Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1062 2023-04-10 12:37:08 |
2 format corrected. Meta information modification 1062 2023-04-11 05:33:47 | |
3 format corrected. Meta information modification 1062 2023-04-11 05:35:12 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Farhan, M.; Rizvi, A.; Aatif, M.; Ahmad, A. Flavonoids in Chemoprevention and Chemotherapy. Encyclopedia. Available online: https://encyclopedia.pub/entry/42902 (accessed on 16 October 2024).
Farhan M, Rizvi A, Aatif M, Ahmad A. Flavonoids in Chemoprevention and Chemotherapy. Encyclopedia. Available at: https://encyclopedia.pub/entry/42902. Accessed October 16, 2024.
Farhan, Mohd, Asim Rizvi, Mohammad Aatif, Aamir Ahmad. "Flavonoids in Chemoprevention and Chemotherapy" Encyclopedia, https://encyclopedia.pub/entry/42902 (accessed October 16, 2024).
Farhan, M., Rizvi, A., Aatif, M., & Ahmad, A. (2023, April 10). Flavonoids in Chemoprevention and Chemotherapy. In Encyclopedia. https://encyclopedia.pub/entry/42902
Farhan, Mohd, et al. "Flavonoids in Chemoprevention and Chemotherapy." Encyclopedia. Web. 10 April, 2023.
Flavonoids in Chemoprevention and Chemotherapy
Edit

Flavonoids have demonstrated antioxidant, antiviral, anticancer, and anti-inflammatory effects. Flavonoid type, bioavailability, and possible method of action determine these biological actions. These low-cost pharmaceutical components have significant biological activities and are beneficial for several chronic disorders, including cancer. 

flavonoids polyphenols anticancer apoptosis

1. Introduction

A number of studies have pointed to the importance of a plant-based diet in warding off conditions that can lead to cancer [1]. Vegetables contain a number of bioactive components, including phenolic compounds, carotenoids, and, most notably, flavonoids, which may contribute to the plant-based diet’s health advantages. The amount of research focused on exploring flavonoids thoroughly has risen significantly in the most recent years as a result of these potential uses.
As a class of phenolic chemicals generated by plants, flavonoids are classified as secondary metabolites. They can be found in a wide variety of photosynthetic species and are particularly prevalent in meals and beverages derived from plants, though their precise makeup varies greatly. Two benzene rings (A and B) are joined to the heterocyclic pyranic ring (C) to form the chemical structure’s 15-carbon skeleton [2]. There are many different types of flavonoids, and they may be broken down into several different classes: anthocyanins, flavones, flavonols, chalcones, isoflavones, flavanones, flavanonols, and flavanols [3]. This difference is due to the degree of unsaturation of the flavone ring and the oxidation of the carbonaceous ring (Figure 1), the key skeletons of the flavonoid.
Figure 1. General structure of the flavonoid (center) and its subclasses.
It is challenging to establish epidemiologic correlations regarding the impact of flavonoids on human health versus disease due to the difficulty of estimating dietary intake due to the large quantitative and qualitative heterogeneity of flavonoids in a variety of vegetables and fruits. Flavonoids have been a part of the human diet in almost all geographic regions [4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20].

2. Overview of Dietary Flavonoids

Flavonoids are widely distributed in foods and beverages of plant origin, such as fruits, vegetables, tea, cocoa and wine. A large amount of literature exists regarding flavonoid content in foodstuffs, which is summarized below (Table 1).
A number of studies have summarized the vast body of research on the bioavailability and absorption of flavonoids [31][32][33]. The molecular weight, glycosylation, and esterification of flavonoids, among other things, can impact their bioavailability, leading to some doubt about their actual levels of bioavailability as well as absorption in the human body [33]. Other studies also provide an in-depth account of how flavonoids are metabolized after ingestion [32][34]. The largest levels of flavonoids are found in fruits and vegetables [35]. Flavonoids are found in a variety of foodstuffs and beverages, although they are most prevalent in fruits and vegetables. Depending on the kind of fruit, the primary subclasses of flavonoids vary: anthocyanins prevail in berries, whereas flavanols predominate in pome fruits, tropical fruits, and drupes.
Some cereals (barley, buckwheat, and common wheat) have average flavonoid levels. However, it is vital to remember that whole grains contain the highest quantities when raw, and levels are dramatically reduced when grains are treated with heat or refined for further use [36][37]. Flavonoid-rich foods include cocoa and its derivatives. Flavanols are the most abundant flavonoids in these foods, with cocoa containing the maximum amount of flavanols [38][39]. Tea infusions, notably black and green tea, have the highest quantities of flavonoids in non-alcoholic beverages, primarily flavanols [40][41][42]. Fruit juices, in particular apple juice, orange juice, grapefruit juice, and lemon juice, are the second most flavonoid-rich beverages [43]. Flavanones are the primary flavonoids found in citrus and grapefruit juices [44][45]. Food stuff and drinks rich in flavonoids (Table 2) are summarized below [46].
Besides influencing mammalian metabolism, flavonoids have been linked to a wide range of anti-inflammatory, antiviral, antiproliferative, and anticarcinogenic properties [47]. Certain pathological illnesses, such as gastric and duodenal ulcers, allergies, vascular fragility, and viral and bacterial infections, have gained a lot of attention because of the beneficial effects flavonoids have as antioxidants in preventing human diseases, including cancer and cardiovascular disease [48]. In general, flavonoids have been discovered to exhibit a variety of pharmacological properties [47]; these include antioxidant, antiallergic, antiinflammatory, antidiabetic, hepato- and gastro-protective, antiviral, and antineoplastic activity.

3. Effects of Flavonoids in Chemoprevention and Chemotherapy

Flavonoids are effective anti-inflammatories as well as potent antioxidants that combat free radicals, which are related in a crucial way to many degenerative chronic diseases and are responsible for a wide range of biological processes (Figure 2). An increase in free radicals under pathological conditions not only causes cellular aging and death but also promotes carcinogenesis by causing damage to various molecule types, including nucleic acids, proteins, and lipids [4].
Figure 2. Flavonoids’ possible role in preventing cancer.

4. Conclusions

Flavonoids are a group of phytochemicals present in a wide variety of plant-based foods, including fruits, vegetables, and beverages such as cocoa, coffee, and tea. It is recommended that a wide range of flavonoids be consumed daily to maintain excellent health and reduce the risk of various life-threatening disorders, including cancer. Flavonoids have been shown to have therapeutic effects in the vast majority of preclinical and clinical studies. In order to develop novel therapeutic medications for a wide range of life-threatening disorders, such as cancer, additional study is certainly needed to elucidate the structures of more flavonoids and investigate their therapeutical potential.

References

  1. Steck, S.E.; Murphy, E.A. Dietary patterns and cancer risk. Nat. Rev. Cancer 2020, 20, 125–138.
  2. Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750.
  3. Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47.
  4. Rodríguez-García, C.; Sánchez-Quesada, C.; Gaforio, J.J. Dietary Flavonoids as Cancer Chemopreventive Agents: An Updated Review of Human Studies. Antioxidants 2019, 8, 137.
  5. Zhang, Y.; Li, Y.; Cao, C.; Cao, J.; Chen, W.; Zhang, Y.; Wang, C.; Wang, J.; Zhang, X.; Zhao, X. Dietary flavonol and flavone intakes and their major food sources in Chinese adults. Nutr. Cancer 2010, 62, 1120–1127.
  6. Sun, C.; Wang, H.; Wang, D.; Chen, Y.; Zhao, Y.; Xia, W. Using an FFQ to assess intakes of dietary flavonols and flavones among female adolescents in the Suihua area of northern China. Public Health Nutr. 2015, 18, 632–639.
  7. Kim, Y.J.; Park, M.Y.; Chang, N.; Kwon, O. Intake and major sources of dietary flavonoid in Korean adults: Korean National Health and Nutrition Examination Survey 2010–2012. Asia Pac. J. Clin. Nutr. 2015, 24, 456–463.
  8. Jun, S.; Shin, S.; Joung, H. Estimation of dietary flavonoid intake and major food sources of Korean adults. Br. J. Nutr. 2016, 115, 480–489.
  9. Zamora-Ros, R.; Agudo, A.; Lujan-Barroso, L.; Romieu, I.; Ferrari, P.; Knaze, V.; Bueno-de-Mesquita, H.B.; Leenders, M.; Travis, R.C.; Navarro, C.; et al. Dietary flavonoid and lignan intake and gastric adenocarcinoma risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Am. J. Clin. Nutr. 2012, 96, 1398–1408.
  10. Popiolek-Kalisz, J. The impact of dietary flavonols on central obesity parameters in polish adults. Nutrients 2022, 14, 5051.
  11. Gallardo-Fernandez, M.; Gonzalez-Ramirez, M.; Cerezo, A.B.; Troncoso, A.M.; Garcia-Parrilla, M.C. Hydroxytyrosol in foods: Analysis, food sources, eu dietary intake, and potential uses. Foods 2022, 11, 2355.
  12. Almanza-Aguilera, E.; Ceballos-Sanchez, D.; Achaintre, D.; Rothwell, J.A.; Laouali, N.; Severi, G.; Katzke, V.; Johnson, T.; Schulze, M.B.; Palli, D.; et al. Urinary concentrations of (+)-catechin and (−)-epicatechin as biomarkers of dietary intake of flavan-3-ols in the european prospective investigation into cancer and nutrition (epic) study. Nutrients 2021, 13, 4157.
  13. Vogiatzoglou, A.; Mulligan, A.A.; Lentjes, M.A.; Luben, R.N.; Spencer, J.P.; Schroeter, H.; Khaw, K.T.; Kuhnle, G.G. Flavonoid intake in European adults (18 to 64 years). PLoS ONE 2015, 10, e0128132.
  14. Murphy, K.J.; Walker, K.M.; Dyer, K.A.; Bryan, J. Estimation of daily intake of flavonoids and major food sources in middle-aged australian men and women. Nutr. Res. 2019, 61, 64–81.
  15. Somerset, S.M.; Johannot, L. Dietary flavonoid sources in Australian adults. Nutr. Cancer 2008, 60, 442–449.
  16. Kent, K.; Charlton, K.; O'Sullivan, T.; Oddy, W.H. Estimated intake and major food sources of flavonoids among australian adolescents. Eur. J. Nutr. 2020, 59, 3841–3856.
  17. Grotto, D.; Zied, E. The Standard American Diet and its relationship to the health status of Americans. Nutr. Clin. Pract. 2010, 25, 603–612.
  18. Bertoia, M.L.; Rimm, E.B.; Mukamal, K.J.; Hu, F.B.; Willett, W.C.; Cassidy, A. Dietary flavonoid intake and weight maintenance: Three prospective cohorts of 124,086 US men and women followed for up to 24 years. BMJ 2016, 352, i17.
  19. Chun, O.K.; Song, W.O.; Chung, S.J. Estimated dietary flavonoid intake and major food sources of U.S. adults. J. Nutr. 2007, 137, 1244–1252.
  20. Kim, K.; Vance, T.M.; Chun, O.K. Estimated intake and major food sources of flavonoids among US adults: Changes between 1999–2002 and 2007–2010 in NHANES. Eur. J. Nutr. 2016, 55, 833–843.
  21. Farhan, M.; Shamim, U.; Hadi, S. Green Tea Polyphenols: A putative mechanism for cytotoxic action against cancer cells. In Nutraceuticals and Natural Product Derivatives: Disease Prevention & Drug Discovery; Wiley: Hoboken, NY, USA, 2019; pp. 305–332.
  22. Farhan, M.; Rizvi, A.; Ahmad, A.; Aatif, M.; Alam, M.W.; Hadi, S.M. Structure of Some Green Tea Catechins and the Availability of Intracellular Copper Influence Their Ability to Cause Selective Oxidative DNA Damage in Malignant Cells. Biomedicines 2022, 10, 664.
  23. Farhan, M. Naringin’s Prooxidant Effect on Tumor Cells: Copper’s Role and Therapeutic Implications. Pharmaceuticals 2022, 15, 1431.
  24. Bendokas, V.; Stanys, V.; Mažeikienė, I.; Trumbeckaite, S.; Baniene, R.; Liobikas, J. Anthocyanins: From the Field to the Antioxidants in the Body. Antioxidants 2020, 9, 819.
  25. Hostetler, G.L.; Ralston, R.A.; Schwartz, S.J. Flavones: Food Sources, Bioavailability, Metabolism, and Bioactivity. Adv. Nutr. 2017, 8, 423–435.
  26. Majdan, M.; Bobrowska-Korczak, B. Active Compounds in Fruits and Inflammation in the Body. Nutrients 2022, 14, 2496.
  27. Desmawati, D.; Sulastri, D. Phytoestrogens and Their Health Effect. Open Access Maced. J. Med. Sci. 2019, 14, 495–499.
  28. Hammerstone, F.J.; Lazarus, S.A.; Schmitz, H.H. Procyanidin Content and Variation in Some Commonly Consumed Foods. J. Nutr. 2020, 130, 2086S–2092S.
  29. Navarro, M.; Moreira, I.; Arnaez, E.; Quesada, S.; Azofeifa, G.; Alvarado, D.; Monagas, M.J. Proanthocyanidin Characterization, Antioxidant and Cytotoxic Activities of Three Plants Commonly Used in Traditional Medicine in Costa Rica: Petiveria alliaceae L., Phyllanthus niruri L. and Senna reticulata Willd. Plants 2017, 6, 50.
  30. Xiong, Y.; Zhang, P.; Warner, R.D.; Fang, Z. 3-Deoxyanthocyanidin Colorant: Nature, Health, Synthesis, and Food Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1533–1549.
  31. Gasmi, A.; Mujawdiya, P.K.; Noor, S.; Lysiuk, R.; Darmohray, R.; Piscopo, S.; Lenchyk, L.; Antonyak, H.; Dehtiarova, K.; Shanaida, M.; et al. Polyphenols in Metabolic Diseases. Molecules 2022, 27, 6280.
  32. Arfaoui, L. Dietary Plant Polyphenols: Effects of Food Processing on Their Content and Bioavailability. Molecules 2021, 26, 2959.
  33. Thilakarathna, S.H.; Rupasinghe, H.P. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement. Nutrients 2013, 5, 3367–3387.
  34. Kardum, N.; Glibetic, M. Polyphenols and Their Interactions with Other Dietary Compounds: Implications for Human Health. Adv. Food Nutr. Res. 2018, 84, 103–144.
  35. Liu, J.; Wang, X.; Yong, H.; Kan, J.; Jin, C. Recent advances in flavonoid-grafted polysaccharides: Synthesis, structural characterization, bioactivities and potential applications. Int. J. Biol. Macromol. 2018, 116, 1011–1025.
  36. Rienks, J.; Barbaresko, J.; Nothlings, U. Association of isoflavone biomarkers with risk of chronic disease and mortality: A systematic review and meta-analysis of observational studies. Nutr. Rev. 2017, 75, 616–641.
  37. Thanushree, M.P.; Sudha, M.L.; Asha, M.; Vanitha, T.; Crassina, K. Enhancing the nutritional and quality profiles of buckwheat noodles: Studies on the effects of methods of milling and improvers. LWT—Food Sci. Technol. 2022, 160, 113286.
  38. Tomas-Barberan, F.A.; Cienfuegos-Jovellanos, E.; Marin, A.; Muguerza, B.; Gil-Izquierdo, A.; Cerda, B.; Zafrilla, P.; Morillas, J.; Mulero, J.; Ibarra, A.; et al. A new process to develop a cocoa powder with higher flavonoid monomer content and enhanced bioavailability in healthy humans. J. Agric. Food Chem. 2007, 55, 3926–3935.
  39. Jaćimović, S.; Popović-Djordjević, J.; Sarić, B.; Krstić, A.; Mickovski-Stefanović, V.; Pantelić, N.Đ. Antioxidant Activity and Multi-Elemental Analysis of Dark Chocolate. Foods 2022, 11, 1445.
  40. Uysal, U.D.; Aturki, Z.; Raggi, M.A.; Fanali, S. Separation of catechins and methylxanthines in tea samples by capillary electrochromatography. J. Sep. Sci. 2009, 32, 1002–1010.
  41. Awad, A.M.; Kumar, P.; Ismail-Fitry, M.R.; Jusoh, S.; Ab Aziz, M.F.; Sazili, A.Q. Green Extraction of Bioactive Compounds from Plant Biomass and Their Application in Meat as Natural Antioxidant. Antioxidants 2021, 10, 1465.
  42. Farhan, M.; Khan, H.Y.; Oves, M.; Al-Harrasi, A.; Rehmani, N.; Arif, H.; Hadi, S.M.; Ahmad, A. Cancer Therapy by Catechins Involves Redox Cycling of Copper Ions and Generation of Reactive Oxygen Species. Toxins 2016, 8, 37.
  43. Guo, J.; Yue, T.; Yuan, Y.; Wang, Y. Chemometric classification of apple juices according to variety and geographical origin based on polyphenolic profiles. J. Agric. Food Chem. 2013, 61, 6949–6963.
  44. Mazzotti, F.; Bartella, L.; Talarico, I.R.; Napoli, A.; Di Donna, L. High-throughput determination of flavanone-o-glycosides in citrus beverages by paper spray tandem mass spectrometry. Food Chem. 2021, 360, 130060.
  45. Addi, M.; Elbouzidi, A.; Abid, M.; Tungmunnithum, D.; Elamrani, A.; Hano, C. An Overview of Bioactive Flavonoids from Citrus Fruits. Appl. Sci. 2022, 12, 29.
  46. Medina-Remón, A.; Manach, C.; Knox, C.; Wishart, D.S.; Perez-Jimenez, J.; Rothwell, J.A.; M’Hiri, N.; García-Lobato, P.; Eisner, R.; Neveu, V.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database 2013, 2013, bat070.
  47. Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243.
  48. Bondonno, N.P.; Bondonno, C.P.; Ward, N.C.; Hodgson, J.M.; Croft, K.D. The cardiovascular health benefits of apples: Whole fruit vs. isolated compounds. Trends Food Sci. Technol. 2017, 69, 243–256.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , ,
View Times: 310
Revisions: 3 times (View History)
Update Date: 11 Apr 2023
1000/1000
ScholarVision Creations