Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 4116 2023-06-13 13:17:04 |
2 references update Meta information modification 4116 2023-06-14 07:06:23 |

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Sánchez, M.L.; Rodríguez, F.D.; Coveñas, R. Neuropeptide Y Peptide Family and Cancer. Encyclopedia. Available online: (accessed on 15 June 2024).
Sánchez ML, Rodríguez FD, Coveñas R. Neuropeptide Y Peptide Family and Cancer. Encyclopedia. Available at: Accessed June 15, 2024.
Sánchez, Manuel Lisardo, Francisco D. Rodríguez, Rafael Coveñas. "Neuropeptide Y Peptide Family and Cancer" Encyclopedia, (accessed June 15, 2024).
Sánchez, M.L., Rodríguez, F.D., & Coveñas, R. (2023, June 13). Neuropeptide Y Peptide Family and Cancer. In Encyclopedia.
Sánchez, Manuel Lisardo, et al. "Neuropeptide Y Peptide Family and Cancer." Encyclopedia. Web. 13 June, 2023.
Neuropeptide Y Peptide Family and Cancer

Peptidergic systems are involved in cancer progression and regulate crucial roles such as cell proliferation, migration, and angiogenesis. Available data on the involvement of neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP) and their receptors (YRs) in cancer are updated. The structure and dynamics of YRs and their intracellular signaling pathways are also studied. 

NPY PYY PP neuropeptide Y Y receptor cancer

1. Introduction

Chemotherapy and radiotherapy are, unfortunately, unspecific antitumor treatments currently used in clinical practice. Both treatments lead to severe side effects (e.g., radiotherapy can damage healthy tissues); thus, new antitumor strategies are urgently needed. Peptidergic systems are involved in cancer progression and regulate crucial roles such as cell proliferation, migration, and angiogenesis [1][2]. In this sense, the knowledge of the roles played by the substance P/neurokinin-1 receptor system in cancer progression has been dramatically increased in recent years and, according to critical findings, the repurposing of aprepitant (a neurokinin-1 receptor antagonist currently used in clinical practice as an antiemetic) as an antitumor agent has been proposed [2][3]. One essential difference between normal and cancer cells is the expression of peptide receptors [2][4]. Compared with normal cells, these receptors are generally overexpressed in cancer cells, and this crucial observation opens the door to developing specific antitumor strategies alone (e.g., using peptide receptor antagonists) or combined with chemotherapy or radiotherapy [2][4][5][6]. Accordingly, peptide–drug conjugates can be used as a targeted antitumor therapy against cancer cells overexpressing peptide receptors [4]. This therapeutic strategy could avoid the administration of compounds showing no selectivity against tumor cells, as unfortunately occurs with chemotherapeutic agents.
On the contrary, due to the overexpression of peptide receptors and through targeted antitumor therapy (peptide–drug conjugates), selective drug delivery (e.g., cytotoxic molecules, radionuclides) can be achieved [4][6]. A tumor-to-normal peptide receptor expression ratio of 3/1 or higher is required to achieve selective drug delivery into tumors, whereas healthy tissues are spared [4]. The peptide–drug conjugate strategy is used for cancer diagnosis and treatment. For example, primary tumors and metastatic sites were observed in breast cancer patients treated with a technetium-99 m labeled [F7, P34]-NPY (neuropeptide Y) conjugate, but no peptide uptake was observed in healthy individuals [7]. This finding shows the high specificity of the peptide–drug conjugate strategy; hence, this research line must be potentiated and developed in the future.
Another crucial research line must be thoroughly investigated: using peptide receptor antagonists as antitumor drugs [2]. These antagonists are known to block tumor cell proliferation and migration, angiogenesis, and promote the death of tumor cells by apoptosis [2][8][9]. This is a more straightforward antitumor strategy than using peptide–drug conjugates because, to synthesize these conjugates, the cytotoxic agents must be linked to the peptides. In addition, the administration of NPY receptor antagonists showed no severe side effects in both experimental animals and humans [10]

2. The Neuropeptide Y System: Peptides and Receptors

The NPY family in mammals forms a system of three homologous peptides with diverse functions: NPY, expressed in the brain and gut, and PYY and PP, only present in the digestive system [11]. These hormones bind to and activate a group of YRs [12][13], building a complex gut–brain molecular network influencing numerous physiological events related to food intake, energy balance, glycemia homeostasis, pain, bone metabolism, cardiovascular function, stress, anxiety, and cell growth and proliferation [14][15][16][17][18].

2.1. The Neuropeptide Y and Its Coding Gene

NPY is a neurotransmitter or modulator with a sequence of 36 amino acids determined approximately three decades ago [19]. Dipeptidyl peptidase-4 (DPP-4) hydrolyzes NPY to generate its N-terminal truncated NPY3-36 product, a selective Y2R agonist [20]. The polypeptide appearance extends through the brain–gut axis (enteric neurons, primary afferent neurons, and several brain areas and neuronal pathways) [21] and exerts biological activity by binding to all YRs in human cells.
The human gene hNPY on chromosome 7p15.3 encodes a pro-NPY polypeptide containing the 36 amino acid sequence corresponding to NPY. Posttranslational modification of pro-NPY consists of a hydrolytic cleavage to separate the N-terminal signal peptide and the C-flanking peptide and the amidation of the C-terminal tyrosine to liberate the mature sequence of NPY [22]. Among the gene variants described for the NPY gene, the substitution of leucine in position 7 of the signal peptide to proline (variant rs780799208) is associated with high alcohol consumption and cardiovascular pathologies [22][23].

2.2. The Peptides Peptide Tyrosine Tyrosine (PYY) and Pancreatic Polypeptide (PP) and Their Coding Genes

Enteroendocrine nutrient-sensing L-cells in the ileum and colon secrete polypeptide PYY1-36 after meals [24]. It is also produced in the central nervous system [18][25]. The 36 amino acid sequence of PYY was first determined in PYY isolated from the porcine intestine [19]; following hydrolysis by dipeptidyl peptidase-4 (DPP-4), its product is the N-terminal truncated PYY3-36 [26]. Both peptides circulate in the bloodstream to participate in the gut–brain axis controlling many different physiological processes. The complete form of PYY has an affinity for all human Y1R, Y2R, Y4R, and Y5Rs, whereas PYY3-36 exhibits high specificity for Y2R [27]. Degradation products of PYY peptides after cleavage of C-terminal residues are under study to determine possible metabolic roles [18][28][29][30].
The endocrine pancreas secretes pancreatic polypeptide (PP), a hormone involved in the gut–hypothalamic axis control of satiety and appetite [31]. It exhibits a selective affinity for Y4R [12]. PP is the first identified and characterized peptide of the NPY family [32]. Both peptidases DPP-4 and neprilysin (NEP) rapidly degrade the molecule, which has a short life once released into the bloodstream [33].
The human gene hPYY on chromosome 17 (17q21.1) encodes two functional peptides, PYY (36 amino acids) and the amino-truncated shorter form PYY3-36 (34 amino acids) [34][35], after proteolytic processing of the encoded 97 amino acid propeptide [22]. Both PYY peptides, NPY and PP, share high sequence identity and an identical pentapeptide with an amidated tyrosine at the C-terminal end.
On chromosome 17, around 10 kb apart from the hPYY gene, the hPPY, a tandem duplication of the hPYY gene, encodes the pancreatic polypeptide (PP) and pancreatic icosapeptide [11][36][37].

2.3. The Structure and Dynamics of the Neuropeptide Y Receptors (YR)

The NPY polypeptides and their receptors build a piece of complex molecular machinery. They all have a 36 amino acid sequence length and an amidated C-terminal tyrosine. A commonly denominated PP-fold (hairpin structure) tertiary structure consisting of an N-terminal extended polyproline-like helix and a C-terminal alpha helix in PPY and PP delineating a hydrophobic pocket determines their binding to specific Y receptors and their consequent bioactivity [38][39][40]. In contrast, the structure of NPY slightly differs from the other two members since its N-terminal domain appears disordered [38]. In humans, four functional Y receptor types, Y1R, Y2R, Y4R, and Y5R, broadly distributed in the central, peripheric nervous system and other tissues, process the signaling of this group of peptides. The affinities and potencies of the NPY family peptides are different for the four mentioned receptors [12]. This family of receptors controls food intake and obesity, stress, anxiety, and cancer development [1][41][42][43]. Researchers next describe the principal features of the architecture, dynamics, and signaling of this family of human receptors belonging to the G-protein-coupled receptors (GPCR), type A.

2.3.1. Y1R

The neuropeptide Y receptor 1 (Y1R) is a 384 amino acid membrane protein with affinity for the main NPY peptides in the following rank order: NPY > PYY > PYY3-36 > PP. Posttranslational modifications of the protein include glycosylation of Asn 2, 11, and 17, a disulfide bridge between Cys113 and Cys198, a lipidation site on Cys338, and a phosphorylated Ser368 (UniProt, P25929 [22][44]). Its sequence extends through the plasma membrane with seven transmembrane domains.
Structural analysis of Y1R bound to NPY and a G-protein (active conformation) by cryo-electron microscopy [45][46] and of Y1R antagonist UR-MK299 (inactive conformation) by X-ray diffraction [16] has provided detailed information on how the ligands interact with the receptor protein. Analysis of differences in the binding mode of natural agonists and antagonists contributes to better ascertaining the receptor’s molecular dynamics. The functional study of mutations and molecular dynamics simulations also add valuable information concerning the inactive state structure and how the natural agonists activate the receptor by recruiting a G-protein transducer. The C-terminal unstructured tail of NPY enters deeply into the protein and interacts with a pocket conformed by the transmembrane domains TM3, TM4, TM6, and TM7. The amphipathic helix wobble connects with the extracellular domains of Y1R. Given its disordered and flexible structure, the binding coordinates of the N-terminal region of NPY are more challenging to determine [45]. The conformational flexibility of NPY allows the binding to different YRs by adapting its structure to the receptors [46].
Upon binding, NPY forces an outward displacement of TM7, opens the binding site [45], and induces conformational changes consisting of rearrangements of some receptor residues that lead to recruiting a G-protein, triggering receptor activation.

2.3.2. Y2R

The neuropeptide Y receptor 2 (Y2R) is a 381 amino acid membrane protein with affinity for the NPY peptides in the following rank order: PYY > NPY > PYY3-36 > PP. Posttranslational modifications of the protein include glycosylation of Asn 11, a disulfide bridge between Cys123 and Cys203, a lipidation site on Cys342, and a phosphorylated Ser at 251, 351, 369, and 374 positions (UniProt, P49146 [22][44]). Its sequence extends through the plasma membrane with seven transmembrane domains.
The structure of an engineered crystal of Y2R copurified with the specific antagonist JNJ-31020028 [46] provided conformational and functional data indicating that the binding of the antagonist forces inward and outward movements of transmembrane domains II and VI and suggests that the complex Y2R-JNJ-31020028 adopts an inactive state conformation similar to the idle state described for Y1R [16].
Y2R with two mutated positions, namely H1943.51Y and S2806.47C (superscripts depict Ballesteros–Weinstein numbers), was complexed to natural ligands NPY and PYY3-36 to analyze its structure by cryo-electron microscopy. Additional molecular dynamics calculations, functional studies, and bioluminescence resonance energy transfer (BRET) studies revealed important details concerning unique features of the binding of peptide PYY3-36, receptor activation states, and coupling mechanisms to transducers [47]. Peptide binding to Y2R disturbs a polar interaction between Q1303.32 and H3117.39, establishing hydrogen bonds with the ligand amidated Tyr36. These movements displace other amino acid residues and finally conform the ligand pocket within Y2R. Cryo-electron maps of NPY bound to Y2R coupled to heterotrimeric Gi protein show that the C-terminal pentapeptide inserts deep into the Y2R structure, forcing the α-helix to incline toward the N-terminal domain establishing contact with extracellular domains 2 and 3. The N-terminal region accommodates the outer part of receptor helix 5 [46]. Additionally, toggle residue W6.48 interacting with the ligand C-terminal residue Y36 seems to influence the Y2R-dependent activation of transducers Gi and β-arrestin [48]. These studies’ principal structural dynamics results are essential to ascertain the molecular basis of ligand–receptor interactions applied to decipher the pathophysiological role fully and to rational and successful drug design.

2.3.3. Y4R

The neuropeptide Y receptor 4 (Y4R) is a 375 amino acid membrane protein with affinity for the NPY peptides in the following rank order: PP > PYY > NPY > PYY3-36. Posttranslational modifications of the protein include glycosylation of Asn 2, 19, 29, and 187, a disulfide bridge between Cys114 and Cys201, and a lipidation site on Cys340 (UniProt, P50391, [22][44]). Its amino acid sequence extends through the plasma membrane with seven transmembrane domains.
PP prefers Y4R over other YRs. Calculating binding energies from molecular dynamics simulation and docking analysis showed that PYY binds Y4R with a higher affinity than Y2R [49]. Based on the structure of PP, synthesized short peptides with modifications and amino acid substitutions have provided relevant information concerning the binding mode and activity. One fact is that the C-terminal amidated end is essential for binding and activity [50]. Short-cycled peptides with carbamoylated arginines or arginines substituted with N-acylated ornithine exhibit better affinities and selectivities for Y4R and serve as a reference for better defining binding sites and compounds with agonist, partial agonist, and antagonist properties [51].
Cryo-electron microscopy studies of the complex formed by Y4R-Gi heterotrimeric protein-PP report the extensive peptide site delimited by the extracellular loops and transmembrane domains 2 to 7. The carboxy end of PP (Y36-T32) penetrates deep within the packed receptor structure [52].
The stereoisomer (S)-VU0637120 is a synthetic antagonist that selectively inhibits Y4R activation by a negative allosteric mechanism [53]. The compound occupies a site within the receptor structure defined by specific principal interactions with amino acids in transmembrane domains 1, 2, 3, 4, and 7. Additionally, the extracellular loop 2 (ECL2) plays a vital role in the allosteric regulation performed by the antagonist. Both binding sites slightly overlap according to docking and mutagenesis studies [53]. The definition of orthostatic and allosteric sites within Y4R offers vital information for designing selective allosteric agonists and modulators, permitting fine-tuned regulation of altered Y4R activity.

2.3.4. Y5R

The neuropeptide Y receptor 5 (Y5R) has 445 amino acids. The affinity of Y peptides for Y5R is higher for NPY, followed by PYY and PP (NPY > PYY > PP) [54]. Posttranslational modifications of the protein include glycosylation of Asn 10 and 17, a disulfide bridge between Cys114 and Cys198, and a lipidation site on Cys442 (UniProt, Q15761, [22][44]. Its sequence extends through the plasma membrane with seven transmembrane domains.
The AlphaFold method [55] allows the prediction of a protein structure with the serpentine arrangement disposed within the plasma membrane [22]. Additionally, a structural model of the interaction of NPY with Y5R based on computational and biochemical analysis places the peptide close to the ECL3, with the alpha-helical domain wrapping the ECL1. The peptide is secured through a hydrophobic grouping formed by L4.69, L5.24, L24, and I28 [56]. Mutagenesis studies provided fundamental ligand–receptor interactions with R25 and D2.68 and R33 with D6.59 [57]. Further structural determination of Y5R by X-ray diffraction, NMR, or cryo-electron microscopy will permit us to better define the binding site for agonists, antagonists, and allosteric modulators, as well as the molecular movements responsible for its activation or dormant states.

2.4. Intracellular Signaling of Y Receptors

The functional diversity of this multi-receptor multiligand system comes from tissue localization and abundance, together with receptor structural features that adapt to the natural ligands in different ways and determine their signaling profile. It also depends on the Y receptors’ biased signaling mechanisms when triggered by the NPY family of peptides and the cross-talk with other receptor systems [47][58][59].
Peptide binding activates YRs, which, through differentiated transduction mechanisms, trigger biochemical events leading to metabolic changes, adaptations, and gene expression modulations, eventually contributing to functional cell metabolism homeostasis, cell growth, motility, and migration [13][60][61][62][63].
Human YRs activate transducers, heterotrimeric G proteins, and β-arrestins, resulting in diversified intracellular signaling pathways. YRs 1, 2, and 5 preferentially turn on Gi/o alpha subunits and inhibit cyclic adenosine monophosphate (cAMP) formation. Gi/o may also regulate the activity of plasma membrane K+ and Ca2+ ion channels. Y2R and Y4R stimulate Gq/11 alpha subunit dissociation to increase intracellular calcium levels and protein kinase C (PKC) activation [54]. YR signaling routes may coexist and connect with other receptor-triggered pathways turning on downstream biochemical signaling changes and leading to adaptive changes controlling cell behavior [64][65][66][67][68][69][70][71].
Determining and quantifying the conformational landscape of YR impacts activating defined signaling events is capital to designing new drugs that may interfere with excessive functional or non-functional receptor states and control their role in biochemical mechanisms leading to disease [72]. Additionally, analyzing the mechanisms underlying receptor activation and desensitization will aid the chemical design of effective drugs to control YR biochemical behavior [73].

3. Involvement of Neuropeptide Y, Peptide YY, and Pancreatic Polypeptide in Cancer

NPY has been negatively correlated with COL5A1, COL3A1, and COL4A1 collagen gene expressions in a pan-cancer study [74]. NPY promoted an antinociceptive effect that was inhibited with Y1R or Y2R antagonists (BIBO3304 and BIIEo246, respectively), and the peptide was upregulated in cancer-induced bone pain [75]. NPY induced inflammation-induced tumorigenesis by promoting epithelial cell proliferation (intestinal epithelial T84 cell line) [76], and the peptide, through the phosphatidyl-inositol-3-kinase (PI3K)-β-catenin signaling, was involved in this proliferation, decreased apoptosis and p21 expression, increased c-myc/cyclin D1 expressions and inhibited miR-375 expression (apoptosis regulating microRNA) [76]. NPY also favored, through the p38 mitogen-activated protein kinases (MAPK) and extracellular signal-regulated protein kinase (ERK), the migration of human monocyte-derived immature dendritic cells as well as their transendothelial migration [77]. Y1R mediated these actions. However, by upregulating interleukins 6 and 10, NPY promoted a T helper 2 polarizing profile to dendritic cells [77]. This fact means that NPY, via Y1R, can exert a pro-inflammatory action (immature dendritic cell recruitment) or an anti-inflammatory effect (favoring a T helper 2 polarization). NPY also linked longevity and dietary restriction in experimental animal models, and spontaneous tumors were attenuated in NPY-null animals [78]. Table 1 summarized the participation of NPY, PYY, and PP in the development of many cancer types.
Table 1. NPY, PYY, and PP involvement in cancer.
Brain Y1R high expression [79].
Y2R high expression: glioblastoma (grade IV) [80].
Medulloblastomas, meningiomas, and primitive neuroectodermal tumors: Y1R/Y2R expressions [80].
Astrocytomas (grades I to III): Y2R expression [80].
Higher NPY levels in differentiated tumors than in poorly differentiated neurological tumors [81].
Cerebellar hemangioblastoma: PYY expression [82].
Breast Higher Y1R gene expression predicts a better relapse-free survival/overall survival in estrogen receptor-positive cancer patients [83].
High Y1R level positively correlated with lymph node metastasis/clinical stage. Patients with Y1R expression: shorter cancer-specific survival [84].
High Y1R expression is associated with metastasis, advanced stages, poor Nottingham prognostic index, and perineural invasion [85].
Primary human breast tumors/breast cancer-derived metastases: Y1R overexpression [6].
Normal human breast tissues: Y2R expression [6].
Y5R mediates tumor cell growth and migration [10][86].
NPY favors proliferation/migration and angiogenesis [86][87].
NPY blocks cAMP accumulation and promotes ERK phosphorylation and tumor cell migration [88].
Y5R antagonists inhibit cell growth and migration and induce the death of tumor cells expressing Y5R [88].
Y5R agonists favor VEGF release from tumor cells, favoring angiogenesis [87].
PYY blocks tumor cell growth [89][90][91].
PYY/vitamin E co-administration: higher antitumor action [90].
PYY decreases the cAMP level [89].
Cholangiocarcinoma Higher NPY levels in the center of tumors than in the invasion fronts [92].
NPY blocks tumor cell growth/invasion; both effects are counteracted with anti-NPY antibodies [92].
Y2R inhibitors, but not Y1R/Y5R inhibitors, inhibited tumor cell proliferation blockade mediated by NPY [92].
Colorectal NPY gene methylation: a biomarker for metastatic progression [93][94][95][96][97].
Plasma NPY decrease: associated with tumor size/body weight loss [98].
NPY/Y2R overexpression. Y2R antagonists block tumor growth [99].
NPY favors angiogenesis [99].
Blood vessels considerably altered histologically [100].
Rectal tumors express PYY/PP [101].
A low PYY level indicates malignant potential [102].
PYY overexpression blocks proliferation, migration/invasion of tumor cells, favoring apoptosis [103].
Patients with colon cancer: higher PP level [104].
PP is released from tumor cells [105].
Esophageal PYY3-36 promotes apoptosis and blocks tumor cell growth [106].
Ewing sarcoma Plasma NPY level: high and higher in patients with tumors from a pelvic/bone origin [107].
Intratumoral blood vessels: Y1R expression [108].
NPY, Y1R, and Y5R expressions and NPY favor tumor cell death [10][108][109][110].
NPY3-36 favors tumor cell migration and angiogenesis [10][110].
Hypoxia: NPY acts as a tumor growth-promoting agent [10][110].
Hypoxia counteracts the growth-inhibitory pathway mediated by Y1R/Y5R [109][110].
Hypoxia: Y2R expression in intratumoral endothelial cells. Y2R antagonists decrease tumor vascularization [10].
NPY/Y5R upregulated in distant metastasis. Y5R blockade counteracts bone metastasis and polyploidization [111].
Bone destruction degree: positively correlated with NPY release from tumors [112].
Gastric Experimental model: high serum/tumor tissue PYY levels [113].
High plasma PP level [114].
Hemangioma NPY in cells expressing Y1R [115].
Head and neck NPY gene promoter methylation status: a biomarker for tumor prognosis/risk [116].
Kidney Renal cell carcinoma: Y1R expression [117].
Nephroblastoma: Y1R/Y2R expressions [117].
Intratumoral blood vessels: high Y1R density [117].
Nerve fibers containing NPY are close to blood vessels/tumor cells [117].
Primary neuroendocrine carcinoma: PP in cancer cells [118].
Leukemia Children with B-cell precursor leukemia: high plasma NPY level [119].
Children with high plasma NPY levels: better outcomes than those showing a normal level [119].
NPY, via Y1R, activates ERK [120].
NPY did not activate p38MAPK, jun N-terminal kinase, PKC, and phospholipase D [120].
NPY13-36 blocks intracellular Ca++ increase mediated by NPY [121].
Liver NPY, via Y1R, blocks tumor cell growth [122].
Protein/mRNA Y1R level decrease [122].
Low Y1R expression: associated with poor prognosis [122].
Knockdown of Y1R: increase in tumor cell proliferation [122].
NPY/Y5R is involved in tumor cell proliferation, migration/invasion [123].
Increased Y5R expression correlated with survival and tumor growth [123].
NPY decreases PD-1+ T cells/PD-1 expression/cell in T cells and augments T cell proliferation and tumor cell eradication [124].
PYY blocks tumor cell growth, volume/weight, and cAMP level [125].
Lung NPY gene expression upregulated in patients with TP53 mutation [126].
High PYY/PP levels [127][128][129][130].
Melanoma Higher NPY expression in melanoma than in melanocytic nevi or nodular melanoma [131].
Melanoma metastases and lentigo malign melanomas: no NPY expression [131].
High NPY expression is associated with invasiveness [131].
Y2R antagonist BIIE0246: decrease in tumor weight and angiogenesis [132].
Tumors of sympathectomized animals: NPY gene expression and hypoxic and apoptotic factors increase [133].
Uveal melanoma: Y6R gene expression associated with tumor development and used as a biomarker [134].
Low NPY expression is associated with high cell proliferation [135].
High NPY expression is linked to better outcomes [135].
Neuroblastoma High serum NPY levels correlated with relapse, metastasis, and poor survival [136].
ProNPY processing is associated with poor outcomes/clinically advanced stages [137].
NPY/Y1R/Y2R/Y4R/Y5R expression [138].
NPY favors cancer cell proliferation [10][139].
NPY increases the survival of tumor cells by exerting an anti-apoptotic effect [140][141].
NPY, via Y2R, promotes the proliferation of endothelial cells and increases vascularization; Y2R antagonists, but not Y5R antagonists, decrease vascularization [10][139][142].
Ganglioneuroblastoma: NPY expression [143].
NPY release is stimulated by protein kinase C-coupled M3 muscarinic receptors [144][145].
17 beta-estradiol favors Y1R gene transcription [146].
Valproate increases NPY expression [147].
BDNF promotes NPY/Y5R expressions that are positively correlated with TrkB expression [10][148].
High TrkB expression correlated with a worse prognosis [10].
Retinoic acid decreases NPY gene expression and YR expression [149][150].
The Y2R antagonist BIIE0246 inhibits MAPK activation, decreases cell proliferation, promotes apoptosis, and exerts an anti-angiogenic action [10][139][142].
Y2R mediates glycolysis [151].
Chemotherapy: increase in Y5R expression [148].
Y5R blockade: promotes apoptosis in tumor cells and sensitizes resistant cancer cells to chemotherapy [148].
Metastasis is associated with a high NPY release [62].
NPY promotes motility and invasiveness in tumor cells [62].
Y5R is highly expressed in migratory cells [62].
Ovarian Y1R/Y2R expressions [42].
NPY exerts a protective action against cisplatin [152].
PYY expression [153][154][155].
Pancreatic NPY/Y1R expressions and Y2R overexpression [156].
NPY promotes tumor cell growth [157].
NPY released from tumors: high serum NPY level [158].
PYY decreases the growth/cAMP level in tumor cells [159][160].
BIM-43004-1 (PYY22-36 Y2R synthetic agonist): decreases tumor cell growth and cAMP level [160][161].
PYY14-36 exerts the highest antitumor action [162].
PYY/vitamin E co-administration: increase in antitumor action [163].
PYY increased the growth of Capan-2 tumor cells [157].
PP is located in the pancreatic head region and insulinoma [164].
Pancreatic ductal adenocarcinoma: low plasma PP level [165].
Endocrine pancreatic tumor: elevated plasma PP level [166].
Pancreatic neuroendocrine tumor: high PP level and peptide release [167][168].
Carbachol promotes PP release from tumor cells [169].
Parathyroid adenoma Some tumors show numerous NPY nerve fibers, whereas others have a few scattered NPY fibers [170].
Pheochromocytoma High plasma NPY level [171].
Plasma NPY increased during surgical tumor removal; the level remained high until tumor resection [172].
Y1R/Y2R/Y5R expressions [10].
Adrenal pheochromocytoma: NPY1-36 is the predominant molecule found in plasma/tissue [171].
Extra-adrenal pheochromocytoma: many NPY fragments [171].
NPY mRNA expression is more frequently observed in adrenal than in extra-adrenal tumors [171].
NPY mRNA level increased when tumor cells were treated with nerve growth factor, protein kinase modulators (Bu)(2)cAMP, or staurosporine, but it was reduced when treated with dexamethasone or insulin-like growth factor II [173].
NPY expression is not associated with malignancy [173].
NPY release from tumor cells: nitric oxide, bradykinin, and angiotensin II favor its release, and dopamine blocks NPY release [174][175][176][177][178].
NPY promotes left ventricular hypertrophy [179].
Plasma NPY level is higher in patients with left ventricular hypertrophy [179].
Pituitary adenoma Protein/mRNA NPY and mRNA Y1R/Y2R expressions [180][181].
Positive correlation between Y2R and NPY level [180].
NPY favors growth hormone release and blocks prolactin release [182][183].
NPY not detected in normal pituitary cells [181].
Prostate Low NPY expression is associated with aggressive grade, higher genomic risk, and shorter metastases-free survival/progression-free survival [184].
Transcriptional changes in ERG rearrangement-positive cancer cells promote metabolic changes by activating metabolic signaling molecules such as NPY [185].
Plasma NPY level: biomarker [186].
NPY, Y1R, Y2R and Y5R upregulation [187].
Y1R/Y5R: high expression in bone metastases [187].
NPY, released from nerve terminals, regulates therapy resistance and oncogenesis [188].
NPY blockade: increased apoptosis in cancer cells, changes in energetic metabolic pathways, and decreased cell motility [188].
NPY decreases tumor cell proliferation (DU145 and LNCaP cells) or promotes cell proliferation (PC3 cells): actions mediated by Y1R [189].
Depression favors NPY release from tumor cells, and NPY recruits myeloid-derived suppressor cells [190][191].
PYY blocks tumor cell growth and increases VEGF production in tumor cells [192].
Thymus NPY expression [193].


  1. Kasprzak, A.; Adamek, A. The Neuropeptide System and Colorectal Cancer Liver Metastases: Mechanisms and Management. Int. J. Mol. Sci. 2020, 21, 3494.
  2. Coveñas, R.; Muñoz, M. Involvement of the Substance P/Neurokinin-1 Receptor System in Cancer. Cancers 2022, 14, 3539.
  3. Coveñas, R.; Rodríguez, F.D.; Muñoz, M. The Neurokinin-1 Receptor: A Promising Antitumor Target. Receptors 2022, 1, 72–97.
  4. Hoppenz, P.; Els-Heindl, S.; Beck-Sickinger, A.G. Peptide-Drug Conjugates and Their Targets in Advanced Cancer Therapies. Front. Chem. 2020, 8, 571.
  5. Robinson, P.; Coveñas, R.; Muñoz, M. Combination Therapy of Chemotherapy or Radiotherapy and TheNeurokinin-1 Receptor Antagonist Aprepitant: A New Antitumor Strategy? Curr. Med. Chem. 2023, 30, 1798–1812.
  6. Li, J.; Tian, Y.; Wu, A. Neuropeptide Y Receptors: A Promising Target for Cancer Imaging and Therapy. Regen. Biomater. 2015, 2, 215–219.
  7. Khan, I.U.; Zwanziger, D.; Böhme, I.; Javed, M.; Naseer, H.; Hyder, S.W.; Beck-Sickinger, A.G. Breast-Cancer Diagnosis by Neuropeptide Y Analogues: From Synthesis to Clinical Application. Angew. Chem. Int. Ed. 2010, 49, 1155–1158.
  8. Sánchez, M.L.; Coveñas, R. The Galaninergic System: A Target for Cancer Treatment. Cancers 2022, 14, 3755.
  9. Sánchez, M.L.; Coveñas, R. The Neurotensinergic System: A Target for Cancer Treatment. Curr. Med. Chem. 2022, 29, 3231–3260.
  10. Tilan, J.; Kitlinska, J. Neuropeptide Y (NPY) in Tumor Growth and Progression: Lessons Learned from Pediatric Oncology. Neuropeptides 2016, 55, 55–66.
  11. Larhammar, D.; Salaneck, E. Molecular Evolution of NPY Receptor Subtypes. Neuropeptides 2004, 38, 141–151.
  12. Pedragosa-Badia, X.; Stichel, J.; Beck-Sickinger, A.G. Neuropeptide Y Receptors: How to Get Subtype Selectivity. Front. Endocrinol. 2013, 4, 5.
  13. Yi, M.; Li, H.; Wu, Z.; Yan, J.; Liu, Q.; Ou, C.; Chen, M. A Promising Therapeutic Target for Metabolic Diseases: Neuropeptide Y Receptors in Humans. Cell. Physiol. Biochem. 2018, 45, 88–107.
  14. Heilig, M. The NPY System in Stress, Anxiety, and Depression. Neuropeptides 2004, 38, 213–224.
  15. Rodríguez, F.D.; Coveñas, R. Targeting NPY, CRF/UCNs and NPS Neuropeptide Systems to Treat Alcohol Use Disorder (AUD). Curr. Med. Chem. 2017, 24, 2528–2558.
  16. Yang, Z.; Han, S.; Keller, M.; Kaiser, A.; Bender, B.J.; Bosse, M.; Burkert, K.; Kögler, L.M.; Wifling, D.; Bernhardt, G.; et al. Structural Basis of Ligand Binding Modes at the Neuropeptide Y Y1 Receptor. Nature 2018, 556, 520.
  17. Czarnecka, M.; Lu, C.; Pons, J.; Maheswaran, I.; Ciborowski, P.; Zhang, L.; Cheema, A.; Kitlinska, J. Neuropeptide Y Receptor Interactions Regulate Its Mitogenic Activity. Neuropeptides 2019, 73, 11–24.
  18. Lafferty, R.A.; Flatt, P.R.; Irwin, N. Established and Emerging Roles Peptide YY (PYY) and Exploitation in Obesity–Diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 253–261.
  19. Tatemoto, K. Neuropeptide Y: Complete Amino Acid Sequence of the Brain Peptide. Proc. Natl. Acad. Sci. USA 1982, 79, 5485–5489.
  20. Hansen, H.H.; Grønlund, R.V.; Baader-Pagler, T.; Haebel, P.; Tammen, H.; Larsen, L.K.; Jelsing, J.; Vrang, N.; Klein, T. Characterization of Combined Linagliptin and Y2R Agonist Treatment in Diet-Induced Obese Mice. Sci. Rep. 2021, 11, 8060.
  21. Holzer, P.; Reichmann, F.; Farzi, A. Neuropeptide Y, Peptide YY and Pancreatic Polypeptide in the Gut–Brain Axis. Neuropeptides 2012, 46, 261–274.
  22. UniProt Database. Available online: (accessed on 26 March 2023).
  23. Gene NCBI Database. Available online: (accessed on 1 April 2023).
  24. Lundberg, J.M.; Tatemoto, K.; Terenius, L.; Hellstrom, P.M.; Mutt, V.; Hökfelt, T.; Hamberger, B. Localization of Peptide YY (PYY) in Gastrointestinal Endocrine Cells and Effects on Intestinal Blood Flow and Motility. Proc. Natl. Acad. Sci. USA 1982, 79, 4471–4475.
  25. Breen, C.M.; Mannon, P.J.; Benjamin, B.A. Peptide YY Inhibits Vasopressin-Stimulated Chloride Secretion in Inner Medullary Collecting Duct Cells. Am. J. Physiol. 1998, 275, 452–457.
  26. Michel, M.C.; Fliers, E.; van Noorden, C.J.F. Dipeptidyl Peptidase IV Inhibitors in Diabetes: More than Inhibition of Glucagon-like Peptide-1 Metabolism? Naunyn. Schmiedebergs Arch. Pharmacol. 2008, 377, 205–207.
  27. Murphy, K.G.; Bloom, S.R. Gut Hormones and the Regulation of Energy Homeostasis. Nature 2006, 444, 854–859.
  28. Toräng, S.; Bojsen-Møller, K.N.; Svane, M.S.; Hartmann, B.; Rosenkilde, M.M.; Madsbad, S.; Holst, J.J. In Vivo and in Vitro Degradation of Peptide YY3-36 to Inactive Peptide YY3-34 in Humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R866–R874.
  29. Lafferty, R.A.; Flatt, P.R.; Irwin, N. C-Terminal Degradation of PYY Peptides in Plasma Abolishes Effects on Satiety and Beta-Cell Function. Biochem. Pharmacol. 2018, 158, 95–102.
  30. Lafferty, R.A.; Tanday, N.; Flatt, P.R.; Irwin, N. Generation and Characterisation of C-Terminally Stabilised PYY Molecules with Potential in Vivo NPYR2 Activity. Metabolism 2020, 111, 154339.
  31. Zhu, W.; Tanday, N.; Flatt, P.R.; Irwin, N. Pancreatic Polypeptide Revisited: Potential Therapeutic Effects in Obesity-Diabetes. Peptides 2023, 160, 170923.
  32. Kimmel, J.R.; Hayden, L.J.; Pollock, H.G. Isolation and Characterization of a New Pancreatic Polypeptide Hormone. J. Biol. Chem. 1975, 250, 1002–1003.
  33. Adrian, T.E.; Greenberg, G.R.; Besterman, H.S.; Bloom, S.R. Pharmacokinetics of Pancreatic Polypeptide in Man. Gut 1978, 19, 907–909.
  34. Eberlein, G.A.; Eysselein, V.E.; Schaeffer, M.; Layer, P.; Grandt, D.; Goebell, H.; Niebel, W.; Davis, M.; Lee, T.D.; Shively, J.E.; et al. A New Molecular Form of PYY: Structural Characterization of Human PYY(3–36) and PYY(1–36). Peptides 1989, 10, 797.
  35. Hort, Y.; Baker, E.; Sutherland, G.R.; Shine, J.; Herzog, H. Gene Duplication of the Human Peptide YY Gene (PYY) Generated the Pancreatic Polypeptide Gene (PPY) on Chromosome 17q21.1. Genomics 1995, 26, 77.
  36. Larhammar, D.; Bergqvist, C.A. Ancient Grandeur of the Vertebrate Neuropeptide Y System Shown by the Coelacanth Latimeria Chalumnae. Front. Neurosci. 2013, 7, 27.
  37. Conlon, J.M. The Origin and Evolution of Peptide YY (PYY) and Pancreatic Polypeptide (PP). Peptides 2002, 23, 269–278.
  38. Langley, D.B.; Schofield, P.; Jackson, J.; Herzog, H.; Christ, D. Crystal Structures of Human Neuropeptide Y (NPY) and Peptide YY (PYY). Neuropeptides 2022, 92, 102231.
  39. Blundell, T.L.; Pitts, J.E.; Tickle, I.J.; Wood, S.P. X-Ray Analisys (1,4 Angstroms Resolution) of Avian Pancreatic Polypeptide. Small Globular Protein Hormone. Proc. Natl. Acad. Sci. USA 1981, 78, 4175–4179.
  40. Germain, N.; Minnion, J.S.; Tan, T.; Shillito, J.; Gibbard, C.; Ghatei, M.; Bloom, S. Analogs of Pancreatic Polypeptide and Peptide YY with a Locked PP-Fold Structure Are Biologically Active. Peptides 2013, 39, 6–10.
  41. Rana, T.; Behl, T.; Sehgal, A.; Singh, S.; Sharma, N.; Abdeen, A.; Ibrahim, S.F.; Mani, V.; Iqbal, M.S.; Bhatia, S.; et al. Exploring the Role of Neuropeptides in Depression and Anxiety. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2022, 114, 110478.
  42. Körner, M.; Reubi, J.C. NPY Receptors in Human Cancer: A Review of Current Knowledge. Peptides 2007, 28, 419–425.
  43. Vohra, M.S.; Benchoula, K.; Serpell, C.J.; Hwa, W.E. AgRP/NPY and POMC Neurons in the Arcuate Nucleus and Their Potential Role in Treatment of Obesity. Eur. J. Pharmacol. 2022, 915, 174611.
  44. GPCR Database. Available online: (accessed on 2 April 2023).
  45. Park, C.; Kim, J.; Ko, S.-B.; Choi, Y.K.; Jeong, H.; Woo, H.; Kang, H.; Bang, I.; Kim, S.A.; Yoon, T.-Y.; et al. Structural Basis of Neuropeptide Y Signaling through Y1 Receptor. Nat. Commun. 2022, 13, 853.
  46. Tang, T.; Hartig, C.; Chen, Q.; Zhao, W.; Kaiser, A.; Zhang, X.; Zhang, H.; Qu, H.; Yi, C.; Ma, L.; et al. Structural Basis for Ligand Recognition of the Neuropeptide Y Y2 Receptor. Nat. Commun. 2021, 12, 737.
  47. Kang, N.; Wang, X.-L.; Zhao, Y. Discovery of Small Molecule Agonists Targeting Neuropeptide Y4 Receptor Using Homology Modeling and Virtual Screening. Chem. Biol. Drug Des. 2019, 94, 2064–2072.
  48. Kaiser, A.; Hempel, C.; Wanka, L.; Schubert, M.; Hamm, H.E.; Beck-Sickinger, A.G. G Protein Preassembly Rescues Efficacy of W6.48 Toggle Mutations in Neuropeptide Y2 Receptor. Mol. Pharmacol. 2018, 93, 387–401.
  49. Choong, Y.S.; Lim, Y.Y.; Soong, J.X.; Savoo, N.; Guida, C.; Rhyman, L.; Ramracheya, R.; Ramasami, P. Theoretical Study of the Interactions between Peptide Tyrosine Tyrosine , a Newly Identified Modulator in Type 2 Diabetes Pathophysiology, with Receptors NPY1R and NPY4R. Hormones 2021, 20, 557–569.
  50. Kaiser, A.; Muller, P.; Zellmann, T.; Scheidt, H.A.; Thomas, L.; Bosse, M.; Meier, R.; Meiler, J.; Huster, D.; Beck-Sickinger, A.G.; et al. Unwinding of the C-Terminal Residues of Neuropeptide Y Is Critical for Y2 Receptor Binding and Activation. Angew. Chem. Int. Ed. Engl. 2015, 54, 7446–7449.
  51. Konieczny, A.; Conrad, M.; Ertl, F.J.; Gleixner, J.; Gattor, A.O.; Grätz, L.; Schmidt, M.F.; Neu, E.; Horn, A.H.C.; Wifling, D.; et al. N-Terminus to Arginine Side-Chain Cyclization of Linear Peptidic Neuropeptide Y Y4 Receptor Ligands Results in Picomolar Binding Constants. J. Med. Chem. 2021, 64, 25–29.
  52. Tang, T.; Tan, Q.; Han, S.; Diemar, A.; Löbner, K.; Wang, H.; Schüß, C.; Behr, V.; Mörl, K.; Wang, M.; et al. Receptor-Specific Recognition of NPY Peptides Revealed by Structures of NPY Receptors. Sci. Adv. 2022, 8, eabm1232.
  53. Schüß, C.; Vu, O.; Schubert, M.; Du, Y.; Mishra, N.M.; Tough, I.R.; Stichel, J.; Weaver, C.D.; Emmitte, K.A.; Cox, H.M.; et al. Highly Selective Y4 Receptor Antagonist Binds in an Allosteric Binding Pocket. J. Med. Chem. 2021, 64, 2801.
  54. Guide to Pharmacology IUPAHR. Available online: (accessed on 4 April 2023).
  55. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589.
  56. Rudolf, S.; Kaempf, K.; Vu, O.; Meiler, J.; Beck-sickinger, A.G.; Coin, I. Binding of Natural Peptide Ligands to the Neuropeptide Y5 Receptor. Angew. Chem. Int. Ed. Engl. 2022, 61, e202108738.
  57. Lindner, D.; van Dieck, J.; Merten, N.; Morl, K.; Gunther, R.; Hofmann, H.-J.; Beck-Sickinger, A.G. GPC Receptors and Not Ligands Decide the Binding Mode in Neuropeptide Y Multireceptor/Multiligand System. Biochemistry 2008, 47, 5905–5914.
  58. Nordheim, U.; Hofbauer, K.G. Stimulation of NPY Y2 Receptors by PYY3-36 Reveals Divergent Cardiovascular Effects of Endogenous NPY in Rats on Different Dietary Regimens. Am. J. Physiol. Integr. Comp. Physiol. 2004, 286, 138.
  59. Kilpatrick, L.E.; Humphrys, L.J.; Holliday, N.D. A G Protein-Coupled Receptor Dimer Imaging Assay Reveals Selectively Modified Pharmacology of Neuropeptide Y Y1/Y5 Receptor Heterodimers. Mol. Pharmacol. 2015, 87, 718–732.
  60. Parker, E.; Heek, M.V.; Stamford, A. Neuropeptide Y Receptors as Targets for Anti-Obesity Drug Development: Perspective and Current Status. Eur. J. Pharmacol. 2002, 440, 173–187.
  61. Ortiz, A.A.; Milardo, L.F.; DeCarr, L.B.; Buckholz, T.M.; Mays, M.R.; Claus, T.H.; Livingston, J.N.; Mahle, C.D.; Lumb, K.J. A Novel Long-Acting Selective Neuropeptide Y2 Receptor Polyethylene Glycol-Conjugated Peptide Agonist Reduces Food Intake and Body Weight and Improves Glucose Metabolism in Rodents. J. Pharmacol. Exp. Ther. 2007, 323, 692–700.
  62. Abualsaud, N.; Caprio, L.; Galli, S.; Krawczyk, E.; Alamri, L.; Zhu, S.; Gallicano, G.I.; Kitlinska, J. Neuropeptide Y/Y5 Receptor Pathway Stimulates Neuroblastoma Cell Motility through RhoA Activation. Front. Cell Dev. Biol. 2021, 8, 627090.
  63. Bertocchi, I.; Mele, P.; Ferrero, G.; Oberto, A.; Carulli, D.; Eva, C. NPY-Y1 Receptor Signaling Controls Spatial Learning and Perineuronal Net Expression. Neuropharmacology 2021, 184, 108425.
  64. Xie, D.; Stutz, B.; Li, F.; Chen, F.; Lv, H.; Sestan-Pesa, M.; Catarino, J.; Gu, J.; Zhao, H.; Stoddard, C.E.; et al. TET3 Epigenetically Controls Feeding and Stress Response Behaviors via AGRP Neurons. J. Clin. Investig. 2022, 132, e162365.
  65. Profumo, E.; Maggi, E.; Arese, M.; Cristofano, C.D.; Salvati, B.; Saso, L.; Businaro, R.; Buttari, B. Neuropeptide Y Promotes Human M2 Macrophage Polarization and Enhances P62/SQSTM1-Dependent Autophagy and NRF2 Activation. Int. J. Mol. Sci. 2022, 23, 13009.
  66. Cai, Y.; Wang, Z.; Li, L.; He, L.; Wu, X.; Zhang, M.; Zhu, P. Neuropeptide Y Regulates Cholesterol Uptake and Efflux in Macrophages and Promotes Foam Cell Formation. J. Cell. Mol. Med. 2022, 26, 5391–5402.
  67. Oberto, A.; Bertocchi, I.; Longo, A.; Bonzano, S.; Paterlini, S.; Meda, C.; Torre, S.D.; Palanza, P.; Maggi, A.; Eva, C. Hypothalamic NPY-Y1R Interacts with Gonadal Hormones in Protecting Female Mice against Obesity and Neuroinflammation. Int. J. Mol. Sci. 2022, 23, 6351.
  68. Tan, R.-Z.; Li, J.-C.; Zhu, B.-W.; Huang, X.-R.; Wang, H.-L.; Jia, J.; Zhong, X.; Liu, J.; Wang, L.; Lan, H.-Y. Neuropeptide Y Protects Kidney from Acute Kidney Injury by Inactivating M1 Macrophages via the Y1R-NF-KappaB-Mincle-Dependent Mechanism. Int. J. Biol. Sci. 2023, 19, 521–536.
  69. Prexler, C.; Knape, M.S.; Erlewein-Schweizer, J.; Roll, W.; Specht, K.; Woertler, K.; Weichert, W.; von Luettichau, I.; Rossig, C.; Hauer, J.; et al. Correlation of Transcriptomics and FDG-PET SUVmax Indicates Reciprocal Expression of Stemness-Related Transcription Factor and Neuropeptide Signaling Pathways in Glucose Metabolism of Ewing Sarcoma. Cancers 2022, 14, 5999.
  70. Goodman, E.K.; Mitchell, C.S.; Teo, J.D.; Gladding, J.M.; Abbott, K.N.; Rafiei, N.; Zhang, L.; Herzog, H.; Begg, D.P. The Effect of Insulin Receptor Deletion in Neuropeptide Y Neurons on Hippocampal Dependent Cognitive Function in Aging Mice. J. Integr. Neurosci. 2022, 21, 6.
  71. Batterham, R.L.; Cowley, M.A.; Small, C.J.; Herzog, H.; Cohen, M.A.; Dakin, C.L.; Wren, A.M.; Brynes, A.E.; Low, M.J.; Ghatei, M.A.; et al. Gut Hormone PYY(3-36) Physiologically Inhibits Food Intake. Nature 2002, 418, 650–654.
  72. Schmidt, P.; Bender, B.J.; Kaiser, A.; Gulati, K.; Scheidt, H.A.; Hamm, H.E.; Meiler, J.; Beck-Sickinger, A.G.; Huster, D. Improved in Vitro Folding of the Y2 G Protein-Coupled Receptor into Bicelles. Front. Mol. Biosci. 2018, 4, 100.
  73. Ziffert, I.; Kaiser, A.; Babilon, S.; Mörl, K.; Beck-Sickinger, A.G. Unusually Persistent Gαi-Signaling of the Neuropeptide Y2 Receptor Depletes Cellular Gi/o Pools and Leads to a Gi-Refractory State. Cell Commun. Signal. 2020, 18, 49.
  74. Shi, Q.; Yan, X.; Wang, J.; Zhang, X. Collagen Family Genes Associated with Risk of Recurrence after Radiation Therapy for Vestibular Schwannoma and Pan-Cancer Analysis. Dis. Markers 2021, 2021, 7897994.
  75. Diaz-delCastillo, M.; Christiansen, S.H.; Appel, C.K.; Falk, S.; Woldbye, D.P.D.; Heegaard, A.-M. Neuropeptide Y Is Up-Regulated and Induces Antinociception in Cancer-Induced Bone Pain. Neuroscience 2018, 384, 111–119.
  76. Jeppsson, S.; Srinivasan, S.; Chandrasekharan, B. Neuropeptide Y (NPY) Promotes Inflammation-Induced Tumorigenesis by Enhancing Epithelial Cell Proliferation. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G103–G111.
  77. Buttari, B.; Profumo, E.; Domenici, G.; Tagliani, A.; Ippoliti, F.; Bonini, S.; Businaro, R.; Elenkov, I.; Riganò, R. Neuropeptide Y Induces Potent Migration of Human Immature Dendritic Cells and Promotes a Th2 Polarization. FASEB J. 2014, 28, 3038–3049.
  78. Chiba, T.; Tamashiro, Y.; Park, D.; Kusudo, T.; Fujie, R.; Komatsu, T.; Kim, S.E.; Park, S.; Hayashi, H.; Mori, R.; et al. A Key Role for Neuropeptide Y in Lifespan Extension and Cancer Suppression via Dietary Restriction. Sci. Rep. 2014, 4, 4517.
  79. Li, J.; Du, Y.; Jiang, Z.; Tian, Y.; Qiu, N.; Wang, Y.; lqbal, M.Z.; Hu, M.; Zou, R.; Luo, L.; et al. Y1 Receptor Ligand-Based Nanomicelle as a Novel Nanoprobe for Glioma-Targeted Imaging and Therapy. Nanoscale 2018, 10, 5845–5851.
  80. Körner, M.; Reubi, J.C. Neuropeptide Y Receptors in Primary Human Brain Tumors: Overexpression in High-Grade Tumors. J. Neuropathol. Exp. Neurol. 2008, 67, 741–749.
  81. Allen, J.M.; Hoyle, N.R.; Yeats, J.C.; Ghatei, M.A.; Thomas, D.G.T.; Bloom, S.R. Neuropeptides in Neurological Tumours. J. Neurooncol. 1985, 3, 197–202.
  82. Becker, I.; Paulus, W.; Roggendorf, W. Histogenesis of Stromal Cells in Cerebellar Hemangioblastomas. An Immunohistochemical Study. Am. J. Pathol. 1989, 134, 271–275.
  83. Bhat, R.; Thangavel, H.; Abdulkareem, N.M.; Vasaikar, S.; De Angelis, C.; Bae, L.; Cataldo, M.L.; Nanda, S.; Fu, X.; Zhang, B.; et al. NPY1R Exerts Inhibitory Action on Estradiol-Stimulated Growth and Predicts Endocrine Sensitivity and Better Survival in ER-Positive Breast Cancer. Sci. Rep. 2022, 12, 1972.
  84. Liu, L.; Xu, Q.; Cheng, L.; Ma, C.; Xiao, L.; Xu, D.; Gao, Y.; Wang, J.; Song, H. NPY1R Is a Novel Peripheral Blood Marker Predictive of Metastasis and Prognosis in Breast Cancer Patients. Oncol. Lett. 2015, 9, 891–896.
  85. Dawoud, M.M.; Abdelaziz, K.K.-E.; Alhanafy, A.M.; Ali, M.S.D.; Elkhouly, E.A.B. Clinical Significance of Immunohistochemical Expression of Neuropeptide Y1 Receptor in Patients with Breast Cancer in Egypt. Appl. Immunohistochem. Mol. Morphol. 2021, 29, 277–286.
  86. Medeiros, P.J.; Al-Khazraji, B.K.; Novielli, N.M.; Postovit, L.M.; Chambers, A.F.; Jackson, D.N. Neuropeptide Y Stimulates Proliferation and Migration in the 4T1 Breast Cancer Cell Line. Int. J. Cancer 2012, 131, 276–286.
  87. Medeiros, P.J.; Jackson, D.N. Neuropeptide Y Y5-Receptor Activation on Breast Cancer Cells Acts as a Paracrine System That Stimulates VEGF Expression and Secretion to Promote Angiogenesis. Peptides 2013, 48, 106–113.
  88. Sheriff, S.; Ali, M.; Yahya, A.; Haider, K.H.; Balasubramaniam, A.; Amlal, H. Neuropeptide Y Y5 Receptor Promotes Cell Growth through Extracellular Signal-Regulated Kinase Signaling and Cyclic AMP Inhibition in a Human Breast Cancer Cell Line. Mol. Cancer Res. 2010, 8, 604–614.
  89. Grisé, K.R.; Rongione, A.J.; Laird, E.C.; McFadden, D.W. Peptide YY Inhibits Growth of Human Breast Cancerin Vitroandin Vivo. J. Surg. Res. 1999, 82, 151–155.
  90. Heisler, T.; Towfigh, S.; Simon, N.; McFadden, D.W. Peptide YY and Vitamin E Inhibit Hormone-Sensitive and -Insensitive Breast Cancer Cells. J. Surg. Res. 2000, 91, 9–14.
  91. Alosi, J.A.; McFadden, D.W. Peptide YY Mediates Inhibition of Tumor Growth and Inflammation. In Inflammation and Cancer; Kozlov, S.V., Ed.; Humana Press: Totowa, NJ, USA, 2009; Volume 512, pp. 377–394.
  92. De Morrow, S.; Onori, P.; Venter, J.; Invernizzi, P.; Frampton, G.; White, M.; Franchitto, A.; Kopriva, S.; Bernuzzi, F.; Francis, H.; et al. Neuropeptide Y Inhibits Cholangiocarcinoma Cell Growth and Invasion. Am. J. Physiol. Cell Physiol. 2011, 300, C1078–C1089.
  93. Raunkilde, L.; Hansen, T.F.; Andersen, R.F.; Havelund, B.M.; Thomsen, C.B.; Jensen, L.H. NPY Gene Methylation in Circulating Tumor DNA as an Early Biomarker for Treatment Effect in Metastatic Colorectal Cancer. Cancers 2022, 14, 4459.
  94. Appelt, A.L.; Andersen, R.F.; Lindebjerg, J.; Jakobsen, A. Prognostic Value of Serum NPY Hypermethylation in Neoadjuvant Chemoradiotherapy for Rectal Cancer: Secondary Analysis of a Randomized Trial. Am. J. Clin. Oncol. 2020, 43, 9–13.
  95. Roperch, J.-P.; Incitti, R.; Forbin, S.; Bard, F.; Mansour, H.; Mesli, F.; Baumgaertner, I.; Brunetti, F.; Sobhani, I. Aberrant Methylation of NPY, PENK, and WIF1 as a Promising Marker for Blood-Based Diagnosis of Colorectal Cancer. BMC Cancer 2013, 13, 566.
  96. Thomsen, C.B.; Andersen, R.F.; Lindebjerg, J.; Hansen, T.F.; Jensen, L.H.; Jakobsen, A. Correlation between Tumor-Specific Mutated and Methylated DNA in Colorectal Cancer. JCO Precis. Oncol. 2019, 3, 1–8.
  97. Jensen, L.H.; Olesen, R.; Petersen, L.N.; Boysen, A.K.; Andersen, R.F.; Lindebjerg, J.; Nottelmann, L.; Thomsen, C.E.B.; Havelund, B.M.; Jakobsen, A.; et al. NPY Gene Methylation as a Universal, Longitudinal Plasma Marker for Evaluating the Clinical Benefit from Last-Line Treatment with Regorafenib in Metastatic Colorectal Cancer. Cancers 2019, 11, 1649.
  98. Li, Y.; Chen, S.; Li, Z. Plasma Neuropeptide Y (NPY) Levels in Patients with Gastric and Colorectal Carcinomas. Zhonghua Zhong Liu Za Zhi 1998, 20, 213–215.
  99. Chakroborty, D.; Goswami, S.; Fan, H.; Frankel, W.L.; Basu, S.; Sarkar, C. Neuropeptide Y, a Paracrine Factor Secreted by Cancer Cells, Is an Independent Regulator of Angiogenesis in Colon Cancer. Br. J. Cancer 2022, 127, 1440–1449.
  100. Ashraf, S.; Crowe, R.; Loizidou, M.; Turmaine, M.; Taylor, I.; Burnstock, G. The Absence of Autonomic Perivascular Nerves in Human Colorectal Liver Metastases. Br. J. Cancer 1996, 73, 349–359.
  101. Wilander, E.; El-Salhy, M.; Lundqvist, M.; Grimelius, L.; Terenius1, L.; Lundberg, J.M.; Tatemoto, K.; Schwartz, T.W. Polypeptide YY (PYY) and Pancreatic Polypeptide (PP) in Rectal Carcinoids: An Immunocytochemical Study. Virchows Arch. A Pathol. Anat. Histopathol. 1983, 401, 67–72.
  102. Adrian, T.E.; Ballantyne, G.H.; Zucker, K.A.; Zdon, M.J.; Tierney, R.; Modlin, I.M. Lack of Peptide YY Immunoreactivity in Adenomatous Colonic Polyps: Evidence in Favor of an Adenoma-Carcinoma Sequence. J. Surg. Res. 1988, 44, 561–565.
  103. Jing, F.; Liu, G.; Zhang, R.; Xue, W.; Lin, J.; Zhu, H.; Zhu, Y.; Wu, C.; Luo, Y.; Chen, T.; et al. PYY Modulates the Tumorigenesis and Progression of Colorectal Cancer Unveiled by Proteomics. Am. J. Cancer Res. 2022, 12, 5500.
  104. Zygulska, A.L.; Furgala, A.; Krzemieniecki, K.; Kaszuba-ZwoiNska, J.; Thor, P. Enterohormonal Disturbances in Colorectal Cancer Patients. Neoplasma 2017, 64, 421–429.
  105. Amin, S.M.; Albrechtsen, N.W.; Forster, J.; Damjanov, I. Gangliocytic Paraganglioma of Duodenum Metastatic to Lymph Nodes and Liver and Extending into the Retropancreatic Space. Pathologica 2013, 105, 90–93.
  106. McFadden, D.W.; Riggs, D.R.; Jackson, B.J.; Vona-Davis, L. Peptide YY Inhibits the Growth of Barrett’s Esophageal Adenocarcinoma In Vitro. Am. J. Surg. 2004, 188, 516–519.
  107. Tilan, J.U.; Krailo, M.; Barkauskas, D.A.; Galli, S.; Mtaweh, H.; Long, J.; Wang, H.; Hawkins, K.; Lu, C.; Jeha, D.; et al. Systemic Levels of Neuropeptide Y and Dipeptidyl Peptidase Activity in Patients with Ewing Sarcoma-Associations with Tumor Phenotype and Survival: NPY in Patients with Ewing Sarcoma. Cancer 2015, 121, 697–707.
  108. Körner, M.; Waser, B.; Reubi, J.C. High Expression of Neuropeptide Y1 Receptors in Ewing Sarcoma Tumors. Clin. Cancer Res. 2008, 14, 5043–5049.
  109. Lu, C.; Tilan, J.U.; Everhart, L.; Czarnecka, M.; Soldin, S.J.; Mendu, D.R.; Jeha, D.; Hanafy, J.; Lee, C.K.; Sun, J.; et al. Dipeptidyl Peptidases as Survival Factors in Ewing Sarcoma Family of Tumors. J. Biol. Chem. 2011, 286, 27494–27505.
  110. Tilan, J.U.; Lu, C.; Galli, S.; Izycka-Swieszewska, E.; Earnest, J.P.; Shabbir, A.; Everhart, L.M.; Wang, S.; Martin, S.; Horton, M.; et al. Hypoxia Shifts Activity of Neuropeptide Y in Ewing Sarcoma from Growth-Inhibitory to Growth-Promoting Effects. Oncotarget 2013, 4, 2487–2501.
  111. Lu, C.; Mahajan, A.; Hong, S.-H.; Galli, S.; Zhu, S.; Tilan, J.U.; Abualsaud, N.; Adnani, M.; Chung, S.; Elmansy, N.; et al. Publisher Correction: Hypoxia-Activated Neuropeptide Y/Y5 Receptor/RhoA Pathway Triggers Chromosomal Instability and Bone Metastasis in Ewing Sarcoma. Nat. Commun. 2022, 13, 2323.
  112. Hong, S.-H.; Tilan, J.U.; Galli, S.; Izycka-Swieszewska, E.; Polk, T.; Horton, M.; Mahajan, A.; Christian, D.; Jenkins, S.; Acree, R.; et al. High Neuropeptide Y Release Associates with Ewing Sarcoma Bone Dissemination—In Vivo Model of Site-Specific Metastases. Oncotarget 2015, 6, 7151–7165.
  113. Bilchik, A.J.; Nilsson, O.; Modlin, I.M.; Sussman, J.; Zucker, K.A.; Adrian, T.E. H2-Receptor Blockade Induces Peptide YY and Enteroglucagon-Secreting Gastric Carcinoids in Mastomys. Surgery 1989, 106, 1119–1126.
  114. Solt, J.; Kádas, I.; Polak, J.M.; Németh, Á.; Bloom, S.R.; Rauth, J.; Horváth, L. A Pancreatic-polypeptide-producing Tumor of the Stomach. Cancer 1984, 54, 1101–1104.
  115. Tan, E.M.S.; Blackwell, M.G.; Dunne, J.C.; Marsh, R.; Tan, S.T.; Itinteang, T. Neuropeptide Y Receptor 1 Is Expressed by B and T Lymphocytes and Mast Cells in Infantile Haemangiomas. Acta Paediatr. 2017, 106, 292–297.
  116. Misawa, K.; Mima, M.; Imai, A.; Mochizuki, D.; Misawa, Y.; Endo, S.; Ishikawa, R.; Kanazawa, T.; Mineta, H. The Neuropeptide Genes SST, TAC1, HCRT, NPY, and GAL Are Powerful Epigenetic Biomarkers in Head and Neck Cancer: A Site-Specific Analysis. Clin. Epigenet. 2018, 10, 52.
  117. Körner, M.; Waser, B.; Reubi, J.C. Neuropeptide Y Receptors in Renal Cell Carcinomas and Nephroblastomas. Int. J. Cancer 2005, 115, 734–741.
  118. Dvorackova, J.; Macak, J.; Brzula, P.; Tomanova, R.; Dokulil, J. Primary Neuroendocrine Carcinoma of the Kidney. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2013, 157, 257–260.
  119. Kogner, P.; Ericsson, A.; Barbany, G.; Persson, H.; Theodorsson, E.; Björk, O. Neuropeptide Y (NPY) Synthesis in Lymphoblasts and Increased Plasma NPY in Pediatric B-Cell Precursor Leukemia. Blood 1992, 80, 1324–1329.
  120. Keffel, S.; Schmidt, M.; Bischoff, A.; Michel, M.C. Neuropeptide-Y Stimulation of Extracellular Signal- Regulated Kinases in Human Erythroleukemia Cells. J. Pharmacol. Exp. Ther. 1999, 291, 1172–1178.
  121. Feth, F.; Rascher, W.; Michel, M.C. Neuropeptide Y (NPY) Receptors in HEL Cells: Comparison of Binding and Functional Parameters for Full and Partial Agonists and a Non-Peptide Antagonist. Br. J. Pharmacol. 1992, 105, 71–76.
  122. Lv, X.; Zhao, F.; Huo, X.; Tang, W.; Hu, B.; Gong, X.; Yang, J.; Shen, Q.; Qin, W. Neuropeptide Y1 Receptor Inhibits Cell Growth through Inactivating Mitogen-Activated Protein Kinase Signal Pathway in Human Hepatocellular Carcinoma. Med. Oncol. 2016, 33, 70.
  123. Dietrich, P.; Wormser, L.; Fritz, V.; Seitz, T.; De Maria, M.; Schambony, A.; Kremer, A.E.; Günther, C.; Itzel, T.; Thasler, W.E.; et al. Molecular Crosstalk between Y5 Receptor and Neuropeptide Y Drives Liver Cancer. J. Clin. Investig. 2020, 130, 2509–2526.
  124. Levite, M.; Safadi, R.; Milgrom, Y.; Massarwa, M.; Galun, E. Neurotransmitters and Neuropeptides Decrease PD-1 in T Cells of Healthy Subjects and Patients with Hepatocellular Carcinoma (HCC), and Increase Their Proliferation and Eradication of HCC Cells. Neuropeptides 2021, 89, 102159.
  125. Li, Y.; Dong, L. Effect of Peptide YY on Subcutaneous Transplantation Tumor of Human Hepatoma in Nude Mice. Nan Fang Yi Ke Xue Xue Bao 2008, 28, 1442–1445.
  126. Zeng, D.; Hu, Z.; Yi, Y.; Valeria, B.; Shan, G.; Chen, Z.; Zhan, C.; Lin, M.; Lin, Z.; Wang, Q. Differences in Genetics and Microenvironment of Lung Adenocarcinoma Patients with or without TP53 Mutation. BMC Pulm. Med. 2021, 21, 316.
  127. Yamashita, Y.; Miyahara, E.; Shimizu, K.; Toge, T.; Adrian, T.E. Screening of Gastrointestinal Hormone Release in Patients with Lung Cancer. Vivo 2003, 17, 193–195.
  128. Norheim, I.; Öberg, K.; Theodorsson-Norheim, E.; Lindgren, P.G.; Lundqvist, G.; Magnusson, A.; Wide, L.; Wilander, E. Malignant Carcinoid Tumors: An Analysis of 103 Patients with Regard to Tumor Localization, Hormone Production, and Survival. Ann. Surg. 1987, 206, 115–125.
  129. Hjalmarsen, A.; Bremnes, R.M.; Aasebø, U.; Jorde, R. Pancreatic Polypeptide Is Increased in Patients with Advanced Malignant Disease. Anticancer Res. 2004, 24, 2515–2517.
  130. Ishida, T.; Yokoyama, H.; Sugio, K.; Kaneko, S.; Sugimachi, K.; Hara, N.; Ohta, M. Carcinoid Tumor of the Lung: Clinicopathological and Immunohistochemical Studies. Eur. J. Surg. Oncol. 1992, 18, 180–187.
  131. Gilaberte, Y.; Roca, M.J.; Garcia-Prats, M.D.; Coscojuela, C.; Arbues, M.D.; Vera-Alvarez, J.J. Neuropeptide Y Expression in Cutaneous Melanoma. J. Am. Acad. Dermatol. 2012, 66, e201–e208.
  132. Alasvand, M.; Rashidi, B.; Javanmard, S.H.; Akhavan, M.M.; Khazaei, M. Effect of Blocking of Neuropeptide Y Y2 Receptor on Tumor Angiogenesis and Progression in Normal and Diet-Induced Obese C57BL/6 Mice. Glob. J. Health Sci. 2015, 7, p69.
  133. Horvathova, L.; Padova, A.; Tillinger, A.; Osacka, J.; Bizik, J.; Mravec, B. Sympathectomy Reduces Tumor Weight and Affects Expression of Tumor-Related Genes in Melanoma Tissue in the Mouse. Stress 2016, 19, 528–534.
  134. Mei, S.; Li, Y.; Kang, X. Prognostic and Functional Analysis of NPY6R in Uveal Melanoma Using Bioinformatics. Dis. Markers 2022, 2022, 4143447.
  135. Pérez Tato, B.; Juarranz, Á.; Nájera, L.; Mihm, M.C.; Fernández, P.; Gilaberte, Y.; González, S. Neuropeptide Y Expression in Primary Cutaneous Melanoma. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 443–449.
  136. Galli, S.; Naranjo, A.; Van Ryn, C.; Tilan, J.U.; Trinh, E.; Yang, C.; Tsuei, J.; Hong, S.-H.; Wang, H.; Izycka-Swieszewska, E.; et al. Neuropeptide Y as a Biomarker and Therapeutic Target for Neuroblastoma. Am. J. Pathol. 2016, 186, 3040–3053.
  137. Bjellerup, P.; Theodorsson, E.; Jörnvall, H.; Kogner, P. Limited Neuropeptide Y Precursor Processing in Unfavourable Metastatic Neuroblastoma Tumours. Br. J. Cancer 2000, 83, 171–176.
  138. Li, A.; Ritter, S. Functional Expression of Neuropeptide Y Receptors in Human Neuroblastoma Cells. Regul. Pept. 2005, 129, 119–124.
  139. Lu, C.; Everhart, L.; Tilan, J.; Kuo, L.; Sun, C.-C.J.; Munivenkatappa, R.B.; Jönsson-Rylander, A.-C.; Sun, J.; Kuan-Celarier, A.; Li, L.; et al. Neuropeptide Y and Its Y2 Receptor: Potential Targets in Neuroblastoma Therapy. Oncogene 2010, 29, 5630–5642.
  140. Croce, N.; Dinallo, V.; Ricci, V.; Federici, G.; Caltagirone, C.; Bernardini, S.; Angelucci, F. Neuroprotective Effect of Neuropeptide Y against β-Amyloid 25-35 Toxicity in SH-SY5Y Neuroblastomacells Is Associated with Increased Neurotrophinproduction. Neurodegener. Dis. 2011, 8, 300–309.
  141. Palanivel, V.; Gupta, V.; Mirshahvaladi, S.S.O.; Sharma, S.; Gupta, V.; Chitranshi, N.; Mirzaei, M.; Graham, S.L.; Basavarajappa, D. Neuroprotective Effects of Neuropeptide Y on Human Neuroblastoma SH-SY5Y Cells in Glutamate Excitotoxicity and ER Stress Conditions. Cells 2022, 11, 3665.
  142. Kitlinska, J.; Abe, K.; Kuo, L.; Pons, J.; Yu, M.; Li, L.; Tilan, J.; Everhart, L.; Lee, E.W.; Zukowska, Z.; et al. Differential Effects of Neuropeptide Y on the Growth and Vascularization of Neural Crest–Derived Tumors. Cancer Res. 2005, 65, 1719–1728.
  143. Adrian, T.E.; Terenghi, G.; Brown, M.J.; Allen, J.M.; Bacarese-Hamilton, A.J.; Polak, J.M.; Bloom, S.R. Neuropeptide Y in Phaeochromocytomas and Ganglioneuroblastomas. Lancet 1983, 322, 540–542.
  144. Dozio, E.; Ruscica, M.; Feltrin, D.; Motta, M.; Magni, P. Cholinergic Regulation of Neuropeptide Y Synthesis and Release in Human Neuroblastoma Cells. Peptides 2008, 29, 491–495.
  145. Magni, P.; Maggi, R.; Pimpinelli, F.; Motta, M. Cholinergic Muscarinic Mechanisms Regulate Neuropeptide Y Gene Expression via Protein Kinase C in Human Neuroblastoma Cells. Brain Res. 1998, 798, 75–82.
  146. Musso, R.; Maggi, A.; Eva, C. 17β-Estradiol Stimulates Mouse Neuropeptide Y-Y1 Receptor Gene Transcription by Binding to Estrogen Receptor Alpha in Neuroblastoma Cells. Neuroendocrinology 2000, 72, 360–367.
  147. Farrelly, L.A.; Savage, N.T.P.; O’Callaghan, C.; Toulouse, A.; Yilmazer-Hanke, D.M. Therapeutic Concentrations of Valproate but Not Amitriptyline Increase Neuropeptide Y (NPY) Expression in the Human SH-SY5Y Neuroblastoma Cell Line. Regul. Pept. 2013, 186, 123–130.
  148. Czarnecka, M.; Trinh, E.; Lu, C.; Kuan-Celarier, A.; Galli, S.; Hong, S.-H.; Tilan, J.U.; Talisman, N.; Izycka-Swieszewska, E.; Tsuei, J.; et al. Neuropeptide Y Receptor Y5 as an Inducible Pro-Survival Factor in Neuroblastoma: Implications for Tumor Chemoresistance. Oncogene 2015, 34, 3131–3143.
  149. Magni, P.; Beretta, E.; Scaccianoce, E.; Motta, M. Retinoic Acid Negatively Regulates Neuropeptide Y Expression in Human Neuroblastoma Cells. Neuropharmacology 2000, 39, 1628–1636.
  150. Shorter, N.A.; Pence, J.C. Retinoic Acid-Induced Regulation of Neuropeptide Y Receptor Expression and Function in the Neuroepithelioma Line SK-N-MC. J. Pediatr. Surg. 1997, 32, 721–723.
  151. Wang, B.; Sheriff, S.; Balasubramaniam, A.; Kennedy, M.A. NMR Based Metabolomics Study of Y2 Receptor Activation by Neuropeptide Y in the SK-N-BE2 Human Neuroblastoma Cell Line. Metabolomics 2015, 11, 1243–1252.
  152. Park, M.H.; Jung, I.K.; Min, W.-K.; Choi, J.H.; Kim, G.M.; Jin, H.K.; Bae, J. Neuropeptide Y Improves Cisplatin-Induced Bone Marrow Dysfunction without Blocking Chemotherapeutic Efficacy in a Cancer Mouse Model. BMB Rep. 2017, 50, 417–422.
  153. Erdenebaatar, C.; Yamaguchi, M.; Saito, F.; Motooka, C.; Tashiro, H.; Katabuchi, H. An Ovarian Carcinoid Tumor with Peptide YY-Positive Insular Component: A Case Report and Review of the Literature. Int. J. Gynecol. Pathol. 2016, 35, 362–368.
  154. Matsunami, K.; Takagi, H.; Ichigo, S.; Murase, T.; Ikeda, T.; Imai, A. Peptide YY Producing Strumal Carcinoid Tumor of the Ovary. Eur. J. Gynaecol. Ocoligic 2011, 32, 201–202.
  155. Muller, K.E.; Tafe, L.J.; Gonzalez, J.L.; West, L.A.; Schned, A.R. Ovarian Strumal Carcinoid Producing Peptide YY Associated with Severe Constipation: A Case Report and Review of the Literature. Int. J. Gynecol. Pathol. 2015, 34, 30–35.
  156. Waldmann, J.; Fendrich, V.; Reichert, M.; Hecker, A.; Bartsch, D.K.; Padberg, W.; Holler, J.P.N. Expression of Neuropeptide Y and Its Receptors Y1 and Y2 in Pancreatic Intraepithelial Neoplasia and Invasive Pancreatic Cancer in a Transgenic Mouse Model and Human Samples of Pancreatic Cancer. J. Surg. Res. 2018, 223, 230–236.
  157. Rämö, O.J.; Balasubramaniam, A.; Sheriff, S.; Rogers, D.H.; McCullough, P.J.; Bell, R.H. Neuropeptide Y and Peptide YY Stimulate the Growth of Exocrine Pancreatic Carcinoma Cells. Neuropeptides 1990, 15, 101–106.
  158. Waeber, G.; Hurlimann, J.; Haefliger, J.-A.; Gomez, F.; Nicod, P.; Grouzmann, E. Neuropeptide Y Secretion from a Human Insulinoma. J. Endocrinol. Investig. 1996, 19, 190–195.
  159. Liu, C.D.; Rongione, A.J.; Garvey, L.; Balasubramaniam, A.; McFadden, D.W. Adjuvant Hormonal Treatment with Peptide YY or Its Analog Decreases Human Pancreatic Carcinoma Growth. Am. J. Surg. 1996, 171, 192–196.
  160. Liu, C.; Slice, L.; Balasubramaniam, A.; Walsh, J.; Newton, T.; Saxton, R.; Mcfadden, D. Y2 Receptors Decrease Human Pancreatic Cancer Growth and Intracellular Cyclic Adenosine Monophosphate Levels. Surgery 1995, 118, 229–236.
  161. Liu, C.D.; Balasubramaniam, A.; Saxton, R.E.; Paiva, M.; McFadden, D.W. Human Pancreatic Cancer Growth Is Inhibited by Peptide YY and BIM-43004-1. J. Surg. Res. 1995, 58, 707–712.
  162. Liu, C. Synthetic Peptide YY Analog Binds to a Cell Membrane Receptor and Delivers Fluorescent Dye to Pancreatic Cancer Cells. J. Gastrointest. Surg. 2001, 5, 147–152.
  163. Heisler, T.; Towfigh, S.; Simon, N.; Liu, C.; McFadden, D.W. Peptide YY Augments Gross Inhibition by Vitamin E Succinate of Human Pancreatic Cancer Cell Growth. J. Surg. Res. 2000, 88, 23–25.
  164. Howard, T.J.; Sawicki, M.; Lewin, K.J.; Steel, B.; Bhagavan, B.S.; Cummings, O.W.; Passaro, E. Pancreatic Polypeptide Immunoreactivity in Sporadic Gastrinoma: Relationship to Intraabdominal Location. Pancreas 1995, 11, 350–356.
  165. Škrha, J.; Bušek, P.; Uhrová, J.; Hrabal, P.; Kmochová, K.; Laclav, M.; Bunganič, B.; Frič, P. Lower Plasma Levels of Glucose-Dependent Insulinotropic Peptide (GIP) and Pancreatic Polypeptide (PP) in Patients with Ductal Adenocarcinoma of the Pancreas and Their Relation to the Presence of Impaired Glucoregulation and Weight Loss. Pancreatology 2017, 17, 89–94.
  166. Śliwińska-Mossoń, M.; Marek, G.; Milnerowicz, H. The Role of Pancreatic Polypeptide in Pancreatic Diseases. Adv. Clin. Exp. Med. 2017, 26, 1447–1456.
  167. Maxwell, J.E.; O’Dorisio, T.M.; Bellizzi, A.M.; Howe, J.R. Elevated Pancreatic Polypeptide Levels in Pancreatic Neuroendocrine Tumors and Diabetes Mellitus: Causation or Association? Pancreas 2014, 43, 651–656.
  168. Rossi, V.; Saibeni, S.; Sinigaglia, L.; Peracchi, M.; Parafioriti, A.; Vecchi, M. Hypokalemic Rhabdomyolysis without Watery Diarrhea: An Unexpected Presentation of a Pancreatic Neuro-Endocrine Tumor. Am. J. Gastroenterol. 2006, 101, 669–672.
  169. Funakoshi, A.; Yasunami, Y.; Ryu, S.; Shinozaki, H.; Jimi, A. Acetylcholine Regulates Glucagon Secretion from Human Glucagonoma Cells. J. Gastroenterol. 1994, 29, 797–799.
  170. Luts, L.; Bergenfelz, A.; Alumets, J.; Sundler, F. Peptide-Containing Nerve Fibres in Normal Human Parathyroid Glands and in Human Parathyroid Adenomas. Eur. J. Endocrinol. 1995, 133, 543–551.
  171. deS Senanayake, P.; Denker, J.; Bravo, E.L.; Graham, R.M. Production, Characterization, and Expression of Neuropeptide Y by Human Pheochromocytoma. J. Clin. Investig. 1995, 96, 2503–2509.
  172. Eurin, J.; Barthélemy, C.; Masson, F.; Maistre, G.; Soualmia, H.; Noé, E.; Sarfati, E.; Eurin, B.; Carayon, A. Release of Neuropeptide Y and Hemodynamic Changes during Surgical Removal of Human Pheochromocytomas. Regul. Pept. 2000, 86, 95–102.
  173. Liu, J.; Kahri, A.; Heikkila, P.; Voutilainen, R. Regulation of Neuropeptide Y MRNA Expression in Cultured Human Pheochromocytoma Cells. Eur. J. Endocrinol. 1999, 141, 431–435.
  174. Takahashi, K.; Mouri, T.; Sone, M.; Murakami, O.; Itoi, K.; Ohneda, M.; Yoshinaga, K. Release of Neuropeptide Y from Pheochromocytomas. Endocrinol. Jpn. 1990, 37, 53–60.
  175. Dötsch, J.; Hänze, J.; Dittrich, K.; Demirakça, S.; Haberberger, R.; Rascher, W. Stimulation of Neuropeptide Y Release in Rat Pheochromocytoma Cells by Nitric Oxide. Eur. J. Pharmacol. 1997, 331, 313–317.
  176. Eurin, J.; Barthélemy, C.; Masson, F.; Soualmia, H.; Sarfati, E.; Carayon, A. Bradykinin-Induced Neuropeptide Y Release by Human Pheochromocytoma Tissue. Neuropeptides 2002, 36, 257–262.
  177. Grouzmann, E.; Werffeli-George, P.; Fathi, M.; Burnier, M.; Waeber, B.; Waeber, G. Angiotensin-II Mediates Norepinephrine and Neuropeptide-Y Secretion in a Human Pheochromocytoma. J. Clin. Endocrinol. Metab. 1994, 79, 1852–1856.
  178. Cao, G.; Gardner, A.; Westfall, T.C. Mechanism of Dopamine Mediated Inhibition of Neuropeptide Y Release from Pheochromocytoma Cells (PC12 Cells). Biochem. Pharmacol. 2007, 73, 1446–1454.
  179. Kuch-Wocial, A.; Ślubowska, K.; Kostrubiec, M.; Pasierski, T.; Januszewicz, W.; Świtalska, H.; Wocial, B.; Pruszczyk, P. Plasma Neuropeptide Y Immunoreactivity Influences Left Ventricular Mass in Pheochromocytoma. Clin. Chim. Acta 2004, 345, 43–47.
  180. Jia, R.; Li, M.; Chang, B.; Chen, L.; Ma, J. Expression of Neuropeptide Y and Its Relationship with Molecular and Morphological Changes in Human Pituitary Adenomas. Cancer Biother. Radiopharm. 2015, 30, 411–419.
  181. Levy, M.J.; Classey, J.D.; Maneesri, S.; Meeran, K.; Powell, M.; Goadsby, P.J. The Relationship between Neuropeptide Y Expression and Headache in Pituitary Tumours. Eur. J. Neurol. 2006, 13, 125–129.
  182. Watanobe, H.; Tamura, T. Stimulation by Neuropeptide Y of Growth Hormone Secretion in Prolactinoma in Vivo. Neuropeptides 1996, 30, 429–432.
  183. Adams, E.F.; Venetikou, M.S.; Woods, C.A.; Lacoumenta, S.; Burrin, J.M. Neuropeptide Y Directly Inhibits Growth Hormone Secretion by Human Pituitary Somatotropic Tumours. Acta Endocrinol. 1987, 115, 149–154.
  184. Alshalalfa, M.; Nguyen, P.L.; Beltran, H.; Chen, W.S.; Davicioni, E.; Zhao, S.G.; Rebbeck, T.R.; Schaeffer, E.M.; Lotan, T.L.; Feng, F.Y.; et al. Transcriptomic and Clinical Characterization of Neuropeptide Y Expression in Localized and Metastatic Prostate Cancer: Identification of Novel Prostate Cancer Subtype with Clinical Implications. Eur. Urol. Oncol. 2019, 2, 405–412.
  185. Massoner, P.; Kugler, K.G.; Unterberger, K.; Kuner, R.; Mueller, L.A.J.; Fälth, M.; Schäfer, G.; Seifarth, C.; Ecker, S.; Verdorfer, I.; et al. Characterization of Transcriptional Changes in ERG Rearrangement-Positive Prostate Cancer Identifies the Regulation of Metabolic Sensors Such as Neuropeptide Y. PLoS ONE 2013, 8, e55207.
  186. Ueda, K.; Tatsuguchi, A.; Saichi, N.; Toyama, A.; Tamura, K.; Furihata, M.; Takata, R.; Akamatsu, S.; Igarashi, M.; Nakayama, M.; et al. Plasma Low-Molecular-Weight Proteome Profiling Identified Neuropeptide-Y as a Prostate Cancer Biomarker Polypeptide. J. Proteome Res. 2013, 12, 4497–4506.
  187. Sigorski, D.; Wesołowski, W.; Gruszecka, A.; Gulczyński, J.; Zieliński, P.; Misiukiewicz, S.; Kitlińska, J.; Iżycka-Świeszewska, E. Neuropeptide Y and Its Receptors in Prostate Cancer: Associations with Cancer Invasiveness and Perineural Spread. J. Cancer Res. Clin. Oncol. 2022.
  188. Ding, Y.; Lee, M.; Gao, Y.; Bu, P.; Coarfa, C.; Miles, B.; Sreekumar, A.; Creighton, C.J.; Ayala, G. Neuropeptide Y Nerve Paracrine Regulation of Prostate Cancer Oncogenesis and Therapy Resistance. Prostate 2021, 81, 58–71.
  189. Ruscica, M.; Dozio, E.; Motta, M.; Magni, P. Modulatory Actions of Neuropeptide Y on Prostate Cancer Growth: Role of MAP Kinase/ERK 1/2 Activation. In Advances in Molecular Oncology; Fagagna, F., d’Adda di Chiocca, S., McBlane, F., Cavallaro, U., Eds.; Springer: Boston, MA, USA, 2007; Volume 604, pp. 96–100.
  190. Mohammadpour, H.; Bucsek, M.J.; Hylander, B.L.; Repasky, E.A. Depression Stresses the Immune Response and Promotes Prostate Cancer Growth. Clin. Cancer Res. 2019, 25, 2363–2365.
  191. Cheng, Y.; Tang, X.-Y.; Li, Y.-X.; Zhao, D.-D.; Cao, Q.-H.; Wu, H.-X.; Yang, H.-B.; Hao, K.; Yang, Y. Depression-Induced Neuropeptide Y Secretion Promotes Prostate Cancer Growth by Recruiting Myeloid Cells. Clin. Cancer Res. 2019, 25, 2621–2632.
  192. Yu, A.; Somasundar, P.; Balsubramaniam, A.; Rose, A.T.; Vona-Davis, L.; McFadden, D.W. Vitamin E and the Y4 Agonist BA-129 Decrease Prostate Cancer Growth and Production of Vascular Endothelial Growth Factor. J. Surg. Res. 2002, 105, 65–68.
  193. D’Andrea, V.; Artico, M.; Gallottini, I.; Ambrogi, V. Immunohistochemical Demonstration of Neuropeptide Y in the Normal Human Thymus and in Thymoma. Med. Firenze 1989, 9, 299–301.
Subjects: Oncology
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to : , ,
View Times: 467
Revisions: 2 times (View History)
Update Date: 14 Jun 2023
Video Production Service