Norrie Disease
Edit

Norrie disease is an inherited eye disorder that leads to blindness in male infants at birth or soon after birth.

genetic conditions

1. Introduction

It causes abnormal development of the retina, the layer of sensory cells that detect light and color, with masses of immature retinal cells accumulating at the back of the eye. As a result, the pupils appear white when light is shone on them, a sign called leukocoria. The irises (colored portions of the eyes) or the entire eyeballs may shrink and deteriorate during the first months of life, and cataracts (cloudiness in the lens of the eye) may eventually develop.

About 30 percent of individuals with Norrie disease develop progressive hearing loss, and 30 to 50 percent of people affected experience developmental delays in motor skills such as sitting up and walking. Other problems may include mild to moderate intellectual disability, often with psychosis, and abnormalities that can affect circulation, breathing, digestion, excretion, or reproduction.

2. Frequency

Norrie disease is a rare disorder; more than 400 cases have been reported in the scientific literature.

3. Causes

Mutations in the NDP gene cause Norrie disease. The NDP gene provides instructions for making a protein called norrin. Norrin participates in the Wnt cascade, a sequence of steps that affect the way cells and tissues develop. In particular, norrin seems to play a critical role in the specialization of retinal cells for their unique sensory capabilities. It is also involved in the establishment of a blood supply to tissues of the retina and the inner ear, and the development of other body systems.

In order to initiate the Wnt cascade, norrin must bind (attach) to another protein called frizzled-4. Mutations in the norrin protein interfere with its ability to bind to frizzled-4, resulting in the signs and symptoms of Norrie disease.

4. Inheritance

This condition is inherited in an X-linked recessive pattern. A condition is considered X-linked if the mutated gene that causes the disorder is located on the X chromosome, one of the two sex chromosomes. In males (who have only one X chromosome), one altered copy of the gene in each cell is sufficient to cause the condition. In females (who have two X chromosomes), a mutation must be present in both copies of the gene to cause the disorder. Males are affected by X-linked recessive disorders much more frequently than females. A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons.

In X-linked recessive inheritance, a female with one altered copy of the gene in each cell is called a carrier. She can pass on the gene, but generally does not experience signs and symptoms of the disorder.

In rare cases, however, carrier females have shown some retinal abnormalities or mild hearing loss associated with Norrie disease. Females with one NDP gene mutation who show features of Norrie disease do so because of a process called X-inactivation. Early in embryonic development in females, one of the two X chromosomes is permanently turned off (inactivated) in somatic cells (cells other than egg and sperm cells). X-inactivation ensures that females, like males, have only one active copy of the X chromosome in each body cell. Usually X-inactivation occurs randomly, so that each X chromosome is active in about half the body's cells. This means that in females with an NDP gene mutation, the X chromosome with an NDP gene mutation is active in about half of cells, and the X chromosome with the normal NDP gene is active in about half. Because X-inactivation leads to some cells that produce functional norrin protein and some cells that do not, females can have some features of Norrie disease.

5. Other Names for This Condition

  • Anderson-Warburg syndrome
  • atrophia bulborum hereditaria
  • congenital progressive oculo-acoustico-cerebral degeneration
  • Episkopi blindness
  • fetal iritis syndrome
  • Norrie syndrome
  • Norrie's disease
  • Norrie-Warburg syndrome
  • oligophrenia microphthalmus
  • pseudoglioma congenita
  • Whitnall-Norman syndrome

References

  1. Braunger BM, Tamm ER. The different functions of Norrin. Adv Exp Med Biol.2012;723:679-83. doi: 10.1007/978-1-4614-0631-0_86. Review.
  2. Michaelides M, Luthert PJ, Cooling R, Firth H, Moore AT. Norrie disease andperipheral venous insufficiency. Br J Ophthalmol. 2004 Nov;88(11):1475. Erratumin: Br J Ophthalmol. 2005 May;89(5):645.
  3. National Organization for Rare Disorders (NORD)
  4. Rehm HL, Zhang DS, Brown MC, Burgess B, Halpin C, Berger W, Morton CC, CoreyDP, Chen ZY. Vascular defects and sensorineural deafness in a mouse model ofNorrie disease. J Neurosci. 2002 Jun 1;22(11):4286-92.
  5. Rodríguez-Muñoz A, García-García G, Menor F, Millán JM, Tomás-Vila M, Jaijo T.The importance of biochemical and genetic findings in the diagnosis of atypicalNorrie disease. Clin Chem Lab Med. 2018 Jan 26;56(2):229-235. doi:10.1515/cclm-2017-0226.
  6. Sims KB. NDP-Related Retinopathies – RETIRED CHAPTER, FOR HISTORICAL REFERENCEONLY. 1999 Jul 30 [updated 2014 Sep 18]. In: Adam MP, Ardinger HH, Pagon RA,Wallace SE, Bean LJH, Stephens K, Amemiya A, editors. GeneReviews® [Internet].Seattle (WA): University of Washington, Seattle; 1993-2020. Available fromhttp://www.ncbi.nlm.nih.gov/books/NBK1331/
  7. Smith SE, Mullen TE, Graham D, Sims KB, Rehm HL. Norrie disease: extraocularclinical manifestations in 56 patients. Am J Med Genet A. 2012Aug;158A(8):1909-17. doi: 10.1002/ajmg.a.35469.
  8. Wang Z, Liu CH, Huang S, Chen J. Wnt Signaling in vascular eye diseases. Prog Retin Eye Res. 2019 May;70:110-133. doi: 10.1016/j.preteyeres.2018.11.008.
  9. Xu Q, Wang Y, Dabdoub A, Smallwood PM, Williams J, Woods C, Kelley MW, JiangL, Tasman W, Zhang K, Nathans J. Vascular development in the retina and innerear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair.Cell. 2004 Mar 19;116(6):883-95.
  10. Yang H, Li S, Xiao X, Guo X, Zhang Q. Screening for NDP mutations in 44unrelated patients with familial exudative vitreoretinopathy or Norrie disease.Curr Eye Res. 2012 Aug;37(8):726-9. doi: 10.3109/02713683.2012.675615.
More
Related Content
Background and Objectives: Wolfram syndrome type 1 (OMIM# 222300; ORPHAcode 3463) is an extremely rare autosomal recessive syndrome with a 25% recurrence risk in children. It is characterized by the presence of juvenile-onset diabetes mellitus (DM), progressive optic atrophy (OA), diabetes insipidus (DI), and sensorineural deafness (D), often referred to by the acronym DIDMOAD. It is a severe neurodegenerative disease with a life expectancy of 39 years, with death occurring due to cerebral atrophy. For a positive diagnosis, the presence of diabetes mellitus and optic nerve atrophy is sufficient. The disease occurs because of pathogenic variants in the WFS1 gene. The aim of this article is to present a case report of Wolfram Syndrome Type I, alongside a review of genetic variants, clinical manifestations, diagnosis, therapy, and long-term management. Emphasizing the importance of early diagnosis and a multidisciplinary approach, the study aims to enhance understanding and improve outcomes for patients with this complex syndrome. Materials and Methods: A case of a 28-year-old patient diagnosed with DM at the age of 6 and with progressive optic atrophy at 26 years old is presented. Molecular diagnosis revealed the presence of a heterozygous nonsense variant WFS1 c.1943G>A (p.Trp648*), and a heterozygous missense variant WFS1 c.1675G>C (p.Ala559Pro). Results: The molecular diagnosis of the patient confirmed the presence of a heterozygous nonsense variant and a heterozygous missense variant in the WFS1 gene, correlating with the clinical presentation of Wolfram syndrome type 1. Both allelic variants found in our patient have been previously described in other patients, whilst this combination has not been described before. Conclusions: This case report and review underscores the critical role of early recognition and diagnosis in Wolfram syndrome, facilitated by genetic testing. By identifying pathogenic variants in the WFS1 gene, genetic testing not only confirms diagnosis but also guides clinical management and informs genetic counseling for affected families. Timely intervention based on genetic insights can potentially reduce the progressive multisystem manifestations of the syndrome, thereby improving the quality of life and outcomes for patients.
Keywords: Wolfram syndrome type 1; optic atrophy; insulin-requiring diabetes mellitus; sensorineural deafness
Artificial intelligence (AI) and deep learning (DL)-based systems have gained wide interest in macular disorders, including diabetic macular edema (DME). This paper aims to validate an AI algorithm for identifying and quantifying different major optical coherence tomography (OCT) biomarkers in DME eyes by comparing the algorithm to human expert manual examination. Intraretinal (IRF) and subretinal fluid (SRF) detection and volumes, external limiting-membrane (ELM) and ellipsoid zone (EZ) integrity, and hyperreflective retina foci (HRF) quantification were analyzed. Three-hundred three DME eyes were included. The mean central subfield thickness was 386.5 ± 130.2 µm. IRF was present in all eyes and confirmed by AI software. The agreement (kappa value) (95% confidence interval) for SRF presence and ELM and EZ interruption were 0.831 (0.738–0.924), 0.934 (0.886–0.982), and 0.936 (0.894–0.977), respectively. The accuracy of the automatic quantification of IRF, SRF, ELM, and EZ ranged between 94.7% and 95.7%, while accuracy of quality parameters ranged between 99.0% (OCT layer segmentation) and 100.0% (fovea centering). The Intraclass Correlation Coefficient between clinical and automated HRF count was excellent (0.97). This AI algorithm provides a reliable and reproducible assessment of the most relevant OCT biomarkers in DME. It may allow clinicians to routinely identify and quantify these parameters, offering an objective way of diagnosing and following DME eyes.
Keywords: diabetic macular edema; artificial intelligence; biomarker; spectral domain OCT; outcomes; subretinal fluid; intraretinal fluid; hyperreflective retinal foci; external limiting membrane; ellipsoid zone
Learn the signs and symptoms of skin cancer in the ear, from unusual growths to persistent irritation. Understand what to watch for and when to seek help.
Keywords: signs and symptoms of skin cancer in the ear
Clinical features of Morgellons disease. A, MD patient back showing lesions covering entire surface, including areas out of patient’s reach. B, Back of patient with scratching-induced lesions showing distribution limited to patient’s reach. C, Multicolored fibers embedded in skin callus from MD Patient 2 (100x). 
Keywords: bacteria; Borreliella burgdorferi
Rivularia vieillardii Bornet and Flahault.
Keywords: bacteria; Rivularia
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 528
Entry Collection: MedlinePlus
Revision: 1 time (View History)
Update Date: 24 Dec 2020
Video Production Service