1000/1000
Hot
Most Recent
Neurodegenerative diseases are characterized by the progressive loss of neurons, synapses, dendrites, and myelin in the central and/or peripheral nervous system. Actual therapeutic options for patients are scarce and merely palliative. Although they affect millions of patients worldwide, the molecular mechanisms underlying these conditions remain unclear. Mitochondrial dysfunction is generally found in neurodegenerative diseases and is believed to be involved in the pathomechanisms of these disorders. Although mitochondrial-targeted treatments are limited, new research findings have unraveled the therapeutic potential of several groups of antibiotics. These drugs possess pleiotropic effects beyond their anti-microbial activity, such as anti-inflammatory or mitochondrial enhancer function. The controversial use of antibiotics as potential therapies in neurodegenerative diseases will be discussed.
As presented across this research, the aetiology of neurodegenerative diseases is extremely complex and can be etiologically diverse. However, most of these diseases share the common feature of mitochondrial dysfunction. The application of antibiotics to treat mitochondrial insults has always been controversial for plenty and reasonable reasons . However, not all antibiotics function in the same way or at the same dosage. Thanks to their pleiotropic effects, these drugs may open new possibilities for the treatment of neurodegenerative disease beyond their antimicrobial activity. However, more research is needed to address the potential side effects of their chronic administration such as the risk of dissemination of antibiotic-resistant pathogenic strains. For this reason, the development of antibiotics derivatives without antimicrobial activity but retaining their neuroprotective properties will be another interesting research field in the future.