in the entire range of molar ratios. J. Therm. Anal. Calorim. 2018, 132, 77–90.
  51. Rahman, A.; Park, D.S.; Won, M.-S.; Park, S.-M.; Shim, Y.-B. Selective electrochemical analysis of various metal ions at an EDTA bonded conducting polymer modified electrode. Electroanalysis 2004, 16, 1366–1370.
  52. Ghasemi, E.; Heydari, A.; Sillanpää, M. Superparamagnetic Fe3O4@EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag(I), Hg(II), Mn(II), Zn(II), Pb(II) and Cd(II) from water and soil environmental samples. Microchem. J. 2017, 131, 51–56.
  53. Hassan, K.M.; Elhaddad, G.M.; AbdelAzzem, M. Voltammetric determination of cadmium(II), lead(II) and copper(II) with a glassy carbon electrode modified with silver nanoparticles deposited on poly(1,8-diaminonaphthalene). Microchim. Acta 2019, 186, 440.
  54. Zhang, K.; Zhang, N.; Zhang, L.; Xu, J.; Wang, H.; Wang, C.; Geng, T. Amperometric sensing of hydrogen peroxide using a glassy cabon electode modified with silver nanoparticles on poly(alizarin yellow R). Microchim. Acta 2011, 173, 135–141.
  55. Lahari, S.A.; Amreen, K.; Dubey, S.K.; Ponnalagu, R.N.; Goel, S. Optimized porous carbon-fibre microelectrode for multiplexed, highly reproducible and repeatable detection of heavy metals ions in real water samples. Environ. Res. 2023, 220, 115192.
  56. Üstündağ, Z.; Solak, A.O. EDTA modified glassy carbon electrode: Preparation and characterization. Electrochim. Acta 2009, 54, 6426–6432.
  57. Rahman, M.A.; Won, M.S.; Shim, Y.B. Characterization of an EDTA bonded conducting polymer modified electrode: Its application for the simultaneous determination of heavy metal ions. Anal. Chem. 2003, 75, 1123–1129.
  58. Antunović, V.; Ilić, M.; Baošić, R.; Jelić, D.; Lolić, A. Synthesis of MnCo2O4 nanoparticles as modifiers for simultaneous determination of Pb(II) and Cd(II). Public Libr. Sci. 2019, 14, e0210904.
  59. Lee, P.M.; Chen, Z.; Li, L.; Liu, E. Reduced graphene oxide decorated with tin nanoparticles through electrodeposition for simultaneous determination of trace heavy metals ions. Electrochim. Acta 2015, 174, 207–214.
  60. Cadevall, M.; Ros, J.; Merkoc, A. Bismuth nanoparticles integrationinto heavy metal electrochemical strippingsensor. Electrophoresis 2015, 36, 1872–1879.
  61. Zhang, T.; Jin, H.; Fang, Y.; Guan, J.; Ma, S.; Pan, Y.; Zhang, M.; Zhu, H.; Liu, X.; Du, M. Detection of trace Cd2+, Pb2+ and Cu2+ ions via porous activated carbon supported palladium nanoparticles modified electrodes using SWASV. Mater. Chem. Phys. 2019, 225, 433–442.
  62. Rebolledo-Perales, L.E.; Romero, G.A.; Ibarra-Ortega, I.S.; Galán-Vidal, C.A.; Pérez-Silva, I. Review-Electrochemical Determination of Heavy Metals in Food and Drinking Water Using Electrodes Modified with Ion-Imprinted Polymers. J. Electrochem. Soc. 2021, 168, 067516.
  63. Han, H.; Pan, D.; Zhang, S.; Wang, C.; Hu, X.; Wang, Y.; Pan, F. Simultaneous Speciation Analysis of Trace Heavy metals ions (Cu, Pb, Cd and Zn) in Seawater from Sishili Bay, North Yellow Sea, China. Bull. Environ. Contam. Toxicol. 2018, 101, 486–493.
  64. Bi, Z.; Salaün, P.; Berg, C.M.v.D. The speciation of lead in seawater by pseudopolarography using a vibrating silver amalgam microwire electrode. Mar. Chem. 2013, 151, 1–12.
  65. van den Berg, C.M. Chemical speciation of iron in seawater by cathodic stripping voltammetry with dihydroxynaphthalene. Anal. Chem. 2006, 78, 156–163.
  66. Whitby, H.; van den Berg, C.M.G. Evidence for copper-binding humic substances in seawater. Mar. Chem. 2015, 173, 282–290.
  67. Han, H.; Pan, D. Voltammetric methods for speciation analysis of trace metals in natural waters. Trends Environ. Anal. Chem. 2021, 29, e00119.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , ,
View Times: 267
Revisions: 2 times (View History)
Update Date: 12 Jul 2023
1000/1000
ScholarVision Creations