Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1887 2023-06-27 12:21:42 |
2 only format change Meta information modification 1887 2023-06-28 04:41:56 | |
3 only format change Meta information modification 1887 2023-06-29 09:30:19 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Tan, L.; Lu, X.; Danser, A.H.J.; Verdonk, K. Role of Chemerin in Metabolic and Cardiovascular Disease. Encyclopedia. Available online: https://encyclopedia.pub/entry/46115 (accessed on 18 November 2024).
Tan L, Lu X, Danser AHJ, Verdonk K. Role of Chemerin in Metabolic and Cardiovascular Disease. Encyclopedia. Available at: https://encyclopedia.pub/entry/46115. Accessed November 18, 2024.
Tan, Lunbo, Xifeng Lu, A. H. Jan Danser, Koen Verdonk. "Role of Chemerin in Metabolic and Cardiovascular Disease" Encyclopedia, https://encyclopedia.pub/entry/46115 (accessed November 18, 2024).
Tan, L., Lu, X., Danser, A.H.J., & Verdonk, K. (2023, June 27). Role of Chemerin in Metabolic and Cardiovascular Disease. In Encyclopedia. https://encyclopedia.pub/entry/46115
Tan, Lunbo, et al. "Role of Chemerin in Metabolic and Cardiovascular Disease." Encyclopedia. Web. 27 June, 2023.
Role of Chemerin in Metabolic and Cardiovascular Disease
Edit

Chemerin is a novel adipokine that plays a major role in adipogenesis and lipid metabolism. It also induces inflammation and affects insulin signaling, steroidogenesis and thermogenesis. Consequently, it likely contributes to a variety of metabolic and cardiovascular diseases, including atherosclerosis, diabetes, hypertension and pre-eclampsia.

chemerin nutrients cardiovascular disease metabolic disease

1. Introduction

Over the last three decades, due to the obesity epidemic, attention has shifted to achieving an improved energy balance. The underlying concept is that a healthy lifestyle and well-controlled nutrition will avoid obesity, and consequently prevent the development of metabolic syndrome and any resulting cardiovascular disease [1].
Chemerin is a multifunctional protein that has recently been identified as an essential player in hypertension, myocardial infarction, preterm birth, diabetes, metabolic disease and liver cirrhosis [2][3]. In the two decades since its initial discovery, more than a thousand articles have been published on chemerin [4], but none reviewed its relationship with nutrition.

2. Potential Role of Chemerin in Metabolic and Cardiovascular Disease

2.1. Lipid Metabolism

Chemerin not only stimulates adipogenesis but also facilitates lipid accumulation in a wide variety of cells [5][6][7][8][9][10]. In agreement with this concept, its levels and receptors are upregulated in differentiating preadipocytes. Moreover, obesity, NAFLD and nonalcoholic steatohepatitis (NASH) are all accompanied by elevated chemerin levels, while attenuating these conditions lowers chemerin [11][12][13][14]. Table 1 summarizes the genes that are currently believed to be involved in the effects of chemerin on lipid metabolism. Here, it should be noted that a methionine–choline-deficient (MCD) diet (a classical dietary model of NASH) has also been reported to decrease CMKLR1 [14][15] and chemerin in the liver [16]. These opposing effects on chemerin might relate to sex, as increased chemerin levels were observed in male animals exposed to a MCD diet [17], while MCD-fed females displayed chemerin lowering [16]. Moreover, in hepatocytes or matured adipocyte cells, the fatty acids EPA, docosahexaenoic acid, palmitate acid and oleic acid all induced lipid accumulation, while only the latter increased chemerin expression, with the former three decreasing this expression [14][16][18]. In an oral lipid tolerance test, chemerin decreased when switching from fasting to lipid uptake, reaching its lowest level after 4 h [19].
Table 1. Genes and proteins that are involved in the effect of chemerin on lipid metabolism.
An obesogenic diet increases chemerin secretion from brown adipocytes, while cold stimulation caused the opposite [30][31]. Chemerin might contribute to temperature regulation, given that its overexpression decreased whole body and brown adipose tissue temperature in mice [32]. Chemerin overexpression additionally impaired metabolic homeostasis and induced glucose intolerance. These effects involved CMKLR1 and uncoupling protein 1. In addition, the chemerin–CMKLR1 axis is a physiological negative regulator of thermogenic beige fat, and targeting this pathway might be a novel strategy for obesity [33].
Circulating chemerin correlates positively with low-density lipoprotein (LDL) and negatively with high-density lipoprotein (HDL) [34][35]. Yet, the latter negative association particularly concerns large HDL, since a positive association was observed with both small and intermediate HDL. This suggests that chemerin is involved in the HDL maturing process [35][36]. LDL apheresis lowered circulating chemerin, implying that chemerin is bound, at least partly, to lipoproteins [37]. Future studies should investigate this possibility.

2.2. Cardiovascular Effects

Chemerin levels are elevated in multiple cardiovascular diseases (Table 2) [38][39][40][41]. Chemerin is not only an independent risk factor for arterial stiffness [42], but in chronic kidney disease it also is a predictive marker of atherosclerosis [43][44]. This relates to the above-described effects of chemerin on the atherogenic process, involving vascular remodeling, lipid deposition and inflammation [45][46][47][48]. Indeed, the expression of chemerin and its receptor CMKLR1 in periaortic and pericoronary fat and foam cells determines atherosclerosis severity [49][50] and correlates with carotid plaque instability [51].
Recent data suggest that chemerin also exerts effects in cardiomyocytes, vascular smooth muscle cells, endothelial cells and fibroblasts, and might even originate from some of these cells. Tumor necrosis factor-α upregulated chemerin in murine cardiomyocytes, and in these cells chemerin induced apoptosis by activating caspase 9 and reducing protein kinase B (AKT) [52]. In rat cardiac fibroblasts, chemerin promoted cell migration by increasing reactive oxygen species (ROS), AKT and ERK1/2 [53]. Aldosterone induced chemerin synthesis in cardiac fibroblasts via Rho/ROCK/JNK signaling [54]. In endothelial cells, chemerin promoted angiogenesis and ROS production and decreased insulin signaling and nitric oxide production [2][55][56].
Vascular chemerin most likely originates from perivascular adipose tissue (PVAT), while CMKLR1 occurs in endothelial and vascular smooth muscle cells [57][58]. Exogenously added chemerin induced constriction via CMKLR1, Gi and calcium in isolated vessels, and this was enhanced after endothelial removal or during nitric oxide inhibition [57][59]. Without exogenous chemerin, endogenous chemerin derived from PVAT is also capable of inducing constriction, most likely by activating the sympathetic nervous system [58]. Remarkably, although both whole-body and hepatic chemerin knockdown abolished circulating chemerin [60], only whole-body knockdown also lowered blood pressure. This implies that chemerin from a non-hepatic source, most likely PVAT, contributes to blood pressure. To what degree the chemerin-induced upregulation of inflammatory cytokines in vascular smooth muscle cells [61] contributes to vessel contraction remains unknown.

2.3. Pregnancy-Related Problems

Chemerin is also a major player during pregnancy. Circulating chemerin levels normally fall in the first and second trimesters of pregnancy, and then increase during the third trimester, reaching the highest levels at late gestation, to fall again to pre-pregnancy levels shortly after delivery [62][63][64]. The placenta is a major contributor to this rise in circulating chemerin [8]. Since cord blood chemerin levels exceed those in maternal blood [63], maternal and fetal chemerin levels may act independently. Yet, maternal obesity is associated with higher cord blood chemerin levels [65][66]. How chemerin upregulation during pregnancy is regulated and whether chemerin affects the fetus are unknown.
The high levels of chemerin in late pregnancy are suggestive of the possibility that they play a role in the preparation of delivery. This might require a delicate balance, given that overexpression of chemerin increases the risk of miscarriage [8]. Simultaneously, chemerin correlates positively with platelet count, which is relevant at the time of delivery to prevent hemorrhage [67][68][69]. Overall, excessively high maternal chemerin levels are indicative of a negative pregnancy outcome and a low birthweight, while cord blood chemerin levels associate positively with fetal birthweight [8][70][71]. In agreement with the former, intraperitoneal application of chemerin to pregnant mice with diabetes resulted in cognitive disorder in the offspring [72]. In the fetus, chemerin is expressed at the level of the intestine, where it peaks at 20–24 weeks of gestation to promote macrophage recruitment for gut development [73]. Thereafter intestinal chemerin expression returns to low levels.
Serum chemerin is increased in pre-eclampsia, correlating with the severity of the disease and adverse neonatal outcomes [71][74]. In fact, its level in the first trimester may help to predict the occurrence of pre-eclampsia [75]. Importantly, the pre-eclamptic placenta releases more chemerin than a healthy placenta [8], supporting the concept that circulating chemerin in pregnancy is placenta-derived, and that the elevated chemerin levels in pre-eclamptic women originate in the placenta. Moreover, placental chemerin overexpression in mice induced a pre-eclampsia-like syndrome, characterized by high blood pressure, proteinuria, endothelial dysfunction and fetal growth restriction [8]. Placental chemerin overexpression simultaneously increased the circulating and placental levels of cholesterol, raising the possibility that chemerin might also contribute to dyslipidemia in pre-eclampsia [76]. A rat model of pre-eclampsia similarly displayed higher circulating chemerin levels [77]. In gestational diabetes mellitus (GDM), chemerin correlates with obesity and glucose homeostasis [78]. Yet, chemerin levels in the blood, adipose tissue and placenta are not necessarily elevated in GDM [79][80]—this may be limited to obese GDM women [81][82]. In such women, high cord blood chemerin levels were predictive for both maternal insulin resistance and large for gestational-age babies [65][66]. It is important to stress that adverse perinatal outcomes are linked to maternal cardiometabolic and neurocognitive outcomes [83][84]. This may represent the long-term consequences of inflammatory dysfunction, potentially involving chemerin.

2.4. Sex Differences

Sex hormones likely contribute to the synthesis and effects of chemerin. In humans, serum chemerin increases with age, and chemerin levels are higher in females than in males [19][85]. However, in type 2 diabetes and obesity cohorts, serum chemerin in males was higher than in females [86][87]. In the deoxycorticosterone acetate–salt rat model, chemerin deletion decreased blood pressure in females while increasing blood pressure in males [88]. Furthermore, chemerin levels in white adipose tissue were downregulated in female rats and upregulated in male rats after gonadectomy [89]. The latter coincides with observations in differentiated 3T3-L1 adipocytes, where testosterone decreased chemerin release into the supernatant. Yet in these cells estradiol was without effect [19], and in lean women with polycystic ovarian syndrome (PCOS), chemerin levels were upregulated versus obese PCOS women [90]. Chemerin was observed to suppress follicular steroidogenesis and may thus contribute to PCOS [90][91]. Additionally, chemerin levels were low in subfertile males, most likely due to their elevated luteinizing hormone levels [92], and this was suggested to reflect a link between chemerin and reproductive function.
Table 2. Circulating chemerin in various metabolic and cardiovascular diseases.
Country Population Number of Included Patients (n) Chemerin Levels (ng/mL) BMI Age Reference
Control Diseased Control Diseased Control Diseased
USA Obesity 10 37 76.2 147 <25 >25 54 [93]
Hungary Obesity 50 50 405 590 <25 >25 43 [34]
Mauritius T2D 142 114 249 250 ≤25 >25 49 [94]
Saudi Arabia T2D 38 41 89 99 >25 >25 44 [77]
Germany T2D 29 29 191 219 >25 >25 56 [11]
USA T2D 969 173 180 191 >25 >25 45 [82]
China Atrial fibrillation 146 256 107.74 133.24 <25 <25 60 [38]
China Coronary artery disease 191 239 45.7 48.7 ≤25 ≤25 62 [39]
China Coronary artery disease 56 132 90 111 <25 <25 62 [40]
China Coronary artery disease 50 50 133 189 ≤25 ≤25 60 [47]
Korea Obesity and arterial stiffness 35 33 106 120 <25 >25 52 [41]
Canada Stable and unstable carotid atherosclerotic plaque   165   208   >25 70 [51]
Austria Hypertension * A total of 495 155 180 >25 65 [43]
T2D * 170 192
MetS * 163 201
Netherlands Pre-eclampsia 29 30 149 287 ≤25 ≤25 32 [8]
Germany Pre-eclampsia 37 37 205 250 <25 <25 30 [62]
Turkey Pre-eclampsia 46 88 200 358 >25 >25 27 [71]
China Pre-eclampsia 477 41 181 312 <25 ≤25 26 [75]
Germany GDM 80 40 218 230 <25 <25 30 [80]
Abbreviations. T2D, type 2 diabetes; MetS, metabolic syndrome; ACE, angiotensin-converting enzyme; AT1, angiotensin II type 1; GDM, gestational diabetes mellitus. * these three populations are from one cohort.

 

References

  1. Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab. Res. Rev. 2022, 38, e3502.
  2. Ferland, D.J.; Mullick, A.E.; Watts, S.W. Chemerin as a Driver of Hypertension: A Consideration. Am. J. Hypertens. 2020, 33, 975–986.
  3. Yu, M.; Yang, Y.; Huang, C.; Ge, L.; Xue, L.; Xiao, Z.; Xiao, T.; Zhao, H.; Ren, P.; Zhang, J.V. Chemerin: A Functional Adipokine in Reproductive Health and Diseases. Biomedicines 2022, 10, 1910.
  4. Zhao, L.; Leung, L.L.; Morser, J. Chemerin Forms: Their Generation and Activity. Biomedicines 2022, 10, 2018.
  5. Roh, S.G.; Song, S.H.; Choi, K.C.; Katoh, K.; Wittamer, V.; Parmentier, M.; Sasaki, S. Chemerin—A new adipokine that modulates adipogenesis via its own receptor. Biochem. Biophys. Res. Commun. 2007, 362, 1013–1018.
  6. Fu, Y.Y.; Chen, K.L.; Li, H.X.; Zhou, G.H. The adipokine Chemerin induces lipolysis and adipogenesis in bovine intramuscular adipocytes. Mol. Cell Biochem. 2016, 418, 39–48.
  7. Zhang, Y.; Shen, W.J.; Qiu, S.; Yang, P.; Dempsey, G.; Zhao, L.; Zhou, Q.; Hao, X.; Dong, D.; Stahl, A.; et al. Chemerin regulates formation and function of brown adipose tissue: Ablation results in increased insulin resistance with high fat challenge and aging. FASEB J. 2021, 35, e21687.
  8. Tan, L.; Chen, Z.; Sun, F.; Zhou, Z.; Zhang, B.; Wang, B.; Chen, J.; Li, M.; Xiao, T.; Neuman, R.I.; et al. Placental trophoblast-specific overexpression of chemerin induces preeclampsia-like symptoms. Clin. Sci. 2022, 136, 257–272.
  9. Yang, H.; Li, F.; Kong, X.; Yuan, X.; Wang, W.; Huang, R.; Li, T.; Geng, M.; Wu, G.; Yin, Y. Chemerin regulates proliferation and differentiation of myoblast cells via ERK1/2 and mTOR signaling pathways. Cytokine 2012, 60, 646–652.
  10. Zhu, L.; Huang, J.; Wang, Y.; Yang, Z.; Chen, X. Chemerin causes lipid metabolic imbalance and induces passive lipid accumulation in human hepatoma cell line via the receptor GPR1. Life Sci. 2021, 278, 119530.
  11. Docke, S.; Lock, J.F.; Birkenfeld, A.L.; Hoppe, S.; Lieske, S.; Rieger, A.; Raschzok, N.; Sauer, I.M.; Florian, S.; Osterhoff, M.A.; et al. Elevated hepatic chemerin mRNA expression in human non-alcoholic fatty liver disease. Eur. J. Endocrinol. 2013, 169, 547–557.
  12. Lin, X.; Yang, Y.; Qu, J.; Wang, X. Aerobic exercise decreases chemerin/CMKLR1 in the serum and peripheral metabolic organs of obesity and diabetes rats by increasing PPARgamma. Nutr. Metab. 2019, 16, 17.
  13. Hatziagelaki, E.; Herder, C.; Tsiavou, A.; Teichert, T.; Chounta, A.; Nowotny, P.; Pacini, G.; Dimitriadis, G.; Roden, M. Serum Chemerin Concentrations Associate with Beta-Cell Function, But Not with Insulin Resistance in Individuals with Non-Alcoholic Fatty Liver Disease (NAFLD). PLoS ONE 2015, 10, e0124935.
  14. Krautbauer, S.; Wanninger, J.; Eisinger, K.; Hader, Y.; Beck, M.; Kopp, A.; Schmid, A.; Weiss, T.S.; Dorn, C.; Buechler, C. Chemerin is highly expressed in hepatocytes and is induced in non-alcoholic steatohepatitis liver. Exp. Mol. Pathol. 2013, 95, 199–205.
  15. Pohl, R.; Feder, S.; Haberl, E.M.; Rein-Fischboeck, L.; Weiss, T.S.; Spirk, M.; Bruckmann, A.; McMullen, N.; Sinal, C.J.; Buechler, C. Chemerin Overexpression in the Liver Protects against Inflammation in Experimental Non-Alcoholic Steatohepatitis. Biomedicines 2022, 10, 132.
  16. Deng, Y.; Wang, H.; Lu, Y.; Liu, S.; Zhang, Q.; Huang, J.; Zhu, R.; Yang, J.; Zhang, R.; Zhang, D.; et al. Identification of chemerin as a novel FXR target gene down-regulated in the progression of nonalcoholic steatohepatitis. Endocrinology 2013, 154, 1794–1801.
  17. Rein-Fischboeck, L.; Haberl, E.M.; Pohl, R.; Feder, S.; Liebisch, G.; Krautbauer, S.; Buechler, C. Variations in hepatic lipid species of age-matched male mice fed a methionine-choline-deficient diet and housed in different animal facilities. Lipids Health Dis. 2019, 18, 172.
  18. Sainz, N.; Fernandez-Galilea, M.; Costa, A.G.V.; Prieto-Hontoria, P.L.; Barraco, G.M.; Moreno-Aliaga, M.J. n-3 polyunsaturated fatty acids regulate chemerin in cultured adipocytes: Role of GPR120 and derived lipid mediators. Food Funct. 2020, 11, 9057–9066.
  19. Schmid, A.; Bala, M.; Leszczak, S.; Ober, I.; Buechler, C.; Karrasch, T. Pro-inflammatory chemokines CCL2, chemerin, IP-10 and RANTES in human serum during an oral lipid tolerance test. Cytokine 2016, 80, 56–63.
  20. Chakaroun, R.; Raschpichler, M.; Kloting, N.; Oberbach, A.; Flehmig, G.; Kern, M.; Schon, M.R.; Shang, E.; Lohmann, T.; Dressler, M.; et al. Effects of weight loss and exercise on chemerin serum concentrations and adipose tissue expression in human obesity. Metabolism 2012, 61, 706–714.
  21. Ramos-Junior, E.S.; Leite, G.A.; Carmo-Silva, C.C.; Taira, T.M.; Neves, K.B.; Colon, D.F.; da Silva, L.A.; Salvador, S.L.; Tostes, R.C.; Cunha, F.Q.; et al. Adipokine Chemerin Bridges Metabolic Dyslipidemia and Alveolar Bone Loss in Mice. J. Bone. Miner. Res. 2017, 32, 974–984.
  22. Zhang, W.; Liu, Y.; Wu, M.; Zhu, X.; Wang, T.; He, K.; Li, P.; Wu, X. PI3K inhibition protects mice from NAFLD by down-regulating CMKLR1 and NLRP3 in Kupffer cells. J. Physiol. Biochem. 2017, 73, 583–594.
  23. Xu, M.; Wang, Y.M.; Li, W.Q.; Huang, C.L.; Li, J.; Xie, W.H.; Zeng, H.X.; Tao, L.F.; Li, X. Ccrl2 deficiency deteriorates obesity and insulin resistance through increasing adipose tissue macrophages infiltration. Genes Dis. 2022, 9, 429–442.
  24. Goralski, K.B.; McCarthy, T.C.; Hanniman, E.A.; Zabel, B.A.; Butcher, E.C.; Parlee, S.D.; Muruganandan, S.; Sinal, C.J. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 2007, 282, 28175–28188.
  25. Ferland, D.J.; Garver, H.; Contreras, G.A.; Fink, G.D.; Watts, S.W. Chemerin contributes to in vivo adipogenesis in a location-specific manner. PLoS ONE 2020, 15, e0229251.
  26. Huang, B.; Huang, C.; Zhao, H.; Zhu, W.; Wang, B.; Wang, H.; Chen, J.; Xiao, T.; Niu, J.; Zhang, J. Impact of GPR1 signaling on maternal high-fat feeding and placenta metabolism in mice. Am. J. Physiol. Endocrinol. Metab. 2019, 316, E987–E997.
  27. Rouger, L.; Denis, G.R.; Luangsay, S.; Parmentier, M. ChemR23 knockout mice display mild obesity but no deficit in adipocyte differentiation. J. Endocrinol. 2013, 219, 279–289.
  28. Takahashi, M.; Takahashi, Y.; Takahashi, K.; Zolotaryov, F.N.; Hong, K.S.; Kitazawa, R.; Iida, K.; Okimura, Y.; Kaji, H.; Kitazawa, S.; et al. Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett. 2008, 582, 573–578.
  29. Wang, L.; Zhang, Y.; Guo, Y.; Ding, W.; Chang, A.; Wei, J.; Li, X.; Qian, H.; Zhu, C. Chemerin/CMKLR1 Axis Promotes the Progression of Proliferative Diabetic Retinopathy. Int. J. Endocrinol. 2021, 2021, 4468625.
  30. Hansen, I.R.; Jansson, K.M.; Cannon, B.; Nedergaard, J. Contrasting effects of cold acclimation versus obesogenic diets on chemerin gene expression in brown and brite adipose tissues. Biochim. Biophys. Acta 2014, 1841, 1691–1699.
  31. Villarroya, F.; Cereijo, R.; Villarroya, J.; Giralt, M. Brown adipose tissue as a secretory organ. Nat. Rev. Endocrinol. 2017, 13, 26–35.
  32. Zhao, Z.; Liu, S.; Qian, B.; Zhou, L.; Shi, J.; Liu, J.; Xu, L.; Yang, Z. CMKLR1 senses chemerin/resolvin E1 to control adipose thermogenesis and modulate metabolic homeostasis. Fundam. Res. 2022, in press.
  33. Lin, Y.; Xiao, L.; Cai, Q.; Zhu, C.; Li, S.; Li, B.; Liu, T.; Zhang, Q.; Wang, Y.; Li, Y.; et al. The chemerin-CMKLR1 axis limits thermogenesis by controlling a beige adipocyte/IL-33/type 2 innate immunity circuit. Sci. Immunol. 2021, 6, eabg9698.
  34. Maghsoudi, Z.; Kelishadi, R.; Hosseinzadeh-Attar, M.J. The comparison of chemerin, adiponectin and lipid profile indices in obese and non-obese adolescents. Diabetes Metab. Syndr. 2016, 10, S43–S46.
  35. Lorincz, H.; Katko, M.; Harangi, M.; Somodi, S.; Gaal, K.; Fulop, P.; Paragh, G.; Seres, I. Strong correlations between circulating chemerin levels and lipoprotein subfractions in nondiabetic obese and nonobese subjects. Clin. Endocrinol. 2014, 81, 370–377.
  36. Navab, M.; Reddy, S.T.; Van Lenten, B.J.; Fogelman, A.M. HDL and cardiovascular disease: Atherogenic and atheroprotective mechanisms. Nat. Rev. Cardiol. 2011, 8, 222–232.
  37. Varga, V.E.; Lorincz, H.; Zsiros, N.; Fulop, P.; Seres, I.; Paragh, G.; Balla, J.; Harangi, M. Impact of selective LDL apheresis on serum chemerin levels in patients with hypercholesterolemia. Lipids Health Dis. 2016, 15, 182.
  38. Eichelmann, F.; Schulze, M.B.; Wittenbecher, C.; Menzel, J.; Weikert, C.; di Giuseppe, R.; Biemann, R.; Isermann, B.; Fritsche, A.; Boeing, H.; et al. Chemerin as a Biomarker Linking Inflammation and Cardiovascular Diseases. J. Am. Coll. Cardiol. 2019, 73, 378–379.
  39. Zhang, G.; Xiao, M.; Zhang, L.; Zhao, Y.; Yang, Q. Association of serum chemerin concentrations with the presence of atrial fibrillation. Ann. Clin. Biochem. 2017, 54, 342–347.
  40. Yan, Q.; Zhang, Y.; Hong, J.; Gu, W.; Dai, M.; Shi, J.; Zhai, Y.; Wang, W.; Li, X.; Ning, G. The association of serum chemerin level with risk of coronary artery disease in Chinese adults. Endocrine 2012, 41, 281–288.
  41. Xiaotao, L.; Xiaoxia, Z.; Yue, X.; Liye, W. Serum chemerin levels are associated with the presence and extent of coronary artery disease. Coron. Artery Dis. 2012, 23, 412–416.
  42. Yoo, H.J.; Choi, H.Y.; Yang, S.J.; Kim, H.Y.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Choi, K.M.; Choi, D.S.; Baik, S.H. Circulating chemerin level is independently correlated with arterial stiffness. J. Atheroscler. Thromb. 2012, 19, 59–66.
  43. Kaur, J.; Mattu, H.S.; Chatha, K.; Randeva, H.S. Chemerin in human cardiovascular disease. Vascul. Pharmacol. 2018, 110, 1–6.
  44. Leiherer, A.; Muendlein, A.; Kinz, E.; Vonbank, A.; Rein, P.; Fraunberger, P.; Malin, C.; Saely, C.H.; Drexel, H. High plasma chemerin is associated with renal dysfunction and predictive for cardiovascular events—Insights from phenotype and genotype characterization. Vascul. Pharmacol. 2016, 77, 60–68.
  45. Ernst, M.C.; Sinal, C.J. Chemerin: At the crossroads of inflammation and obesity. Trends Endocrinol. Metab. 2010, 21, 660–667.
  46. Sun, J.X.; Zhang, C.; Cheng, Z.B.; Tang, M.Y.; Liu, Y.Z.; Jiang, J.F.; Xiao, X.; Huang, L. Chemerin in atherosclerosis. Clin. Chim. Acta 2021, 520, 8–15.
  47. Gao, X.; Mi, S.; Zhang, F.; Gong, F.; Lai, Y.; Gao, F.; Zhang, X.; Wang, L.; Tao, H. Association of chemerin mRNA expression in human epicardial adipose tissue with coronary atherosclerosis. Cardiovasc. Diabetol. 2011, 10, 87.
  48. Wu, Q.; Chen, Y.; Chen, S.; Wu, X.; Nong, W. Correlation between adiponectin, chemerin, vascular endothelial growth factor and epicardial fat volume in patients with coronary artery disease. Exp. Ther. Med. 2020, 19, 1095–1102.
  49. Spiroglou, S.G.; Kostopoulos, C.G.; Varakis, J.N.; Papadaki, H.H. Adipokines in periaortic and epicardial adipose tissue: Differential expression and relation to atherosclerosis. J. Atheroscler. Thromb. 2010, 17, 115–130.
  50. Kostopoulos, C.G.; Spiroglou, S.G.; Varakis, J.N.; Apostolakis, E.; Papadaki, H.H. Chemerin and CMKLR1 expression in human arteries and periadventitial fat: A possible role for local chemerin in atherosclerosis? BMC Cardiovasc Disord 2014, 14, 56.
  51. Yanofsky, R.; Sancho, C.; Gasbarrino, K.; Zheng, H.; Doonan, R.J.; Jaunet, F.; Steinmetz-Wood, S.; Veinot, J.P.; Lai, C.; Daskalopoulou, S.S. Expression of Resistin, Chemerin, and Chemerin’s Receptor in the Unstable Carotid Atherosclerotic Plaque. Stroke 2021, 52, 2537–2546.
  52. Rodriguez-Penas, D.; Feijoo-Bandin, S.; Garcia-Rua, V.; Mosquera-Leal, A.; Duran, D.; Varela, A.; Portoles, M.; Rosello-Lleti, E.; Rivera, M.; Dieguez, C.; et al. The Adipokine Chemerin Induces Apoptosis in Cardiomyocytes. Cell Physiol. Biochem. 2015, 37, 176–192.
  53. Yamamoto, A.; Sagara, A.; Otani, K.; Okada, M.; Yamawaki, H. Chemerin-9 stimulates migration in rat cardiac fibroblasts in vitro. Eur. J. Pharmacol. 2021, 912, 174566.
  54. Wang, Y.; Jin, X.; Qiao, L.; Li, Y.; Yang, R.; Wang, M.; Zhang, G.; Zhang, Y.; Liu, T.; Rao, M.; et al. Aldosterone upregulates chemerin via chemokinelike receptor 1-Rho-ROCK-JNK signaling in cardiac fibroblasts. Int. J. Clin. Exp. Med. 2017, 10, 6756–6762.
  55. Neves, K.B.; Nguyen Dinh Cat, A.; Alves-Lopes, R.; Harvey, K.Y.; Costa, R.M.D.; Lobato, N.S.; Montezano, A.C.; Oliveira, A.M.; Touyz, R.M.; Tostes, R.C. Chemerin receptor blockade improves vascular function in diabetic obese mice via redox-sensitive and Akt-dependent pathways. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H1851–H1860.
  56. Bozaoglu, K.; Curran, J.E.; Stocker, C.J.; Zaibi, M.S.; Segal, D.; Konstantopoulos, N.; Morrison, S.; Carless, M.; Dyer, T.D.; Cole, S.A.; et al. Chemerin, a novel adipokine in the regulation of angiogenesis. J. Clin. Endocrinol. Metab. 2010, 95, 2476–2485.
  57. Watts, S.W.; Dorrance, A.M.; Penfold, M.E.; Rourke, J.L.; Sinal, C.J.; Seitz, B.; Sullivan, T.J.; Charvat, T.T.; Thompson, J.M.; Burnett, R.; et al. Chemerin connects fat to arterial contraction. Arter. Thromb. Vasc. Biol. 2013, 33, 1320–1328.
  58. Darios, E.S.; Winner, B.M.; Charvat, T.; Krasinksi, A.; Punna, S.; Watts, S.W. The adipokine chemerin amplifies electrical field-stimulated contraction in the isolated rat superior mesenteric artery. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H498–H507.
  59. Ferland, D.J.; Darios, E.S.; Neubig, R.R.; Sjogren, B.; Truong, N.; Torres, R.; Dexheimer, T.S.; Thompson, J.M.; Watts, S.W. Chemerin-induced arterial contraction is G(i)- and calcium-dependent. Vascul. Pharmacol. 2017, 88, 30–41.
  60. Ferland, D.J.; Seitz, B.; Darios, E.S.; Thompson, J.M.; Yeh, S.T.; Mullick, A.E.; Watts, S.W. Whole-Body But Not Hepatic Knockdown of Chemerin by Antisense Oligonucleotide Decreases Blood Pressure in Rats. J. Pharmacol. Exp. Ther. 2018, 365, 212–218.
  61. Xie, Y.; Liu, L. Role of Chemerin/ChemR23 axis as an emerging therapeutic perspective on obesity-related vascular dysfunction. J. Transl. Med. 2022, 20, 141.
  62. Stepan, H.; Philipp, A.; Roth, I.; Kralisch, S.; Jank, A.; Schaarschmidt, W.; Lossner, U.; Kratzsch, J.; Bluher, M.; Stumvoll, M.; et al. Serum levels of the adipokine chemerin are increased in preeclampsia during and 6 months after pregnancy. Regul. Pept. 2011, 168, 69–72.
  63. Kasher-Meron, M.; Mazaki-Tovi, S.; Barhod, E.; Hemi, R.; Haas, J.; Gat, I.; Zilberberg, E.; Yinon, Y.; Karasik, A.; Kanety, H. Chemerin concentrations in maternal and fetal compartments: Implications for metabolic adaptations to normal human pregnancy. J. Perinat. Med. 2014, 42, 371–378.
  64. Garces, M.F.; Sanchez, E.; Ruiz-Parra, A.I.; Rubio-Romero, J.A.; Angel-Muller, E.; Suarez, M.A.; Bohorquez, L.F.; Bravo, S.B.; Nogueiras, R.; Dieguez, C.; et al. Serum chemerin levels during normal human pregnancy. Peptides 2013, 42, 138–143.
  65. Barker, G.; Lim, R.; Rice, G.E.; Lappas, M. Increased chemerin concentrations in fetuses of obese mothers and correlation with maternal insulin sensitivity. J. Fetal. Neonatal. Med. 2012, 25, 2274–2280.
  66. Boutsikou, T.; Briana, D.D.; Boutsikou, M.; Kafalidis, G.; Stamati, L.; Baka, S.; Hassiakos, D.; Gourgiotis, D.; Malamitsi-Puchner, A. Cord blood chemerin and obestatin levels in large for gestational age infants. J. Matern. Fetal. Neonatal. Med. 2013, 26, 123–126.
  67. Antony, K.M.; Mansouri, R.; Arndt, M.; Rocky Hui, S.K.; Jariwala, P.; McMullen, V.M.; Teruya, J.; Aagaard, K. Establishing thromboelastography with platelet-function analyzer reference ranges and other measures in healthy term pregnant women. Am. J. Perinatol. 2015, 32, 545–554.
  68. Hsu, L.A.; Chou, H.H.; Teng, M.S.; Wu, S.; Ko, Y.L. Circulating chemerin levels are determined through circulating platelet counts in nondiabetic Taiwanese people: A bidirectional Mendelian randomization study. Atherosclerosis 2021, 320, 61–69.
  69. Du, X.Y.; Zabel, B.A.; Myles, T.; Allen, S.J.; Handel, T.M.; Lee, P.P.; Butcher, E.C.; Leung, L.L. Regulation of chemerin bioactivity by plasma carboxypeptidase N, carboxypeptidase B (activated thrombin-activable fibrinolysis inhibitor), and platelets. J. Biol. Chem. 2009, 284, 751–758.
  70. Mazaki-Tovi, S.; Kasher-Meron, M.; Hemi, R.; Haas, J.; Gat, I.; Lantsberg, D.; Hendler, I.; Kanety, H. Chemerin is present in human cord blood and is positively correlated with birthweight. Am. J. Obstet. Gynecol. 2012, 207, 412.e1–412.e10.
  71. Cetin, O.; Kurdoglu, Z.; Kurdoglu, M.; Sahin, H.G. Chemerin level in pregnancies complicated by preeclampsia and its relation with disease severity and neonatal outcomes. J. Obstet. Gynaecol. 2017, 37, 195–199.
  72. Liang, Z.; Han, L.; Sun, D.; Chen, Y.; Wu, Q.; Zhang, L.; Zhou, M.; Chen, D. Chemerin-induced macrophages pyroptosis in fetal brain tissue leads to cognitive disorder in offspring of diabetic dams. J. Neuroinflammation 2019, 16, 226.
  73. Maheshwari, A.; Kurundkar, A.R.; Shaik, S.S.; Kelly, D.R.; Hartman, Y.; Zhang, W.; Dimmitt, R.; Saeed, S.; Randolph, D.A.; Aprahamian, C.; et al. Epithelial cells in fetal intestine produce chemerin to recruit macrophages. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 297, G1–G10.
  74. Ferland, D.J.; Watts, S.W. Chemerin: A comprehensive review elucidating the need for cardiovascular research. Pharmacol. Res. 2015, 99, 351–361.
  75. Xu, Q.L.; Zhu, M.; Jin, Y.; Wang, N.; Xu, H.X.; Quan, L.M.; Wang, S.S.; Li, S.S. The predictive value of the first-trimester maternal serum chemerin level for pre-eclampsia. Peptides 2014, 62, 150–154.
  76. Tan, L.; Ouyang, Z.; Chen, Z.; Sun, F.; Guo, H.; Wang, F.; Mulder, M.; Sun, Y.; Lu, X.; Zhang, J.V.; et al. Adipokine chemerin overexpression in trophoblasts leads to dyslipidemia in pregnant mice: Implications for preeclampsia. Lipids Health Dis. 2023, 22, 12.
  77. Nassar, S.Z.; Badae, N.M. Protective effect of vitamin D supplementation in a rat modal of preeclampsia: A possible implication of chemerin. Hypertens Pregnancy 2019, 38, 149–156.
  78. Helfer, G.; Wu, Q.F. Chemerin: A multifaceted adipokine involved in metabolic disorders. J. Endocrinol. 2018, 238, R79–R94.
  79. Sun, J.; Ren, J.; Zuo, C.; Deng, D.; Pan, F.; Chen, R.; Zhu, J.; Chen, C.; Ye, S. Circulating apelin, chemerin and omentin levels in patients with gestational diabetes mellitus: A systematic review and meta-analysis. Lipids Health Dis. 2020, 19, 26.
  80. Pfau, D.; Stepan, H.; Kratzsch, J.; Verlohren, M.; Verlohren, H.J.; Drynda, K.; Lossner, U.; Bluher, M.; Stumvoll, M.; Fasshauer, M. Circulating levels of the adipokine chemerin in gestational diabetes mellitus. Horm. Res. Paediatr. 2010, 74, 56–61.
  81. van Poppel, M.N.; Zeck, W.; Ulrich, D.; Schest, E.C.; Hirschmugl, B.; Lang, U.; Wadsack, C.; Desoye, G. Cord blood chemerin: Differential effects of gestational diabetes mellitus and maternal obesity. Clin. Endocrinol. 2014, 80, 65–72.
  82. Liang, Z.; Zhou, M.; Xu, X.K.; Qu, F.; Chen, D. Is Chemerin associated with gestational diabetes mellitus? An evidence-based clinical research from Chinese women. J. Obstet. Gynaecol. 2018, 38, 482–487.
  83. O’Kelly, A.C.; Michos, E.D.; Shufelt, C.L.; Vermunt, J.V.; Minissian, M.B.; Quesada, O.; Smith, G.N.; Rich-Edwards, J.W.; Garovic, V.D.; El Khoudary, S.R.; et al. Pregnancy and Reproductive Risk Factors for Cardiovascular Disease in Women. Circ. Res. 2022, 130, 652–672.
  84. Basit, S.; Wohlfahrt, J.; Boyd, H.A. Pre-eclampsia and risk of dementia later in life: Nationwide cohort study. BMJ 2018, 363, k4109.
  85. Bozaoglu, K.; Segal, D.; Shields, K.A.; Cummings, N.; Curran, J.E.; Comuzzie, A.G.; Mahaney, M.C.; Rainwater, D.L.; VandeBerg, J.L.; MacCluer, J.W.; et al. Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population. J. Clin. Endocrinol. Metab. 2009, 94, 3085–3088.
  86. Takahashi, M.; Inomata, S.; Okimura, Y.; Iguchi, G.; Fukuoka, H.; Miyake, K.; Koga, D.; Akamatsu, S.; Kasuga, M.; Takahashi, Y. Decreased serum chemerin levels in male Japanese patients with type 2 diabetes: Sex dimorphism. Endocr. J. 2013, 60, 37–44.
  87. Daxer, J.; Herttrich, T.; Zhao, Y.Y.; Vogel, M.; Hiemisch, A.; Scheuermann, K.; Korner, A.; Kratzsch, J.; Kiess, W.; Quante, M. Nocturnal levels of chemerin and progranulin in adolescents: Influence of sex, body mass index, glucose metabolism and sleep. J. Pediatr. Endocrinol. Metab. 2017, 30, 57–61.
  88. Watts, S.W.; Darios, E.S.; Mullick, A.E.; Garver, H.; Saunders, T.L.; Hughes, E.D.; Filipiak, W.E.; Zeidler, M.G.; McMullen, N.; Sinal, C.J.; et al. The chemerin knockout rat reveals chemerin dependence in female, but not male, experimental hypertension. FASEB J. 2018, 32, 6596–6614.
  89. Sanchez-Rebordelo, E.; Cunarro, J.; Perez-Sieira, S.; Seoane, L.M.; Dieguez, C.; Nogueiras, R.; Tovar, S. Regulation of Chemerin and CMKLR1 Expression by Nutritional Status, Postnatal Development, and Gender. Int. J. Mol. Sci. 2018, 19, 2905.
  90. Lima, P.D.A.; Nivet, A.L.; Wang, Q.; Chen, Y.A.; Leader, A.; Cheung, A.; Tzeng, C.R.; Tsang, B.K. Polycystic ovary syndrome: Possible involvement of androgen-induced, chemerin-mediated ovarian recruitment of monocytes/macrophages. Biol. Reprod. 2018, 99, 838–852.
  91. Wang, Q.; Kim, J.Y.; Xue, K.; Liu, J.Y.; Leader, A.; Tsang, B.K. Chemerin, a novel regulator of follicular steroidogenesis and its potential involvement in polycystic ovarian syndrome. Endocrinology 2012, 153, 5600–5611.
  92. Bobjer, J.; Katrinaki, M.; Dermitzaki, E.; Margioris, A.N.; Giwercman, A.; Tsatsanis, C. Serum chemerin levels are negatively associated with male fertility and reproductive hormones. Hum. Reprod. 2018, 33, 2168–2174.
  93. Chang, S.S.; Eisenberg, D.; Zhao, L.; Adams, C.; Leib, R.; Morser, J.; Leung, L. Chemerin activation in human obesity. Obesity 2016, 24, 1522–1529.
  94. Bozaoglu, K.; Bolton, K.; McMillan, J.; Zimmet, P.; Jowett, J.; Collier, G.; Walder, K.; Segal, D. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 2007, 148, 4687–4694.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , ,
View Times: 376
Revisions: 3 times (View History)
Update Date: 29 Jun 2023
1000/1000
ScholarVision Creations