Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 2044 2023-06-20 11:02:03 |
2 references update Meta information modification 2044 2023-06-26 07:48:50 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Chen, C.; Yan, W.; Tao, M.; Fu, Y. Role of NAD+ in Regulating Inflammatory Bowel Disease. Encyclopedia. Available online: https://encyclopedia.pub/entry/45848 (accessed on 27 July 2024).
Chen C, Yan W, Tao M, Fu Y. Role of NAD+ in Regulating Inflammatory Bowel Disease. Encyclopedia. Available at: https://encyclopedia.pub/entry/45848. Accessed July 27, 2024.
Chen, Chaoyue, Wei Yan, Meihui Tao, Yu Fu. "Role of NAD+ in Regulating Inflammatory Bowel Disease" Encyclopedia, https://encyclopedia.pub/entry/45848 (accessed July 27, 2024).
Chen, C., Yan, W., Tao, M., & Fu, Y. (2023, June 20). Role of NAD+ in Regulating Inflammatory Bowel Disease. In Encyclopedia. https://encyclopedia.pub/entry/45848
Chen, Chaoyue, et al. "Role of NAD+ in Regulating Inflammatory Bowel Disease." Encyclopedia. Web. 20 June, 2023.
Role of NAD+ in Regulating Inflammatory Bowel Disease
Edit

Inflammatory bowel disease (IBD), which includes Crohn’s disease (CD) and ulcerative colitis (UC), is a multifactorial systemic inflammatory immune response. Nicotinamide adenine dinucleotide (NAD+) is a co-enzyme involved in cell signaling and energy metabolism. Calcium homeostasis, gene transcription, DNA repair, and cell communication involve NAD+ and its degradation products. In the case of IBD, the maintenance of intestinal homeostasis relies on a delicate balance between NAD+ biosynthesis and consumption.

inflammatory bowel disease NAD+ mitochondria intestinal epithelial barrier

1. NAD+ and Inflammatory Bowel Disease

Nicotinamide adenine dinucleotide (NAD+) metabolism and inflammatory diseases are being increasingly linked. Serum NAD+ levels were significantly elevated during inflammation. Murine serum NAD+ ranges from 0.1 to 0.5 micromoles physiologically, but during inflammation, levels of NAD+ in mice could increase up to 10 micromoles [1]. NAD+ has been implicated in the modulation of acute systemic inflammation, as it exerts regulatory control over immune and metabolic pathways in the context of sepsis [2]. The NAD+ salvage pathway is crucial for the inflammatory response to mount an appropriate response in LPS-induced monocytes [3]. In addition, researchers have found that NAD+ may maintain inflammatory states, activated immune systems, and cytokine storms by controlling NF-κB transcriptional activity [4][5][6].
NAD+ metabolism maintains intestinal homeostasis. Serum NAD+ levels increased three-fold in inflammatory bowel disease (IBD) patients compared to healthy people [7]. Metabolomic analysis of UC patients showed that “nicotinate and nicotinamide metabolism” was the most significant metabolic feature of UC-inflamed tissues, with a decrease in NAD+ levels and elevated levels of its metabolites NAM and ADPr. This suggests that NAD+ depletion in UC may result from increased NAD+ catabolism [8]. Although NAMPT is an enzyme in the NAD+ salvage pathway, proteomic profiles of proteins involved in NAD+ metabolism in IBD patients show that it is pro-inflammatory and tumorigenic [6].
IBD requires a balance between NAD+ biosynthesis and consumption to maintain intestinal homeostasis [7]. However, its pathogenesis is unknown [9]. Elevated activity of NAD+-consuming enzymes in IBD can cause gut inflammation [7]. In vitro and in vivo experiments have shown that NAD+ administration improves inflammation-related intestinal permeability by inhibiting NF-κB [10]. The gut microbiota provides alternative NAD+ synthesis pathways and enhances NAM or NR supplementation [11]. Therefore, biomedicine could utilize the gut microbiota to treat IBD by modulating NAD+ metabolism during intestinal inflammation. It was observed that NMN and NAD+ supplementation improved intestinal stem cell function in aged mice via mTOR and SIRT1 [12][13], and NMN prevented intestinal organoids from aging in old mice [14]. These results suggest that methods that increase NAD+ levels or activate sirtuins could protect the gut barrier and prevent IBD from starting or worsening. Nevertheless, it is important to note that augmenting NAD+ levels alone is not sufficient for preserving intestinal homeostasis entirely. Experimental evidence has shown that reducing NAD+ and SIRT1 levels in the colon of mice, using the olefin receptor agonist norisopodine (which expands epigenetic Treg cells as an aryl hydrocarbon receptor agonist), alleviates DSS-induced colitis [15]. As a result, drugs targeting the NAD+ pathway may help manage IBD.

2. NAD+ Metabolic Enzyme

The NAD+ metabolizing enzymes sirtuins, CD38, PARPs, NNMT, and NAMPT are linked to the inflammatory processes in IBD (Table 1).
Table 1. NAD+ metabolic enzymes and IBD.

3. Inflammatory Bowel Disease and NAD+ Regulation

3.1. NAD+ and Mitochondrial Dysfunction

Mitochondria regulate cell metabolism and viability and maintain cell integrity and function [86]. Recent research has shown that mitochondria are essential for coordinating innate and adaptive immune responses. Inflammation can begin with mitochondrial dysfunction and ROS production [89]. Elevated ROS levels in the gut activate inflammatory and cell death pathways [90]. Therefore, targeting ROS in cells could reduce damage to the gut barrier caused by inflammation.
The process of NAD+ metabolism is intricately intertwined with mitochondrial function. NAD+ serves as a critical intermediate in cellular metabolism and acts as an enzymatic cofactor in redox reactions, including glycolysis, the tricarboxylic acid (TCA) cycle, and fatty acid oxidation (FAO) [9]. These reactions produce NADH, an electron donor from the nicotinamide of NAD+ that synthesizes ATP via mitochondrial oxidative phosphorylation [91]. Mitochondrial function and energy substitution depend on the NAD+/NADH ratio, regulated by mitochondrial electron flux [92]. Reduced NAD+ levels impair filamentous cell activity, epigenetic chromatin structure [93], mitochondrial metabolism, oxidative stress, and ATP production, thereby promoting inflammation and cellular damage [94]. Cameron et al. found that LPS induction activated mitochondrial ROS production, leading to DNA damage, PARP activation, and NAD+ depletion in macrophages [64].
Mitochondrial dysfunction is linked to defects in NAD+ metabolism. NAD+ supplementation improves mitochondrial performance and reduces mitochondrial damage and ROS production [95][96][97]. The NAD+ precursor NAM restores the NAD+/NADH balance and reduces IFB-γ production and Th1 differentiation in vitro [98]. Providing NAD+ precursors and targeting NAD+ biosynthesis/degradation enzymes could reverse mitochondrial dysfunction. This suggests that NAD+ metabolism plays a role in regulating mitochondrial function [9][99]. Minhas et al. found that macrophages synthesize NAD+ via the kynurenine pathway. The authors also reported that genetic ablation (in Ido−/− and Qprt−/− mice) or pharmacological disruption (1-methyl-L-tryptophan and phthalic acid) reduced intracellular NAD+ concentrations, impairing mitochondrial respiration and increasing glycolysis in vitro [100]. These metabolic changes increase CD86 and CD64 expression, decrease CD206 and CD23 expression, and impair phagocytosis [100]. The exogenous NAD+ precursor NMN restored mitochondrial respiratory parameters and pro-inflammatory markers [101]. NAD+ levels also regulate mitochondrial metabolism via sirtuins [16]. Low NAD+ levels decrease SIRT1 and SIRT3 activity, decrease vital mitochondrial activity, alter mitochondrial morphology, and hyperacetylate mitochondrial proteins [52][102][103][104]. Hyperactivated PARP1 reduces mitophagy due to SIRT1 impairment [96].
Mitochondrial dysfunction has been linked to NAD+ deficiency. NADH, the reduced form of NAD+, is oxidized back to NAD+ in complex I of the mitochondrial electron transport chain (ETC) and provides metabolic energy [9]. In addition, mitochondrial dysfunction decreases NAD+/NADH ratio and impairs SIRT3 activity [104]. The NAD+/NADH ratio is imbalanced in CD4+ T cells lacking mitochondrial transcription factor A (Tfam) that controls mitochondrial DNA expression. To compensate for mitochondrial dysfunction, CD4+ T cells lacking Tfam switch to glycolysis, decrease NAD+, increase the pro-inflammatory Th1 phenotype, secrete IFB-Γ and TNF-α, and inhibit IL-10 [105]. Linezolid, a ribosome-targeting antibiotic, affects the mitosome function and cell electron transport chain of Th17 cells. Mitochondrial respiration impairs NAD+ regeneration, lowering the NAD+/NADH ratio and decreasing Th17 effector function [106].
Understanding the relationship between NAD+ and mitochondria could help explain the pathophysiology of IBD. Inflammatory tissues have higher levels of NAM and ADR and lower levels of NAD+. Mitochondrial status and NAD+ metabolism are interdependent, and changes in the organism affect inflammation. Mitochondrial dysfunction is a major cause of IBD pathogenesis [107][108][109]. The intestinal mucosa of IBD is characterized by hypoxia and increased oxidative stress implicated in various genes involved in mitochondrial function, such as CUL2, LACC1, and NADPH oxidase [110][111][112][113][114]. A recent metabolic analysis showed NAD+ metabolic dysregulation and altered mitochondrial status in UC patients. The NAD+/NAM ratio decreased in patients with active UC, distinguishing the degree of inflammation from UC. UC alters mitochondria, resulting in a lower mitochondrial density and number in colon cells [8]. These findings suggest a link between mitochondrial dysfunction and inflammation in UC and NAD+ metabolism.

3.2. Intestinal Epithelial Barrier

The intestinal epithelium forms a selective barrier that blocks toxicants and microbes from the lumen but allows nutrient absorption [115]. The intestinal epithelial barrier relies on the tight junction (TJ), a circumferential protein complex at opposing apical/basolateral cell junctions [116]. The occludin and claudin transmembrane protein families form the TJ [117] and prevent paracellular transport [118]. Inflammatory diseases, such as IBD, cholestasis, hemorrhagic shock, and sepsis, damage the intestinal epithelial barrier [119].
Extracellular NAD+ prevented activation, induced nitric oxide synthase, increased NO production, and improved epithelial permeability in inflammatory epithelial cells [120]. NAD+ improved intestinal mucosal permeability in LPS-induced CACO-2 cells [10], indicating that NAD+ can reduce the structural and functional changes in pro-inflammatory intestinal epithelial cells. Another study found that the overexpression of SIRT1 inhibited LPS-induced pro-inflammatory cytokines (IL-6, IL-8, and TNF-α), impaired the intestinal epithelial barrier, and reduced the inflammatory response and intestinal epithelial barrier dysfunction [121]. Quinone oxidoreductase 1 (NQO1) reduces quinone metabolites using NADH as an electron donor [122][123], regulating NAD and NADH in various cellular systems. Quinone oxidoreductase, also known as the antioxidant flavocyanin [124], clears ROS. NQO1 promotes the barrier function of the intestinal epithelium in mice by regulating the transcription of tight junction molecules. A lack of NQO1 can exacerbate colon inflammation [125]. As mentioned above, the intestinal cells have NAD+ receptors. These receptors could be drug targets to treat intestinal epithelium in an inflammatory environment.

3.3. Intestinal Stem Cells

Adult stem cells use glycolysis as an energy source to avoid oxidative stress pathways during mitochondrial respiration [126]. However, mitochondrial defects are a common cause of adult stem cell senescence, as oxidative respiration is essential for their function in old age [127]. Early aging mediated by DNA repair defects degrades NAD+ through PARP and the loss of mitochondrial homeostasis, reducing MuSC numbers and self-renewal [96]. The activation of NAD+ and SIRT1 can repair mitochondrial defects in aging stem cells and DNA repair-deficient cells. Reduced SIRT3 or SIRT7 activity in hematopoietic stem cells impairs the regenerative capacity of aged mouse hematopoietic stem cells (HSCs) [128][129]. Muscle stem cells (MuSC) have lower NAD+ levels and SIRT1 activity with age, contributing to the decline in NAD+ [130]. NR, an NAD+ precursor, improves muscle, neural, and melanocyte stem cell function in aged mice, rejuvenating MuSCs and extending lifespan [131].
The intestinal epithelium is rapidly renewed by the ISC. Early ISC aging research focused on the intestinal epithelium of fruit flies [132]. Drosophila gut stem cells proliferate with age due to environmental changes or tissue damage. Mammalian ISCs are mainly Lgr5-expressing cells at crypt bases [133][134]. Recent studies have reported a decline in ISC function in mammals with advancing age, thereby highlighting the impact of aging on ISC dynamics. Interestingly, it has been observed that the modulation of Wnt signaling pathways can ameliorate the impaired ISC function commonly observed in older individuals [135][136]. Paneth cells support ISCs, regardless of age. In contrast, ISCs cells in mice become less active with age [137]. NAD+ supplementation with precursor NR can repair age-related ISC deficiencies and restore ISC quantity and vitality [12]. Compared to young mice, NR treatment reduced the sensitivity of aged mice to DSS, suggesting that NR can repair the damage in the gut of old mice by restoring the ISC pool [12]. Therefore, increasing NAD+ levels can activate ISCs in the intestine, speeding up intestinal barrier repair and promoting the recovery of IBD mucosa.

References

  1. Adriouch, S.; Hubert, S.; Pechberty, S.; Koch-Nolte, F.; Haag, F.; Seman, M. NAD+ Released during Inflammation Participates in T Cell Homeostasis by Inducing ART2-Mediated Death of Naive T Cells in Vivo. J. Immunol. 2007, 179, 186–194.
  2. Vachharajani, V.; Liu, T.; McCall, C.E. Epigenetic Coordination of Acute Systemic Inflammation: Potential Therapeutic Targets. Expert Rev. Clin. Immunol. 2014, 10, 1141–1150.
  3. Schilling, E.; Wehrhahn, J.; Klein, C.; Raulien, N.; Ceglarek, U.; Hauschildt, S. Inhibition of Nicotinamide Phosphoribosyltransferase Modifies LPS-Induced Inflammatory Responses of Human Monocytes. Innat. Immun. 2012, 18, 518–530.
  4. Omran, H.M.; Almaliki, M.S. Influence of NAD+ as an Ageing-Related Immunomodulator on COVID 19 Infection: A Hypothesis. J. Infect. Public. Health 2020, 13, 1196–1201.
  5. Ning, L.; Shan, G.; Sun, Z.; Zhang, F.; Xu, C.; Lou, X.; Li, S.; Du, H.; Chen, H.; Xu, G. Quantitative Proteomic Analysis Reveals the Deregulation of Nicotinamide Adenine Dinucleotide Metabolism and CD38 in Inflammatory Bowel Disease. Biomed. Res. Int. 2019, 2019, 3950628.
  6. Galli, U.; Colombo, G.; Travelli, C.; Tron, G.C.; Genazzani, A.A.; Grolla, A.A. Recent Advances in NAMPT Inhibitors: A Novel Immunotherapic Strategy. Front. Pharmacol. 2020, 11, 656.
  7. Gerner, R.R.; Klepsch, V.; Macheiner, S.; Arnhard, K.; Adolph, T.E.; Grander, C.; Wieser, V.; Pfister, A.; Moser, P.; Hermann-Kleiter, N.; et al. NAD Metabolism Fuels Human and Mouse Intestinal Inflammation. Gut 2018, 67, 1813–1823.
  8. Kang, Y.H.; Tucker, S.A.; Quevedo, S.F.; Inal, A.; Korzenik, J.R.; Haigis, M.C. Metabolic Analyses Reveal Dysregulated NAD+ Metabolism and Altered Mitochondrial State in Ulcerative Colitis. PLoS ONE 2022, 17, e0273080.
  9. Katsyuba, E.; Romani, M.; Hofer, D.; Auwerx, J. NAD+ Homeostasis in Health and Disease. Nat. Metab. 2020, 2, 9–31.
  10. Han, X.; Uchiyama, T.; Sappington, P.L.; Yaguchi, A.; Yang, R.; Fink, M.P.; Delude, R.L. NAD+ Ameliorates Inflammation-Induced Epithelial Barrier Dysfunction in Cultured Enterocytes and Mouse Ileal Mucosa. J. Pharmacol. Exp. Ther. 2003, 307, 443–449.
  11. Shats, I.; Williams, J.G.; Liu, J.; Makarov, M.V.; Wu, X.; Lih, F.B.; Deterding, L.J.; Lim, C.; Xu, X.; Randall, T.A.; et al. Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway. Cell Metab. 2020, 31, 564–579.e7.
  12. Colombo, G.; Clemente, N.; Zito, A.; Bracci, C.; Colombo, F.S.; Sangaletti, S.; Jachetti, E.; Ribaldone, D.G.; Caviglia, G.P.; Pastorelli, L.; et al. Neutralization of Extracellular NAMPT (Nicotinamide Phosphoribosyltransferase) Ameliorates Experimental Murine Colitis. J. Mol. Med. (Berl.) 2020, 98, 595–612.
  13. Igarashi, M.; Guarente, L. MTORC1 and SIRT1 Cooperate to Foster Expansion of Gut Adult Stem Cells during Calorie Restriction. Cell 2016, 166, 436–450.
  14. Uchida, R.; Saito, Y.; Nogami, K.; Kajiyama, Y.; Suzuki, Y.; Kawase, Y.; Nakaoka, T.; Muramatsu, T.; Kimura, M.; Saito, H. Epigenetic Silencing of Lgr5 Induces Senescence of Intestinal Epithelial Organoids during the Process of Aging. NPJ Aging Mech. Dis. 2018, 4, 12.
  15. Lv, Q.; Wang, K.; Qiao, S.; Yang, L.; Xin, Y.; Dai, Y.; Wei, Z. Norisoboldine, a Natural AhR Agonist, Promotes Treg Differentiation and Attenuates Colitis via Targeting Glycolysis and Subsequent NAD+/SIRT1/SUV39H1/H3K9me3 Signaling Pathway. Cell Death Dis. 2018, 9, 258.
  16. Covarrubias, A.J.; Perrone, R.; Grozio, A.; Verdin, E. NAD+ Metabolism and Its Roles in Cellular Processes during Ageing. Nat. Rev. Mol. Cell Biol. 2021, 22, 119–141.
  17. Araki, T.; Sasaki, Y.; Milbrandt, J. Increased Nuclear NAD Biosynthesis and SIRT1 Activation Prevent Axonal Degeneration. Science 2004, 305, 1010–1013.
  18. Fulco, M.; Schiltz, R.L.; Iezzi, S.; King, M.T.; Zhao, P.; Kashiwaya, Y.; Hoffman, E.; Veech, R.L.; Sartorelli, V. Sir2 Regulates Skeletal Muscle Differentiation as a Potential Sensor of the Redox State. Mol. Cell. 2003, 12, 51–62.
  19. Luo, J.; Nikolaev, A.Y.; Imai, S.; Chen, D.; Su, F.; Shiloh, A.; Guarente, L.; Gu, W. Negative Control of P53 by Sir2alpha Promotes Cell Survival under Stress. Cell 2001, 107, 137–148.
  20. Lee, I.H.; Cao, L.; Mostoslavsky, R.; Lombard, D.B.; Liu, J.; Bruns, N.E.; Tsokos, M.; Alt, F.W.; Finkel, T. A Role for the NAD-Dependent Deacetylase Sirt1 in the Regulation of Autophagy. Proc. Natl. Acad. Sci. USA 2008, 105, 3374–3379.
  21. Cheng, H.-L.; Mostoslavsky, R.; Saito, S.; Manis, J.P.; Gu, Y.; Patel, P.; Bronson, R.; Appella, E.; Alt, F.W.; Chua, K.F. Developmental Defects and P53 Hyperacetylation in Sir2 Homolog (SIRT1)-Deficient Mice. Proc. Natl. Acad. Sci. USA 2003, 100, 10794–10799.
  22. Li, X. SIRT1 and Energy Metabolism. Acta Biochim. Biophys. Sin. 2013, 45, 51–60.
  23. Aguilar-Arnal, L.; Katada, S.; Orozco-Solis, R.; Sassone-Corsi, P. NAD+-SIRT1 Control of H3K4 Trimethylation through Circadian Deacetylation of MLL1. Nat. Struct. Mol. Biol. 2015, 22, 312.
  24. Asher, G.; Gatfield, D.; Stratmann, M.; Reinke, H.; Dibner, C.; Kreppel, F.; Mostoslavsky, R.; Alt, F.W.; Schibler, U. SIRT1 Regulates Circadian Clock Gene Expression through PER2 Deacetylation. Cell 2008, 134, 317–328.
  25. Bellet, M.M.; Nakahata, Y.; Boudjelal, M.; Watts, E.; Mossakowska, D.E.; Edwards, K.A.; Cervantes, M.; Astarita, G.; Loh, C.; Ellis, J.L.; et al. Pharmacological Modulation of Circadian Rhythms by Synthetic Activators of the Deacetylase SIRT1. Proc. Natl. Acad. Sci. USA 2013, 110, 3333–3338.
  26. Chang, H.-C.; Guarente, L. SIRT1 Mediates Central Circadian Control in the SCN by a Mechanism That Decays with Aging. Cell 2013, 153, 1448–1460.
  27. Nakahata, Y.; Kaluzova, M.; Grimaldi, B.; Sahar, S.; Hirayama, J.; Chen, D.; Guarente, L.P.; Sassone-Corsi, P. The NAD+-Dependent Deacetylase SIRT1 Modulates CLOCK-Mediated Chromatin Remodeling and Circadian Control. Cell 2008, 134, 329–340.
  28. Yeung, F.; Hoberg, J.E.; Ramsey, C.S.; Keller, M.D.; Jones, D.R.; Frye, R.A.; Mayo, M.W. Modulation of NF-ΚB-Dependent Transcription and Cell Survival by the SIRT1 Deacetylase. EMBO J. 2004, 23, 2369–2380.
  29. Nemoto, S.; Fergusson, M.M.; Finkel, T. SIRT1 Functionally Interacts with the Metabolic Regulator and Transcriptional Coactivator PGC-1. J. Biol. Chem. 2005, 280, 16456–16460.
  30. Park, S.; Shin, J.; Bae, J.; Han, D.; Park, S.-R.; Shin, J.; Lee, S.K.; Park, H.-W. SIRT1 Alleviates LPS-Induced IL-1β Production by Suppressing NLRP3 Inflammasome Activation and ROS Production in Trophoblasts. Cells 2020, 9, 728.
  31. Liu, T.F.; Yoza, B.K.; El Gazzar, M.; Vachharajani, V.T.; McCall, C.E. NAD+-Dependent SIRT1 Deacetylase Participates in Epigenetic Reprogramming during Endotoxin Tolerance. J. Biol. Chem. 2011, 286, 9856–9864.
  32. Schug, T.T.; Li, X. Surprising Sirtuin Crosstalk in the Heart. Aging (Albany N. Y.) 2010, 2, 129–132.
  33. Qin, W.; Yang, T.; Ho, L.; Zhao, Z.; Wang, J.; Chen, L.; Zhao, W.; Thiyagarajan, M.; MacGrogan, D.; Rodgers, J.T.; et al. Neuronal SIRT1 Activation as a Novel Mechanism Underlying the Prevention of Alzheimer Disease Amyloid Neuropathology by Calorie Restriction. J. Biol. Chem. 2006, 281, 21745–21754.
  34. Liu, T.F.; Vachharajani, V.; Millet, P.; Bharadwaj, M.S.; Molina, A.J.; McCall, C.E. Sequential Actions of SIRT1-RELB-SIRT3 Coordinate Nuclear-Mitochondrial Communication during Immunometabolic Adaptation to Acute Inflammation and Sepsis. J. Biol. Chem. 2015, 290, 396–408.
  35. Lo Sasso, G.; Menzies, K.J.; Mottis, A.; Piersigilli, A.; Perino, A.; Yamamoto, H.; Schoonjans, K.; Auwerx, J. SIRT2 Deficiency Modulates Macrophage Polarization and Susceptibility to Experimental Colitis. PLoS ONE 2014, 9, e103573.
  36. Zhang, Y.; Wang, X.-L.; Zhou, M.; Kang, C.; Lang, H.-D.; Chen, M.-T.; Hui, S.-C.; Wang, B.; Mi, M.-T. Crosstalk between Gut Microbiota and Sirtuin-3 in Colonic Inflammation and Tumorigenesis. Exp. Mol. Med. 2018, 50, 1–11.
  37. Wang, F.; Wang, K.; Xu, W.; Zhao, S.; Ye, D.; Wang, Y.; Xu, Y.; Zhou, L.; Chu, Y.; Zhang, C.; et al. SIRT5 Desuccinylates and Activates Pyruvate Kinase M2 to Block Macrophage IL-1β Production and to Prevent DSS-Induced Colitis in Mice. Cell Rep. 2017, 19, 2331–2344.
  38. Liu, F.; Bu, H.-F.; Geng, H.; De Plaen, I.G.; Gao, C.; Wang, P.; Wang, X.; Kurowski, J.A.; Yang, H.; Qian, J.; et al. Sirtuin-6 Preserves R-Spondin-1 Expression and Increases Resistance of Intestinal Epithelium to Injury in Mice. Mol. Med. 2017, 23, 272–284.
  39. Caruso, R.; Marafini, I.; Franzè, E.; Stolfi, C.; Zorzi, F.; Monteleone, I.; Caprioli, F.; Colantoni, A.; Sarra, M.; Sedda, S.; et al. Defective Expression of SIRT1 Contributes to Sustain Inflammatory Pathways in the Gut. Mucosal. Immunol. 2014, 7, 1467–1479.
  40. Wellman, A.S.; Metukuri, M.R.; Kazgan, N.; Xu, X.; Xu, Q.; Ren, N.S.X.; Czopik, A.; Shanahan, M.T.; Kang, A.; Chen, W.; et al. Intestinal Epithelial Sirtuin 1 Regulates Intestinal Inflammation during Aging in Mice by Altering the Intestinal Microbiota. Gastroenterology 2017, 153, 772–786.
  41. Lo Sasso, G.; Ryu, D.; Mouchiroud, L.; Fernando, S.C.; Anderson, C.L.; Katsyuba, E.; Piersigilli, A.; Hottiger, M.O.; Schoonjans, K.; Auwerx, J. Loss of Sirt1 Function Improves Intestinal Anti-Bacterial Defense and Protects from Colitis-Induced Colorectal Cancer. PLoS ONE 2014, 9, e102495.
  42. Yoshizaki, T.; Milne, J.C.; Imamura, T.; Schenk, S.; Sonoda, N.; Babendure, J.L.; Lu, J.-C.; Smith, J.J.; Jirousek, M.R.; Olefsky, J.M. SIRT1 Exerts Anti-Inflammatory Effects and Improves Insulin Sensitivity in Adipocytes. Mol. Cell. Biol. 2009, 29, 1363–1374.
  43. Larrosa, M.; Yañéz-Gascón, M.J.; Selma, M.V.; González-Sarrías, A.; Toti, S.; Cerón, J.J.; Tomás-Barberán, F.; Dolara, P.; Espín, J.C. Effect of a Low Dose of Dietary Resveratrol on Colon Microbiota, Inflammation and Tissue Damage in a DSS-Induced Colitis Rat Model. J. Agric. Food Chem. 2009, 57, 2211–2220.
  44. Sandoval-Montes, C.; Santos-Argumedo, L. CD38 Is Expressed Selectively during the Activation of a Subset of Mature T Cells with Reduced Proliferation but Improved Potential to Produce Cytokines. J. Leukoc. Biol. 2005, 77, 513–521.
  45. Hogan, K.A.; Chini, C.C.S.; Chini, E.N. The Multi-Faceted Ecto-Enzyme CD38: Roles in Immunomodulation, Cancer, Aging, and Metabolic Diseases. Front. Immunol. 2019, 10, 1187.
  46. Zocchi, E.; Franco, L.; Guida, L.; Benatti, U.; Bargellesi, A.; Malavasi, F.; Lee, H.C.; De Flora, A. A Single Protein Immunologically Identified as CD38 Displays NAD+ Glycohydrolase, ADP-Ribosyl Cyclase and Cyclic ADP-Ribose Hydrolase Activities at the Outer Surface of Human Erythrocytes. Biochem. Biophys. Res. Commun. 1993, 196, 1459–1465.
  47. Escande, C.; Nin, V.; Price, N.L.; Capellini, V.; Gomes, A.P.; Barbosa, M.T.; O’Neil, L.; White, T.A.; Sinclair, D.A.; Chini, E.N. Flavonoid Apigenin Is an Inhibitor of the NAD+ Ase CD38: Implications for Cellular NAD+ Metabolism, Protein Acetylation, and Treatment of Metabolic Syndrome. Diabetes 2013, 62, 1084–1093.
  48. Kellenberger, E.; Kuhn, I.; Schuber, F.; Muller-Steffner, H. Flavonoids as Inhibitors of Human CD38. Bioorg. Med. Chem. Lett. 2011, 21, 3939–3942.
  49. Glaría, E.; Valledor, A.F. Roles of CD38 in the Immune Response to Infection. Cells 2020, 9, 228.
  50. Perraud, A.-L.; Fleig, A.; Dunn, C.A.; Bagley, L.A.; Launay, P.; Schmitz, C.; Stokes, A.J.; Zhu, Q.; Bessman, M.J.; Penner, R.; et al. ADP-Ribose Gating of the Calcium-Permeable LTRPC2 Channel Revealed by Nudix Motif Homology. Nature 2001, 411, 595–599.
  51. Young, G.S.; Choleris, E.; Lund, F.E.; Kirkland, J.B. Decreased CADPR and Increased NAD+ in the Cd38−/− Mouse. Biochem. Biophys. Res. Commun. 2006, 346, 188–192.
  52. Camacho-Pereira, J.; Tarragó, M.G.; Chini, C.C.S.; Nin, V.; Escande, C.; Warner, G.M.; Puranik, A.S.; Schoon, R.A.; Reid, J.M.; Galina, A.; et al. CD38 Dictates Age-Related NAD Decline and Mitochondrial Dysfunction through an SIRT3-Dependent Mechanism. Cell Metab. 2016, 23, 1127–1139.
  53. Tarragó, M.G.; Chini, C.C.S.; Kanamori, K.S.; Warner, G.M.; Caride, A.; de Oliveira, G.C.; Rud, M.; Samani, A.; Hein, K.Z.; Huang, R.; et al. A Potent and Specific CD38 Inhibitor Ameliorates Age-Related Metabolic Dysfunction by Reversing Tissue NAD+ Decline. Cell Metab. 2018, 27, 1081–1095.e10.
  54. Schneider, M.; Schumacher, V.; Lischke, T.; Lücke, K.; Meyer-Schwesinger, C.; Velden, J.; Koch-Nolte, F.; Mittrücker, H.-W. CD38 Is Expressed on Inflammatory Cells of the Intestine and Promotes Intestinal Inflammation. PLoS ONE 2015, 10, e0126007.
  55. Joosse, M.E.; Menckeberg, C.L.; de Ruiter, L.F.; Raatgeep, H.R.C.; van Berkel, L.A.; Simons-Oosterhuis, Y.; Tindemans, I.; Muskens, A.F.M.; Hendriks, R.W.; Hoogenboezem, R.M.; et al. Frequencies of Circulating Regulatory TIGIT+CD38+ Effector T Cells Correlate with the Course of Inflammatory Bowel Disease. Mucosal. Immunol. 2019, 12, 154–163.
  56. Mestas, J.; Hughes, C.C.W. Of Mice and Not Men: Differences between Mouse and Human Immunology. J. Immunol. 2004, 172, 2731–2738.
  57. Burgos, E.S. NAMPT in Regulated NAD Biosynthesis and Its Pivotal Role in Human Metabolism. Curr. Med. Chem. 2011, 18, 1947–1961.
  58. Moschen, A.R.; Gerner, R.R.; Tilg, H. Pre-B Cell Colony Enhancing Factor/NAMPT/Visfatin in Inflammation and Obesity-Related Disorders. Curr. Pharm. Des. 2010, 16, 1913–1920.
  59. Carbone, F.; Liberale, L.; Bonaventura, A.; Vecchiè, A.; Casula, M.; Cea, M.; Monacelli, F.; Caffa, I.; Bruzzone, S.; Montecucco, F.; et al. Regulation and Function of Extracellular Nicotinamide Phosphoribosyltransferase/Visfatin. Compr. Physiol. 2017, 7, 603–621.
  60. Jia, S.H.; Li, Y.; Parodo, J.; Kapus, A.; Fan, L.; Rotstein, O.D.; Marshall, J.C. Pre–B Cell Colony–Enhancing Factor Inhibits Neutrophil Apoptosis in Experimental Inflammation and Clinical Sepsis. J. Clin. Investig. 2004, 113, 1318–1327.
  61. Meier, F.M.P.; Frommer, K.W.; Peters, M.A.; Brentano, F.; Lefèvre, S.; Schröder, D.; Kyburz, D.; Steinmeyer, J.; Rehart, S.; Gay, S.; et al. Visfatin/Pre-B-Cell Colony-Enhancing Factor (PBEF), a Proinflammatory and Cell Motility-Changing Factor in Rheumatoid Arthritis. J. Biol. Chem. 2012, 287, 28378–28385.
  62. El-Mesallamy, H.O.; Kassem, D.H.; El-Demerdash, E.; Amin, A.I. Vaspin and Visfatin/Nampt Are Interesting Interrelated Adipokines Playing a Role in the Pathogenesis of Type 2 Diabetes Mellitus. Metabolism 2011, 60, 63–70.
  63. Ye, C.; Qi, L.; Li, X.; Wang, J.; Yu, J.; Zhou, B.; Guo, C.; Chen, J.; Zheng, S. Targeting the NAD+ Salvage Pathway Suppresses APC Mutation-Driven Colorectal Cancer Growth and Wnt/β-Catenin Signaling via Increasing Axin Level. Cell Commun. Signal. 2020, 18, 16.
  64. Cameron, A.M.; Castoldi, A.; Sanin, D.E.; Flachsmann, L.J.; Field, C.S.; Puleston, D.J.; Kyle, R.L.; Patterson, A.E.; Hässler, F.; Buescher, J.M.; et al. Inflammatory Macrophage Dependence on NAD+ Salvage Is a Consequence of Reactive Oxygen Species-Mediated DNA Damage. Nat. Immunol. 2019, 20, 420–432.
  65. Kraus, W.L.; Hottiger, M.O. PARP-1 and Gene Regulation: Progress and Puzzles. Mol. Aspects. Med. 2013, 34, 1109–1123.
  66. Goodwin, P.M.; Lewis, P.J.; Davies, M.I.; Skidmore, C.J.; Shall, S. The Effect of Gamma Radiation and Neocarzinostatin of NAD and ATP Levels in Mouse Leukaemia Cells. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1978, 543, 576–582.
  67. Skidmore, C.J.; Davies, M.I.; Goodwin, P.M.; Halldorsson, H.; Lewis, P.J.; Shall, S.; Zia’ee, A.A. The Involvement of Poly(ADP-Ribose) Polymerase in the Degradation of NAD Caused by Gamma-Radiation and N-Methyl-N-Nitrosourea. Eur. J. Biochem. 1979, 101, 135–142.
  68. Gariani, K.; Ryu, D.; Menzies, K.J.; Yi, H.-S.; Stein, S.; Zhang, H.; Perino, A.; Lemos, V.; Katsyuba, E.; Jha, P.; et al. Inhibiting Poly ADP-Ribosylation Increases Fatty Acid Oxidation and Protects against Fatty Liver Disease. J. Hepatol. 2017, 66, 132–141.
  69. Mukhopadhyay, P.; Horváth, B.; Rajesh, M.; Varga, Z.V.; Gariani, K.; Ryu, D.; Cao, Z.; Holovac, E.; Park, O.; Zhou, Z.; et al. PARP Inhibition Protects against Alcoholic and Non-Alcoholic Steatohepatitis. J. Hepatol. 2017, 66, 589–600.
  70. Mangerich, A.; Bürkle, A. Pleiotropic Cellular Functions of PARP1 in Longevity and Aging: Genome Maintenance Meets Inflammation. Oxid. Med. Cell. Longev. 2012, 2012, 321653.
  71. Jagtap, P.; Szabó, C. Poly(ADP-Ribose) Polymerase and the Therapeutic Effects of Its Inhibitors. Nat. Rev. Drug Discov. 2005, 4, 421–440.
  72. Larmonier, C.B.; Shehab, K.W.; Laubitz, D.; Jamwal, D.R.; Ghishan, F.K.; Kiela, P.R. Transcriptional Reprogramming and Resistance to Colonic Mucosal Injury in Poly(ADP-Ribose) Polymerase 1 (PARP1)-Deficient Mice. J. Biol. Chem. 2016, 291, 8918–8930.
  73. Popoff, I.; Jijon, H.; Monia, B.; Tavernini, M.; Ma, M.; McKay, R.; Madsen, K. Antisense Oligonucleotides to Poly(ADP-Ribose) Polymerase-2 Ameliorate Colitis in Interleukin-10-Deficient Mice. J. Pharmacol. Exp. Ther. 2002, 303, 1145–1154.
  74. Lucena-Cacace, A.; Otero-Albiol, D.; Jiménez-García, M.P.; Muñoz-Galvan, S.; Carnero, A. NAMPT Is a Potent Oncogene in Colon Cancer Progression That Modulates Cancer Stem Cell Properties and Resistance to Therapy through Sirt1 and PARP. Clin. Cancer Res. 2018, 24, 1202–1215.
  75. Sano, A.; Endo, N.; Takitani, S. Fluorometric Assay of Rat Tissue N-Methyltransferases with Nicotinamide and Four Isomeric Methylnicotinamides. Chem. Pharm. Bull. (Tokyo) 1992, 40, 153–156.
  76. Wnorowski, A.; Wnorowska, S.; Kurzepa, J.; Parada-Turska, J. Alterations in Kynurenine and NAD+ Salvage Pathways during the Successful Treatment of Inflammatory Bowel Disease Suggest HCAR3 and NNMT as Potential Drug Targets. Int. J. Mol. Sci. 2021, 22, 13497.
  77. Wang, Y.; Zeng, J.; Wu, W.; Xie, S.; Yu, H.; Li, G.; Zhu, T.; Li, F.; Lu, J.; Wang, G.Y.; et al. Nicotinamide N-Methyltransferase Enhances Chemoresistance in Breast Cancer through SIRT1 Protein Stabilization. Breast Cancer Res. 2019, 21, 64.
  78. Cui, Y.; Yang, D.; Wang, W.; Zhang, L.; Liu, H.; Ma, S.; Guo, W.; Yao, M.; Zhang, K.; Li, W.; et al. Nicotinamide N-Methyltransferase Decreases 5-Fluorouracil Sensitivity in Human Esophageal Squamous Cell Carcinoma through Metabolic Reprogramming and Promoting the Warburg Effect. Mol. Carcinog. 2020, 59, 940–954.
  79. Li, G.; Kong, B.; Tong, Q.; Li, Y.; Chen, L.; Zeng, J.; Yu, H.; Xie, X.; Zhang, J. Vanillin Downregulates NNMT and Attenuates NNMT-related Resistance to 5-fluorouracil via ROS-induced Cell Apoptosis in Colorectal Cancer Cells. Oncol. Rep. 2021, 45, 110.
  80. Campagna, R.; Salvolini, E.; Pompei, V.; Pozzi, V.; Salvucci, A.; Molinelli, E.; Brisigotti, V.; Sartini, D.; Campanati, A.; Offidani, A.; et al. Nicotinamide N-Methyltransferase Gene Silencing Enhances Chemosensitivity of Melanoma Cell Lines. Pigment. Cell Melanoma. Res. 2021, 34, 1039–1048.
  81. Hong, S.; Zhai, B.; Pissios, P. Nicotinamide N-Methyltransferase Interacts with Enzymes of the Methionine Cycle and Regulates Methyl Donor Metabolism. Biochemistry 2018, 57, 5775–5779.
  82. Takahashi, R.; Kanda, T.; Komatsu, M.; Itoh, T.; Minakuchi, H.; Urai, H.; Kuroita, T.; Shigaki, S.; Tsukamoto, T.; Higuchi, N.; et al. The Significance of NAD + Metabolites and Nicotinamide N-Methyltransferase in Chronic Kidney Disease. Sci. Rep. 2022, 12, 6398.
  83. Kraus, D.; Yang, Q.; Kong, D.; Banks, A.S.; Zhang, L.; Rodgers, J.T.; Pirinen, E.; Pulinilkunnil, T.C.; Gong, F.; Wang, Y.; et al. Nicotinamide N-Methyltransferase Knockdown Protects against Diet-Induced Obesity. Nature 2014, 508, 258–262.
  84. Kanakkanthara, A.; Kurmi, K.; Ekstrom, T.L.; Hou, X.; Purfeerst, E.R.; Heinzen, E.P.; Correia, C.; Huntoon, C.J.; O’Brien, D.; Wahner Hendrickson, A.E.; et al. BRCA1 Deficiency Upregulates NNMT, Which Reprograms Metabolism and Sensitizes Ovarian Cancer Cells to Mitochondrial Metabolic Targeting Agents. Cancer Res. 2019, 79, 5920–5929.
  85. Kim, H.C.; Mofarrahi, M.; Vassilakopoulos, T.; Maltais, F.; Sigala, I.; Debigare, R.; Bellenis, I.; Hussain, S.N.A. Expression and Functional Significance of Nicotinamide N-Methyl Transferase in Skeletal Muscles of Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2010, 181, 797–805.
  86. Savarimuthu Francis, S.M.; Larsen, J.E.; Pavey, S.J.; Duhig, E.E.; Clarke, B.E.; Bowman, R.V.; Hayward, N.K.; Fong, K.M.; Yang, I.A. Genes and Gene Ontologies Common to Airflow Obstruction and Emphysema in the Lungs of Patients with COPD. PLoS ONE 2011, 6, e17442.
  87. Sternak, M.; Khomich, T.I.; Jakubowski, A.; Szafarz, M.; Szczepański, W.; Białas, M.; Stojak, M.; Szymura-Oleksiak, J.; Chłopicki, S. Nicotinamide N-Methyltransferase (NNMT) and 1-Methylnicotinamide (MNA) in Experimental Hepatitis Induced by Concanavalin A in the Mouse. Pharmacol. Rep. 2010, 62, 483–493.
  88. Fedorowicz, A.; Mateuszuk, Ł.; Kopec, G.; Skórka, T.; Kutryb-Zając, B.; Zakrzewska, A.; Walczak, M.; Jakubowski, A.; Łomnicka, M.; Słomińska, E.; et al. Activation of the Nicotinamide N-Methyltransferase (NNMT)-1-Methylnicotinamide (MNA) Pathway in Pulmonary Hypertension. Respir. Res. 2016, 17, 108.
  89. Andrieux, P.; Chevillard, C.; Cunha-Neto, E.; Nunes, J.P.S. Mitochondria as a Cellular Hub in Infection and Inflammation. Int. J. Mol. Sci. 2021, 22, 11338.
  90. Vragović, J.; Vraţić, H. Inflammatory Bowel Disease. Prog. Drug Res. 2016, 71, 117–122.
  91. Chakrabarty, R.P.; Chandel, N.S. Mitochondria as Signaling Organelles Control Mammalian Stem Cell Fate. Cell Stem Cell 2021, 28, 394–408.
  92. Xie, N.; Zhang, L.; Gao, W.; Huang, C.; Huber, P.E.; Zhou, X.; Li, C.; Shen, G.; Zou, B. NAD+ Metabolism: Pathophysiologic Mechanisms and Therapeutic Potential. Signal. Transduct. Target Ther. 2020, 5, 227.
  93. Fritze, C.E.; Verschueren, K.; Strich, R.; Easton Esposito, R. Direct Evidence for SIR2 Modulation of Chromatin Structure in Yeast RDNA. EMBO J. 1997, 16, 6495–6509.
  94. Bryan, S.; Baregzay, B.; Spicer, D.; Singal, P.K.; Khaper, N. Redox-Inflammatory Synergy in the Metabolic Syndrome. Can. J. Physiol. Pharmacol. 2013, 91, 22–30.
  95. Mitchell, S.J.; Bernier, M.; Aon, M.A.; Cortassa, S.; Kim, E.Y.; Fang, E.F.; Palacios, H.H.; Ali, A.; Navas-Enamorado, I.; Di Francesco, A.; et al. Nicotinamide Improves Aspects of Healthspan, but Not Lifespan, in Mice. Cell Metab. 2018, 27, 667–676.e4.
  96. Fang, E.F.; Scheibye-Knudsen, M.; Brace, L.E.; Kassahun, H.; SenGupta, T.; Nilsen, H.; Mitchell, J.R.; Croteau, D.L.; Bohr, V.A. Defective Mitophagy in XPA via PARP1 Hyperactivation and NAD+/SIRT1 Reduction. Cell 2014, 157, 882–896.
  97. Lautrup, S.; Sinclair, D.A.; Mattson, M.P.; Fang, E.F. NAD+ in Brain Aging and Neurodegenerative Disorders. Cell Metab. 2019, 30, 630–655.
  98. Baixauli, F.; Acín-Pérez, R.; Villarroya-Beltrí, C.; Mazzeo, C.; Nuñez-Andrade, N.; Gabandé-Rodriguez, E.; Dolores Ledesma, M.; Blázquez, A.; Martin, M.A.; Falcón-Pérez, J.M.; et al. Mitochondrial Respiration Controls Lysosomal Function during Inflammatory T Cell Responses. Cell Metab. 2015, 22, 485–498.
  99. Gomes, A.P.; Price, N.L.; Ling, A.J.Y.; Moslehi, J.J.; Montgomery, M.K.; Rajman, L.; White, J.P.; Teodoro, J.S.; Wrann, C.D.; Hubbard, B.P.; et al. Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging. Cell 2013, 155, 1624–1638.
  100. Minhas, P.S.; Liu, L.; Moon, P.K.; Joshi, A.U.; Dove, C.; Mhatre, S.; Contrepois, K.; Wang, Q.; Lee, B.A.; Coronado, M.; et al. Macrophage de Novo NAD+ Synthesis Specifies Immune Function in Aging and Inflammation. Nat. Immunol. 2019, 20, 50–63.
  101. Navarro, M.N.; Gómez de las Heras, M.M.; Mittelbrunn, M. Nicotinamide Adenine Dinucleotide Metabolism in the Immune Response, Autoimmunity and Inflammageing. Br. J. Pharmacol. 2022, 179, 1839–1856.
  102. Barbosa, M.T.P.; Soares, S.M.; Novak, C.M.; Sinclair, D.; Levine, J.A.; Aksoy, P.; Chini, E.N. The Enzyme CD38 (a NAD Glycohydrolase, EC 3.2.2.5) Is Necessary for the Development of Diet-Induced Obesity. FASEB J. 2007, 21, 3629–3639.
  103. Mouchiroud, L.; Houtkooper, R.H.; Moullan, N.; Katsyuba, E.; Ryu, D.; Cantó, C.; Mottis, A.; Jo, Y.-S.; Viswanathan, M.; Schoonjans, K.; et al. The NAD+/Sirtuin Pathway Modulates Longevity through Activation of Mitochondrial UPR and FOXO Signaling. Cell 2013, 154, 430–441.
  104. Karamanlidis, G.; Lee, C.F.; Garcia-Menendez, L.; Kolwicz, S.C.; Suthammarak, W.; Gong, G.; Sedensky, M.M.; Morgan, P.G.; Wang, W.; Tian, R. Mitochondrial Complex I Deficiency Increases Protein Acetylation and Accelerates Heart Failure. Cell Metab. 2013, 18, 239–250.
  105. Desdín-Micó, G.; Soto-Heredero, G.; Aranda, J.F.; Oller, J.; Carrasco, E.; Gabandé-Rodríguez, E.; Blanco, E.M.; Alfranca, A.; Cussó, L.; Desco, M.; et al. T Cells with Dysfunctional Mitochondria Induce Multimorbidity and Premature Senescence. Science 2020, 368, 1371–1376.
  106. Almeida, L.; Dhillon-LaBrooy, A.; Castro, C.N.; Adossa, N.; Carriche, G.M.; Guderian, M.; Lippens, S.; Dennerlein, S.; Hesse, C.; Lambrecht, B.N.; et al. Ribosome-Targeting Antibiotics Impair T Cell Effector Function and Ameliorate Autoimmunity by Blocking Mitochondrial Protein Synthesis. Immunity 2021, 54, 68–83.e6.
  107. Roediger, W.E. The Colonic Epithelium in Ulcerative Colitis: An Energy-Deficiency Disease? Lancet 1980, 2, 712–715.
  108. Haberman, Y.; Karns, R.; Dexheimer, P.J.; Schirmer, M.; Somekh, J.; Jurickova, I.; Braun, T.; Novak, E.; Bauman, L.; Collins, M.H.; et al. Ulcerative Colitis Mucosal Transcriptomes Reveal Mitochondriopathy and Personalized Mechanisms Underlying Disease Severity and Treatment Response. Nat. Commun. 2019, 10, 38.
  109. Smith, S.A.; Ogawa, S.A.; Chau, L.; Whelan, K.A.; Hamilton, K.E.; Chen, J.; Tan, L.; Chen, E.Z.; Keilbaugh, S.; Fogt, F.; et al. Mitochondrial Dysfunction in Inflammatory Bowel Disease Alters Intestinal Epithelial Metabolism of Hepatic Acylcarnitines. J. Clin. Investig. 2020, 131, e133371.
  110. Graham, D.B.; Xavier, R.J. Pathway Paradigms Revealed from the Genetics of Inflammatory Bowel Disease. Nature 2020, 578, 527–539.
  111. Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Schumm, L.P.; Sharma, Y.; Anderson, C.A.; et al. Host-Microbe Interactions Have Shaped the Genetic Architecture of Inflammatory Bowel Disease. Nature 2012, 491, 119–124.
  112. Lahiri, A.; Hedl, M.; Yan, J.; Abraham, C. Human LACC1 Increases Innate Receptor-Induced Responses and a LACC1 Disease-Risk Variant Modulates These Outcomes. Nat. Commun. 2017, 8, 15614.
  113. Muise, A.M.; Xu, W.; Guo, C.-H.; Walters, T.D.; Wolters, V.M.; Fattouh, R.; Lam, G.Y.; Hu, P.; Murchie, R.; Sherlock, M.; et al. NADPH Oxidase Complex and IBD Candidate Gene Studies: Identification of a Rare Variant in NCF2 That Results in Reduced Binding to RAC2. Gut 2012, 61, 1028–1035.
  114. Rivas, M.A.; Beaudoin, M.; Gardet, A.; Stevens, C.; Sharma, Y.; Zhang, C.K.; Boucher, G.; Ripke, S.; Ellinghaus, D.; Burtt, N.; et al. Deep Resequencing of GWAS Loci Identifies Independent Rare Variants Associated with Inflammatory Bowel Disease. Nat. Genet. 2011, 43, 1066–1073.
  115. Suzuki, T. Regulation of Intestinal Epithelial Permeability by Tight Junctions. Cell. Mol. Life Sci. 2013, 70, 631–659.
  116. Garcia-Hernandez, V.; Quiros, M.; Nusrat, A. Intestinal Epithelial Claudins: Expression and Regulation in Homeostasis and Inflammation. Ann. N. Y. Acad. Sci. 2017, 1397, 66–79.
  117. Tsukita, S.; Furuse, M.; Itoh, M. Multifunctional Strands in Tight Junctions. Nat. Rev. Mol. Cell Biol. 2001, 2, 285–293.
  118. Anderson, J.M.; Van Itallie, C.M. Tight Junctions and the Molecular Basis for Regulation of Paracellular Permeability. Am. J. Physiol. 1995, 269, G467–G475.
  119. Unno, N.; Fink, M.P. Intestinal Epithelial Hyperpermeability. Mechanisms and Relevance to Disease. Gastroenterol. Clin. N. Am. 1998, 27, 289–307.
  120. Khan, A.U.; Delude, R.L.; Han, Y.Y.; Sappington, P.L.; Han, X.; Carcillo, J.A.; Fink, M.P. Liposomal NAD(+) Prevents Diminished O(2) Consumption by Immunostimulated Caco-2 Cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002, 282, L1082–L1091.
  121. Bai, M.; Lu, C.; An, L.; Gao, Q.; Xie, W.; Miao, F.; Chen, X.; Pan, Y.; Wang, Q. SIRT1 Relieves Necrotizing Enterocolitis through Inactivation of Hypoxia-Inducible Factor (HIF)-1a. Cell Cycle 2020, 19, 2018–2027.
  122. Berger, F.; Ramírez-Hernández, M.H.; Ziegler, M. The New Life of a Centenarian: Signalling Functions of NAD(P). Trends Biochem. Sci. 2004, 29, 111–118.
  123. Pollak, N.; Dölle, C.; Ziegler, M. The Power to Reduce: Pyridine Nucleotides–Small Molecules with a Multitude of Functions. Biochem. J. 2007, 402, 205–218.
  124. Jaiswal, A.K. Regulation of Genes Encoding NAD(P)H:Quinone Oxidoreductases. Free Radic. Biol. Med. 2000, 29, 254–262.
  125. Nam, S.T.; Hwang, J.H.; Kim, D.H.; Park, M.J.; Lee, I.H.; Nam, H.J.; Kang, J.K.; Kim, S.K.; Hwang, J.S.; Chung, H.K.; et al. Role of NADH: Quinone Oxidoreductase-1 in the Tight Junctions of Colonic Epithelial Cells. BMB Rep. 2014, 47, 494–499.
  126. Folmes, C.D.L.; Dzeja, P.P.; Nelson, T.J.; Terzic, A. Metabolic Plasticity in Stem Cell Homeostasis and Differentiation. Cell Stem Cell 2012, 11, 596–606.
  127. Zhang, H.; Menzies, K.J.; Auwerx, J. The Role of Mitochondria in Stem Cell Fate and Aging. Development 2018, 145, dev143420.
  128. Brown, K.; Xie, S.; Qiu, X.; Mohrin, M.; Shin, J.; Liu, Y.; Zhang, D.; Scadden, D.T.; Chen, D. SIRT3 Reverses Aging-Associated Degeneration. Cell Rep. 2013, 3, 319–327.
  129. Mohrin, M.; Shin, J.; Liu, Y.; Brown, K.; Luo, H.; Xi, Y.; Haynes, C.M.; Chen, D. STEM CELL AGING. A Mitochondrial UPR-Mediated Metabolic Checkpoint Regulates Hematopoietic Stem Cell Aging. Science 2015, 347, 1374–1377.
  130. Neelakantan, H.; Brightwell, C.R.; Graber, T.G.; Maroto, R.; Leo Wang, H.-Y.; McHardy, S.F.; Papaconstantinou, J.; Fry, C.S.; Watowich, S.J. Small Molecule Nicotinamide N-Methyltransferase Inhibitor Activates Senescent Muscle Stem Cells and Improves Regenerative Capacity of Aged Skeletal Muscle. Biochem. Pharmacol. 2019, 163, 481–492.
  131. Zhang, H.; Ryu, D.; Wu, Y.; Gariani, K.; Wang, X.; Luan, P.; D’Amico, D.; Ropelle, E.R.; Lutolf, M.P.; Aebersold, R.; et al. NAD+ Repletion Improves Mitochondrial and Stem Cell Function and Enhances Life Span in Mice. Science 2016, 352, 1436–1443.
  132. Biteau, B.; Hochmuth, C.E.; Jasper, H. Maintaining Tissue Homeostasis: Dynamic Control of Somatic Stem Cell Activity. Cell Stem Cell 2011, 9, 402–411.
  133. Barker, N.; Tan, S.; Clevers, H. Lgr Proteins in Epithelial Stem Cell Biology. Development 2013, 140, 2484–2494.
  134. Barker, N.; van Es, J.H.; Kuipers, J.; Kujala, P.; van den Born, M.; Cozijnsen, M.; Haegebarth, A.; Korving, J.; Begthel, H.; Peters, P.J.; et al. Identification of Stem Cells in Small Intestine and Colon by Marker Gene Lgr5. Nature 2007, 449, 1003–1007.
  135. Mihaylova, M.M.; Cheng, C.-W.; Cao, A.Q.; Tripathi, S.; Mana, M.D.; Bauer-Rowe, K.E.; Abu-Remaileh, M.; Clavain, L.; Erdemir, A.; Lewis, C.A.; et al. Fasting Activates Fatty Acid Oxidation to Enhance Intestinal Stem Cell Function during Homeostasis and Aging. Cell Stem Cell 2018, 22, 769–778.e4.
  136. Nalapareddy, K.; Nattamai, K.J.; Kumar, R.S.; Karns, R.; Wikenheiser-Brokamp, K.A.; Sampson, L.L.; Mahe, M.M.; Sundaram, N.; Yacyshyn, M.-B.; Yacyshyn, B.; et al. Canonical Wnt Signaling Ameliorates Aging of Intestinal Stem Cells. Cell Rep. 2017, 18, 2608–2621.
  137. Annunziata, F.; Rasa, S.M.M.; Krepelova, A.; Lu, J.; Minetti, A.; Omrani, O.; Nunna, S.; Adam, L.; Käppel, S.; Neri, F. Paneth Cells Drive Intestinal Stem Cell Competition and Clonality in Aging and Calorie Restriction. Eur. J. Cell Biol. 2022, 101, 151282.
More
Information
Subjects: Immunology
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , ,
View Times: 795
Revisions: 2 times (View History)
Update Date: 26 Jun 2023
1000/1000
Video Production Service