Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1703 2023-06-10 22:11:59 |
2 references update -3 word(s) 1700 2023-06-12 03:11:30 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Zilio, F.; Verdoia, M.; De Angelis, M.C.; Zucchelli, F.; Borghesi, M.; Rognoni, A.; Bonmassari, R. Drug Coated Balloons Characteristics according to Antiproliferative Drugs. Encyclopedia. Available online: https://encyclopedia.pub/entry/45420 (accessed on 27 July 2024).
Zilio F, Verdoia M, De Angelis MC, Zucchelli F, Borghesi M, Rognoni A, et al. Drug Coated Balloons Characteristics according to Antiproliferative Drugs. Encyclopedia. Available at: https://encyclopedia.pub/entry/45420. Accessed July 27, 2024.
Zilio, Filippo, Monica Verdoia, Maria Carmen De Angelis, Federico Zucchelli, Marco Borghesi, Andrea Rognoni, Roberto Bonmassari. "Drug Coated Balloons Characteristics according to Antiproliferative Drugs" Encyclopedia, https://encyclopedia.pub/entry/45420 (accessed July 27, 2024).
Zilio, F., Verdoia, M., De Angelis, M.C., Zucchelli, F., Borghesi, M., Rognoni, A., & Bonmassari, R. (2023, June 10). Drug Coated Balloons Characteristics according to Antiproliferative Drugs. In Encyclopedia. https://encyclopedia.pub/entry/45420
Zilio, Filippo, et al. "Drug Coated Balloons Characteristics according to Antiproliferative Drugs." Encyclopedia. Web. 10 June, 2023.
Drug Coated Balloons Characteristics according to Antiproliferative Drugs
Edit

Drug coated balloons (DCBs) are indicated in guidelines as a first choice option in the management of instant restenosis, whereas their use in de novo lesions is still debated. The concerns raised after the contrasting results of the initial trials with DCBs in de novo lesions have been overcome by a larger amount of data confirming their safety and effectiveness as compared to drug-eluting stents (DES), with potentially greater benefits being achieved, especially in particular anatomical settings, as in very small or large vessels and bifurcations, but also in selected subsets of higher-risk patients, where a ‘leave nothing behind’ strategy could offer a reduction of the inflammatory stimulus and thrombotic risk.

drug coated balloon paclitaxel sirolimus

1. Introduction

Drug coated balloons (DCBs) appeared in the European market of interventional cardiology in 2007, with the aim of offering a combined therapeutic, mechanical (linked to balloon dilatation) and biological (ensured by drug release in the vessel wall) solution, furthermore, avoiding the implantation of a permanent prosthesis [1].
Nowadays, drug-eluting stents (DES) are considered the treatment of choice for percutaneous coronary revascularization but their use still presents certain limitations, including in particular anatomical settings, such as small vessels or bifurcations, and these limitations relate to clinical conditions, such as increased bleeding or thrombotic risk [2]. To overcome some of these limitations, DCBs have been developed in recent years [1][3]. DCBs are balloons with a variable degree of compliance, coated with an antiproliferative drug that is rapidly released upon contact with the wall. DCBs are designed to deliver an antiproliferative drug and not to treat the stenosis. Therefore, before their use, the lesion must be adequately pre-treated and the device is then inflated for a long time (30–120 s), which allows an adequate transfer of the drug to the vessel wall [3].
DCBs offer some theoretical advantages over DES. One of the advantages of DCBs compared to DES is that they provide a larger contact surface with the vessel, allowing a more homogeneous drug–tissue transfer. Moreover, the lack of a permanent prosthesis in the vessel favors the restoration of regular vasomotion and the possibility of reducing the duration of the dual antiplatelet therapy. In this way, the mechanical expansion of the vessel is combined with the release of an antiproliferative drug, which begins its journey inside the vascular wall from the intima to the media and adventitia: in these last two locations, in fact, the drug will promote a physiological healing of the vessel with a positive remodeling and potential lumen gain [4].
In addition to the ‘local’ benefits for the treated lesion, different trials and meta-analyses [5][6][7][8] have underlined a trend for better clinical outcomes and reduced all-cause mortality with DCBs as compared to DES, although these findings and the exact pathophysiological basis for this observation still deserve further investigation [4].

2. DCBs Characteristics according to Antiproliferative Drugs

2.1. Paclitaxel-Coated Balloons

The most widely studied drug in the setting of DCBs is paclitaxel, whose physicochemical properties seem to make the substance most suitable for this application [9]. Different paclitaxel formulations have been used, including drug-only coatings as well as combinations with small fractions (typically 10%) of different additives, such as iopromide, urea, butyryl trihexyl citrate or a combination of polysorbate and sorbitol. Paclitaxel is a lipophilic drug that rapidly crosses the cell membrane of smooth muscle cells and binds to microtubules, stabilizing them during mitosis, thus inhibiting cell division and migration, and therefore, cell proliferation [10]. The dosage range is between 2 and 3.5 μg/mm2 of inflated balloon surface. The coating (matrix or carrier) of the balloon is essential because it must be able to retain the drug during the transit of the lesion and ensure a rapid and homogeneous transfer to the vessel wall during inflation, reducing the risk of dispersion. Paclitaxel is typically applied into the balloon surface at a concentration of 3 mg/mm2. Each type of paclitaxel-coated balloon (pDCB) is characterized by a different drug/excipient system, because if paclitaxel is applied as a firm compound, the required bioavailability is not obtained, as demonstrated in studies on porcine coronary overstretch models [11]. DCBs coated with paclitaxel in a water-soluble matrix have shown beneficial effects in the treatment and prevention of restenosis in the porcine and in humans, for both coronary in-stent restenosis and in peripheral arteries [12][13]. DCBs based on the Paccocath® technology (SeQuent Please) is widely available: in this case, the balloon is coated with a homogenous matrix of paclitaxel and contrast media (iopromide). This last drug acts as a ‘spacer’ and, thereby, makes the coating porous and paclitaxel bioavailable. Therefore, the matrix allows a reliable release and enables an immediate uptake into the vascular wall of paclitaxel. The hydrophilic character of iopromide and the lipophilic properties of paclitaxel support the release of the drug from the balloon surface and its delivery into the vascular wall. The Paccocath® technology has long term efficacy with a short term exposure: after a ‘single shot’ application of paclitaxel, there is a sustained antiproliferative action on smooth muscle cells over 14 days in absence of cytotoxic effects. Following such single drug delivery, the paclitaxel concentration reaches bottom levels in vascular cells after 24 h [14]. However, other additives or strategies to release the antiproliferative drug have been tested; for example, the Dior balloon has a ‘nanoporous’ balloon surface containing paclitaxel microcrystals following dimethyl sulfoxide treatment [15]. Commercially available DCBs’ characteristics are summarized in Table 1 together with the references of the most important studies [6][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56].
Table 1. Characteristics of commercially available DCBs.

2.2. Sirolimus-Coated Balloons

Although paclitaxel presents the most robust data for PTCA balloon coating, ‘limus’-eluting stents are currently dominating the scenario of coronary interventions for drug eluting stents. The benefit of sirolimus (or the ‘limus’ group) as an anti-proliferative drug, as compared to paclitaxel, has been documented in several DES trials [57][58][59]. Its main benefits include the cytostatic mode of action (compared to the cytotoxic effect of paclitaxel) and increased anti-restenotic effect. Moreover, sirolimus, compared to paclitaxel, has a lower lipophilicity but a wider therapeutic window. For stent-based local drug delivery, sirolimus must be released for a period of several weeks to achieve effective inhibition of neointimal proliferation. Preclinical studies have demonstrated the feasibility of sirolimus balloon coating in a dose range of 1 to 7 μg per mm2 balloon surface, with varying amorphous or crystalline formulations [60].
It was commonly thought that only sustained drug release would ensure persistent prevention of restenosis after angioplasty and stent implantation [61]. Considering that the inhibition of neointimal proliferation by sirolimus-coated balloons (sDCBs) in the porcine model was similar to the corresponding effect of sirolimus-eluting stents, a possible clinical indication for sirolimus-coated balloons was suggested to be drug-eluting stent restenosis [60]. In 2016, the first sirolimus-coated DCB (MagicTouch) obtained the CE mark. The technology designed for this device consists of the entrapment of sirolimus in a protective lipophilic package, which allows diffusion and penetration into the arterial wall during balloon inflation, overcoming the low lipophilicity of sirolimus. The package is composed of nanospheres of 100–300 nm in diameter. The total drug dosage corresponds to 1.25 mg/mm2 of balloon surface area (within the therapeutic window of sirolimus). In a prospective, multicenter clinical registry, MagicTouch sDCBs showed good immediate performance and an adequate and encouraging safety profile at 12 months [6].
In 2019, a study on the treatment of coronary DES restenosis by sDCBs showed similar efficacy in terms of late lumen loss (LLL) as compared to the SeQuent Please pDCB [62].
A subsequent indirect comparison between pDCB and sDCB found no significant difference in clinical endpoints at 12-month follow-up (p = 0.89 for MACE) [63], and this result was then confirmed by randomized clinical trials. Recently, in fact, sDCB proved to be non-inferior to pDCB in regards to LLL, either in in-stent restenosis (lumen loss in-segment at 6 months; mean difference between sDCB and pDCB 0.01–95% CI: −0.23 to 0.24; non-inferiority at a predefined margin of 0.35 shown [64]) or in de novo lesions (lumen loss at 6 months; mean difference 0.08–95% CI: −0.07 to 0.24, although negative lumen loss was more frequent in the pDCB group (60% vs. 32% of lesions; p = 0.019) [16]. However, these studies did not show any difference in clinical events [16][64]. Commercially available DCBs’ characteristics are summarized in Table 1.

References

  1. Alfonso, F.; Scheller, B. State of the art: Balloon catheter technologies—Drug-coated balloon. Eurointervention 2017, 13, 680–695.
  2. Byrne, R.; Joner, M.; Alfonso, F.; Kastrati, A. Drug-coated balloon therapy in coronary and peripheral artery disease. Nat. Rev. Cardiol. 2014, 11, 13–23.
  3. Cheng, Y.; Leon, M.B.; Granada, J.F. An update on the clinical use of drug-coated balloons in percutaneous coronary interventions. Expert Opin. Drug Deliv. 2016, 13, 859–872.
  4. Elgendy, I.Y.; Gad, M.M.; Elgendy, A.Y.; Mahmoud, A.; Mahmoud, A.N.; Cuesta, J.; Rivero, F.; Alfonso, F. Clinical and Angiographic Outcomes with Drug-Coated Balloons for De Novo Coronary Lesions: A Meta-Analysis of Randomized Clinical Trials. J. Am. Heart Assoc. 2020, 18, e016224.
  5. Verdoia, M.; Negro, F.; Kedhi, E.; Suryapranata, H.; Marcolongo, M.; De Luca, G. Benefits with drug-coated balloon as com-pared to a conventional revascularization strategy for the treatment of coronary and non-coronary arterial disease: A comprehensive meta-analysis of 45 randomized trials. Vascul. Pharmacol. 2021, 138, 106859.
  6. Cortese, B.; Testa, L.; Di Palma, G.; Heang, T.M.; Bossi, I.; Nuruddin, A.A.; Ielasi, A.; Tespili, M.; Perez, I.S.; Milazzo, D.; et al. Clinical performance of a novel sirolimus-coated balloon in coronary artery disease: EASTBOURNE registry. J. Cardiovasc. Med. 2021, 22, 94–100.
  7. Jeger, R.V.; Eccleshall, S.; Wan Ahmad, W.A.; Ge, J.; Poerner, T.C.; Shin, E.S.; Alfonso, F.; Latib, B.; Ong, P.J.; Rissanen, T.T.; et al. Drug-coated balloons for coronary artery disease: Third report of the International DCB Consensus Group. JACC Cardiovasc. Interv. 2020, 13, 1391–1402.
  8. Ma, W.-R.; Chandrasekharan, K.H.; Nai, C.-S.; Zhu, Y.-X.; Iqbal, J.; Chang, S.; Cheng, Y.-W.; Wang, X.-Y.; Bourantas, C.V.; Zhang, Y.-J. Clinical outcomes of percutaneous coronary intervention for de novo lesions in small coronary arteries: A systematic review and network meta-analysis. Front. Cardiovasc. Med. 2022, 9, 1017833.
  9. Li, Y.; Tellez, A.; Rousselle, S.D.; Dillon, K.N.; Garza, J.A.; Barry, C.; Granada, J.F. Biological effect on drug distribution and vascular healing via paclitaxel-coated balloon technology in drug eluting stent restenosis swine model. Catheter. Cardiovasc. Interv. 2015, 88, 89–98.
  10. Wöhrle, J. Drug-Coated Balloons for Coronary and Peripheral Interventional Procedures. Curr. Cardiol. Rep. 2012, 14, 635–641.
  11. Cremers, B.; Biedermann, M.; Mahnkopf, D.; Böhm, M.; Scheller, B. Comparison of two different paclitaxel-coated balloon catheters in the porcine coronary restenosis model. Clin. Res. Cardiol. 2009, 98, 325–330.
  12. Scheller, B.; Hehrlein, C.; Bocksch, W.; Rutsch, W.; Haghi, D.; Dietz, U.; Böhm, M.; Speck, U. Treatment of Coronary In-Stent Restenosis with a Paclitaxel-Coated Balloon Catheter. N. Engl. J. Med. 2006, 355, 2113–2124.
  13. Scheller, B.; Hehrlein, C.; Bocksch, W.; Rutsch, W.; Haghi, D.; Dietz, U.; Böhm, M.; Speck, U. Two year follow-up after treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. Clin. Res. Cardiol. 2008, 97, 773–781.
  14. Axel, D.I.; Kunert, W.; Göggelmann, C.; Oberhoff, M.; Herdeg, C.; Küttner, A.; Wild, D.H.; Brehm, B.R.; Riessen, R.; Küveker, G.; et al. Paclitaxel Inhibits Arterial Smooth Muscle Cell Proliferation and Migration In Vitro and In Vivo Using Local Drug Delivery. Circulation 1997, 96, 636–645.
  15. Fanggiday, J.C.; Stella, P.R.; Guyomi, S.H.; Doevendans, P.A. Safety and efficacy of drug-eluting balloons in percutaneous treatment of bifurcation lesions the DEBIUT (drug-elutingballoon inbifurcatonutrecht) registry. Catheter. Cardiovasc. Interv. 2008, 71, 629–635.
  16. Ahmad, W.A.W.; Nuruddin, A.A.; Kader, M.A.S.A.; Ong, T.K.; Liew, H.B.; Ali, R.M.; Zuhdi, A.S.M.; Ismail, M.D.; Yusof, A.K.; Schwenke, C.; et al. Treatment of Coronary De Novo Lesions by a Sirolimus- or Paclitaxel-Coated Balloon. JACC: Cardiovasc. Interv. 2022, 15, 770–779.
  17. Waksman, R.; Serra, A.; Loh, J.P.; Malik, F.T.-N.; Torguson, R.; Stahnke, S.; von Strandmann, R.P.; Rodriguez, A.E. Drug-coated balloons for de novo coronary lesions: Results from the Valentines II trial. Eurointervention 2013, 9, 613–619.
  18. Vaquerizo, B.; Miranda-Guardiola, F.; Fernández, E.; Rumoroso, J.R.; Gómez-Hospital, J.A.; Bossa, F.; Iñiguez, A.; Oategui, I.; Serra, A. Treatment of Small Vessel Disease with the Paclitaxel Drug-Eluting Balloon: 6-Month Angiographic and 1-Year Clinical Outcomes of the Spanish Multicenter Registry. J. Interv. Cardiol. 2015, 28, 430–438.
  19. Rosenberg, M.; Waliszewski, M.; Chin, K.; Ahmad, W.A.W.; Caramanno, G.; Milazzo, D.; Nuruddin, A.A.; Liew, H.B.; Maskon, O.; Aubry, P.; et al. Prospective, large-scale multicenter trial for the use of drug-coated balloons in coronary lesions: The DCB-only All-Comers Registry. Catheter. Cardiovasc. Interv. 2019, 93, 181–188.
  20. Cortese, B.; Micheli, A.; Picchi, A.; Coppolaro, A.; Bandinelli, L.; Severi, S.; Limbruno, U. Paclitaxel-coated balloon versus drug-eluting stent during PCI of small coronary vessels, a prospective randomised clinical trial. The PICCOLETO Study. Heart 2010, 96, 1291–1296.
  21. Latib, A.; Colombo, A.; Castriota, F.; Micari, A.; Cremonesi, A.; De Felice, F.; Marchese, A.; Tespili, M.; Presbitero, P.; Sgueglia, G.A.; et al. A Randomized Multicenter Study Comparing a Paclitaxel Drug-Eluting Balloon with a Paclitaxel-Eluting Stent in Small Coronary Vessels. J. Am. Coll. Cardiol. 2012, 60, 2473–2480.
  22. Latib, A.; Ruparelia, N.; Menozzi, A.; Castriota, F.; Micari, A.; Cremonesi, A.; De Felice, F.; Marchese, A.; Tespili, M.; Presbitero, P.; et al. 3-Year Follow-Up of the Balloon Elution and Late Loss Optimization Study (BELLO). JACC: Cardiovasc. Interv. 2015, 8, 1132–1134.
  23. Jeger, R.V.; Farah, A.; Ohlow, M.-A.; Mangner, N.; Möbius-Winkler, S.; Leibundgut, G.; Weilenmann, D.; Wöhrle, J.; Richter, S.; Schreiber, M.; et al. Drug-coated balloons for small coronary artery disease (BASKET-SMALL 2): An open-label randomised non-inferiority trial. Lancet 2018, 392, 849–856.
  24. Jeger, R.V.; Farah, A.; Ohlow, M.-A.; Mangner, N.; Möbius-Winkler, S.; Weilenmann, D.; Wöhrle, J.; Stachel, G.; Markovic, S.; Leibundgut, G.; et al. Long-term efficacy and safety of drug-coated balloons versus drug-eluting stents for small coronary artery disease (BASKET-SMALL 2): 3-year follow-up of a randomised, non-inferiority trial. Lancet 2020, 396, 1504–1510.
  25. Tang, Y.; Qiao, S.; Su, X.; Chen, Y.; Jin, Z.; Chen, H.; Xu, B.; Kong, X.; Pang, W.; Liu, Y.; et al. Drug-Coated Balloon Versus Drug-Eluting Stent for Small-Vessel Disease. JACC: Cardiovasc. Interv. 2018, 11, 2381–2392.
  26. Tian, J.; Tang, Y.; Qiao, S.; Su, X.; Chen, Y.; Jin, Z.; Chen, H.; Xu, B.; Kong, X.; Pang, W.; et al. Two-year follow-up of a randomized multicenter study comparing a drug-coated balloon with a drug-eluting stent in native small coronary vessels: The RESTORE Small Vessel Disease China trial. Catheter. Cardiovasc. Interv. 2020, 95, 587–597.
  27. Toelg, R.; Merkely, B.; Erglis, A.; Hoffman, S.; Bruno, H.; Kornowski, R.; Slagboom, T.; Naber, C.; Witzenbichler, B.; Graf, K.; et al. Coronary artery treatment with paclitaxel-coated balloon using a BTHC excipient: Clinical results of the international real-world DELUX registry. Eurointervention 2014, 10, 591–599.
  28. Uskela, S.; Kärkkäinen, J.M.; Eränen, J.; Siljander, A.; Mäntylä, P.; Mustonen, J.; Rissanen, T.T. Percutaneous coronary inter-vention with drug-coated balloon-only strategy in stable coronary artery disease and in acute coronary syndromes: An all-comers registry study. Catheter. Cardiovasc. Interv. 2019, 93, 893–900.
  29. Yu, X.; Ji, F.; Xu, F.; Zhang, W.; Wang, X.; Lu, D.; Yang, C.; Wang, F. Treatment of large de novo coronary lesions with paclitaxel-coated balloon only: Results from a Chinese institute. Clin. Res. Cardiol. 2019, 108, 234–243.
  30. Merinopoulos, I.; Gunawardena, T.; Wickramarachchi, U.; Richardson, P.; Maart, C.; Sreekumar, S.; Sawh, C.; Wistow, T.; Sarev, T.; Ryding, A.; et al. Long-term safety of paclitaxel drug-coated balloon-only angioplasty for de novo coronary artery disease: The SPARTAN DCB study. Clin. Res. Cardiol. 2021, 110, 220–227.
  31. Rissanen, T.T.; Uskela, S.; Eränen, J.; Mäntylä, P.; Olli, A.; Romppanen, H.; Siljander, A.; Pietilä, M.; Minkkinen, M.J.; Tervo, J.; et al. Drug-coated balloon for treatment of de-novo coronary artery lesions in patients with high bleeding risk (DEBUT): A single-blind, randomised, non-inferiority trial. Lancet 2019, 394, 230–239.
  32. Scheller, B.; Ohlow, M.-A.; Ewen, S.; Kische, S.; Rudolph, T.K.; Clever, Y.P.; Wagner, A.; Richter, S.; El-Garhy, M.; Böhm, M.; et al. Bare metal or drug-eluting stent versus drug-coated balloon in non-ST-elevation myocardial infarction: The randomised PEPCAD NSTEMI trial. Eurointervention 2020, 15, 1527–1533.
  33. Mínguez, J.R.L.; Asensio, J.M.N.; Vecino, L.J.D.; Sandoval, J.; Romany, S.; Romero, P.M.; Díaz, J.A.F.; Portales, J.F.; Fernández, R.G.; Cáceres, G.M.; et al. A prospective randomised study of the paclitaxel-coated balloon catheter in bifurcated coronary lesions (BABILON trial): 24-month clinical and angiographic results. Eurointervention 2014, 10, 50–57.
  34. Kleber, F.X.; Rittger, H.; Ludwig, J.; Schulz, A.; Mathey, D.G.; Boxberger, M.; Degenhardt, R.; Scheller, B.; Strasser, R.H. Drug eluting balloons as stand alone procedure for coronary bifurcational lesions: Results of the randomized multicenter PEPCAD-BIF trial. Clin. Res. Cardiol. 2016, 105, 613–621.
  35. Worthley, S.; Hendriks, R.; Worthley, M.; Whelan, A.; Walters, D.L.; Whitbourn, R.; Meredith, I. Paclitaxel-eluting balloon and everolimus-eluting stent for provisional stenting of coronary bifurcations: 12-month results of the multicenter BIOLUX-I study. Cardiovasc. Revasc. Med. 2015, 16, 413–417.
  36. Berland, J.; Lefèvre, T.; Brenot, P.; Fajadet, J.; Motreff, P.; Guerin, P.; Dupouy, P.; Schandrin, C. DANUBIO—A new drug-eluting balloon for the treatment of side branches in bifurcation lesions: Six-month angiographic follow-up results of the DEBSIDE trial. Eurointervention 2015, 11, 868–876.
  37. Jim, M.-H.; Lee, M.K.-Y.; Fung, R.C.-Y.; Chan, A.K.-C.; Chan, K.-T.; Yiu, K.-H. Six month angiographic result of supplementary paclitaxel-eluting balloon deployment to treat side branch ostium narrowing (SARPEDON). Int. J. Cardiol. 2015, 187, 594–597.
  38. Vos, N.S.; Dirksen, M.T.; Vink, M.A.; van Nooije, F.C.; Amoroso, G.; Herrman, R.; Kiemeneij, F.; Patterso, M.S.; Slagboom, T.; van der Schaa, R.J. Safety and Feasibility of a Paclitaxel-Eluting Balloon Angioplasty in Primary Per-cutaneous Coronary Intervention in Amsterdam (PAPPA): One-year clinical outcome of a pilot study. EuroIntervention 2014, 10, 584–590.
  39. Vos, N.S.; Fagel, N.D.; Amoroso, G.; Herrman, J.-P.R.; Patterson, M.S.; Piers, L.H.; van der Schaaf, R.J.; Slagboom, T.; Vink, M.A. Paclitaxel-coated balloon angioplasty versus drug eluting stent in acute myocardial infarction: The REVELATION randomized trial. J. Am. Coll. Cardiol. Intv. 2019, 12, 1691–1699.
  40. Funatsu, A.; Nakamura, S.; Inoue, N.; Nanto, S.; Nakamura, M.; Iwabuchi, M.; Ando, K.; Asano, R.; Habara, S.; Saito, S.; et al. A multicenter randomized comparison of paclitaxel-coated balloon with plain balloon angioplasty in patients with small vessel disease. Clin. Res. Cardiol. 2017, 106, 824–832.
  41. Gobić, D.; Tomulić, V.; Lulić, D.; Židan, D.; Brusich, S.; Jakljević, T.; Zaputović, L. Drug-Coated Balloon Versus Drug-Eluting Stent in Primary Percutaneous Coronary Intervention: A Feasibility Study. Am. J. Med. Sci. 2017, 354, 553–560.
  42. Shin, E.-S.; Lee, J.M.; Her, A.-Y.; Chung, J.-H.; Lee, K.E.; Garg, S.; Nam, C.-W.; Doh, J.-H.; Koo, B.-K. Prospective randomized trial of paclitaxel-coated balloon versus bare-metal stent in high bleeding risk patients with de novo coronary artery lesions. Coron. Artery Dis. 2019, 30, 425–431.
  43. Nishiyama, N.; Komatsu, T.; Kuroyanagi, T.; Fujikake, A.; Komatsu, S.; Nakamura, H.; Yamada, K.; Nakahara, S.; Kobayashi, S.; Taguchi, I. Clinical value of drug-coated balloon angioplasty for de novo lesions in patients with coronary artery disease. Int. J. Cardiol. 2016, 222, 113–118.
  44. Venetsanos, D.; Omerovic, E.; Sarno, G.; Pagonis, C.; Witt, N.; Calais, F.; Böhm, F.; Jurga, J.; Völz, S.; Koul, S.; et al. Long term outcome after treatment of de novo coronary artery lesions using three different drug coated balloons. Int. J. Cardiol. 2021, 325, 30–36.
  45. Onishi, T.; Onishi, Y.; Kobayashi, I.; Sato, Y. Late lumen enlargement after drug-coated balloon angioplasty for de novo coronary artery disease. Cardiovasc. Interv. Ther. 2021, 36, 311–318.
  46. Funayama, N.; Muratsubaki, S.; Kawahatsu, K.; Miyata, M.; Katou, Y.; Oikawa, T. Clinical outcomes of SeQuent Please paclitaxel-coated balloons for de novo small coronary artery lesion in a Japanese multicenter post-approval registry. Coron. Artery Dis. 2020, 31, 35–39.
  47. Widder, J.D.; Cortese, B.; Levesque, S.; Berliner, D.; Eccleshall, S.; Graf, K.; Doutrelant, L.; Ahmed, J.; Bressollette, E.; Zavalloni, D.; et al. Coronary artery treatment with a urea-based paclitaxel-coated balloon: The European-wide FALCON all-comers DCB Registry (FALCON Registry). Eurointervention 2019, 15, e382–e388.
  48. Latib, A.; Agostoni, P.; Dens, J.; Patterson, M.; Lancellotti, P.; Tam, F.C.C.; Schotborgh, C.; Kedhi, E.; Stella, P.; Shen, C.; et al. PREVAIL Study Investigators. Paclitaxel Drug-Coated Balloon for the Treatment of De Novo Small-Vessel and Restenotic Coronary Artery Lesions: 12-Month Results of the Prospective, Multicenter, Single-Arm PREVAIL Study. J. Invasive Cardiol. 2021, 33, E863–E869.
  49. Vaquerizo, B.; Fernández-Nofreiras, E.; Oategui, I.; De Lezo, J.S.; Rumoroso, J.R.; Martín, P.; Routledge, H.; Tizón-Marcos, H. Second-Generation Drug-Eluting Balloon for Ostial Side Branch Lesions (001-Bifurcations): Mid-Term Clinical and Angiographic Results. J. Interv. Cardiol. 2016, 29, 285–292.
  50. Mieres, J.; Fernandez-Pereira, C.; Risau, G.; Solorzano, L.; Pauletto, R.; Rodriguez-Granillo, A.M.; Rubilar, B.; Stella, P.; Rodriguez, A.E. One-year outcome of patients with diabetes mellitus after percutaneous coronary intervention with three different revascularization strategies: Results from the DiabEtic Argentina Registry (DEAR). Cardiovasc. Revasc. Med. 2012, 13, 265–271.
  51. Cortese, B.; D’ascenzo, F.; Fetiveau, R.; Balian, V.; Blengino, S.; Fineschi, M.; Rogacka, R.; Lettieri, C.; Pavei, A.; D’amico, M.; et al. Treatment of coronary artery disease with a new-generation drug-coated balloon. J. Cardiovasc. Med. 2018, 19, 247–252.
  52. Vlieger, S.; Cheng, J.M.; Oemrawsingh, R.M.; Weevers, A.P.J.D.; Polad, J.; Gho, B.; Meuwissen, M.; den Heijer, P.; Boersma, E.; Ijsselmuiden, A.J.J. Clinical Performance of a Paclitaxel Drug-Coated Balloon in Real-World Percutaneous Coronary Interven-tion Practice: The PEARL Registry. J. Invasive Cardiol. 2022, 34, E462–E468.
  53. Abellas-Sequeiros, R.A.; Benezet, J.; Luna, A.A.; Otero, J.O.; Déry, J.-P.; Cieza, T.; DeLarochellière, R.; Duocastella, L.; Gomez, A.; Molina, M.; et al. Percutaneous coronary intervention for treating de-novo lesions in small coronary vessels. Coron. Artery Dis. 2018, 29, 477–481.
  54. Ono, M.; Kawashima, H.; Hara, H.; Katagiri, Y.; Takahashi, K.; Kogame, N.; Wykrzykowska, J.J.; Piek, J.J.; Doshi, M.; Sharif, F.; et al. A Prospective Multicenter Randomized Trial to Assess the Effectiveness of the MagicTouch Sirolimus-Coated Balloon in Small Vessels: Rationale and Design of the TRANSFORM I Trial. Cardiovasc. Revasc. Med. 2021, 25, 29–35.
  55. El-Mokdad, R.; Di Palma, G.; Cortese, B. Long-term follow-up after sirolimus-coated balloon use for coronary artery disease. Final results of the Nanolutè study. Catheter. Cardiovasc. Interv. 2020, 96, E496–E500.
  56. Cortese, B.; di Palma, G.; Latini, R.A.; Elwany, M.; Orrego, P.S.; Seregni, R.G. Immediate and short-term performance of a novel sirolimus-coated balloon during complex percutaneous coronary interventions. The FAtebenefratelli SIrolimus COated-balloon (FASICO) registry. Cardiovasc. Revasc. Med. 2017, 18, 487–491.
  57. Kastrati, A.; Mehilli, J.; Von Beckerath, N.; Dibra, A.; Hausleiter, J.; Pache, J.; Schühlen, H.; Schmitt, C.; Dirschinger, J.; Schömig, A.; et al. Sirolimus-Eluting Stent or Paclitaxel-Eluting Stent vs Balloon Angioplasty for Prevention of Recurrences in Patients With Coronary In-Stent Restenosis. JAMA 2005, 293, 165–171.
  58. Dibra, A.; Kastrati, A.; Alfonso, F.; Seyfarth, M.; Pérez-Vizcayno, M.-J.; Mehilli, J.; Schömig, A. Effectiveness of Drug-Eluting Stents in Patients With Bare-Metal In-Stent Restenosis: Meta-Analysis of Randomized Trials. J. Am. Coll. Cardiol. 2007, 49, 616–623.
  59. Windecker, S.; Stortecky, S.; Stefanini, G.G.; Dacosta, B.R.; Rutjes, A.W.; Di Nisio, M.; Siletta, M.G.; Maione, A.; Alfonso, F.; Clemmensen, P.M.; et al. Revascularisation versus medical treatment in patients with stable coronary artery disease: Network meta-analysis. BMJ 2014, 348, g3859.
  60. Clever, Y.P.; Peters, D.; Calisse, J.; Bettink, S.; Berg, M.-C.; Sperling, C.; Stoever, M.; Cremers, B.; Kelsch, B.; Böhm, M.; et al. Novel Sirolimus–Coated Balloon Catheter. Circ. Cardiovasc. Interv. 2016, 9, e003543.
  61. Serruys, P.W.; Sianos, G.; Abizaid, A.; Aoki, J.; Heijer, P.D.; Bonnier, H.; Smits, P.; McClean, D.; Verheye, S.; Belardi, J.; et al. The Effect of Variable Dose and Release Kinetics on Neointimal Hyperplasia Using a Novel Paclitaxel-Eluting Stent Platform: The Paclitaxel In-Stent Controlled Elution Study (PISCES). J. Am. Coll. Cardiol. 2005, 46, 253–260.
  62. Ali, R.M.; Abdul Kader, M.; Wan Ahmad, W.A.; Ong, T.K.; Liew, H.B.; Omar, A.-F.; Mahmood Zuhdi, A.S.; Nuruddin, A.A.; Schnorr, B.; Scheller, B. Treatment of Coronary Drug-Eluting Stent Restenosis by a Sirolimus- or Paclitaxel-Coated Balloon. JACC Cardiovasc. Interv. 2019, 12, 558–566.
  63. Cortese, B.; Caiazzo, G.; Di Palma, G.; De Rosa, S. Comparison Between Sirolimus- and Paclitaxel-Coated Balloon for Revas-cularization of Coronary Arteries: The SIRPAC (SIRolimus-PAClitaxel) Study. Cardiovasc. Revasc. Med. 2021, 28, 1–6.
  64. Scheller, B.; Mangner, N.; Kader, M.A.S.A.; Ahmad, W.A.W.; Jeger, R.; Wöhrle, J.; Ong, T.K.; Liew, H.B.; Gori, T.; Mahfoud, F.; et al. Combined Analysis of Two Parallel Randomized Trials of Sirolimus-Coated and Paclitaxel-Coated Balloons in Coronary In-Stent Restenosis Lesions. Circ. Cardiovasc. Interv. 2022, 15, e012305.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , , ,
View Times: 290
Revisions: 2 times (View History)
Update Date: 12 Jun 2023
1000/1000
Video Production Service