Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 550 word(s) 550 2020-12-15 07:57:40

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Liu, D. ITGA2B Gene. Encyclopedia. Available online: https://encyclopedia.pub/entry/4228 (accessed on 19 June 2024).
Liu D. ITGA2B Gene. Encyclopedia. Available at: https://encyclopedia.pub/entry/4228. Accessed June 19, 2024.
Liu, Dean. "ITGA2B Gene" Encyclopedia, https://encyclopedia.pub/entry/4228 (accessed June 19, 2024).
Liu, D. (2020, December 23). ITGA2B Gene. In Encyclopedia. https://encyclopedia.pub/entry/4228
Liu, Dean. "ITGA2B Gene." Encyclopedia. Web. 23 December, 2020.
ITGA2B Gene
Edit

Integrin subunit alpha 2b

genes

1. Introduction

The ITGA2B gene provides instructions for making one part, the alphaIIb subunit, of a receptor complex called integrin alphaIIb/beta3 (αIIbβ3), which is found on the surface of small cells called platelets. Platelets circulate in blood and are an essential component of blood clots. The alphaIIb subunit attaches (binds) to the beta3 subunit, which is produced from the ITGB3 gene, to form integrin αIIbβ3. It is estimated that 80,000 to 100,000 copies of integrin αIIbβ3 are present on the surface of each platelet.

During clot formation, integrin αIIbβ3 binds to a protein called fibrinogen. Attachment of integrin αIIbβ3 from adjacent platelets to the same fibrinogen protein helps platelets cluster together (platelet cohesion) to form a blood clot. Blood clots protect the body after injury by sealing off damaged blood vessels and preventing further blood loss. Integrin αIIbβ3 can also bind other proteins on platelets and in blood as well as proteins within the intricate lattice that forms in the space between cells (extracellular matrix) to ensure proper clot formation and promote wound healing.

2. Health Conditions Related to Genetic Changes

2.1. Glanzmann Thrombasthenia

At least 200 mutations in the ITGA2B gene have been found to cause Glanzmann thrombasthenia, which is a rare bleeding disorder. The mutations that cause this disorder occur in both copies of the gene in each cell and impair the production or activity of the alphaIIb subunit, which disrupts the formation of functional integrin αIIbβ3. A shortage (deficiency) of functional integrin αIIbβ3 prevents sufficient binding of fibrinogen or other proteins, impairing the formation of blood clots. A lack of platelet cohesion leads to prolonged or spontaneous bleeding episodes experienced by people with Glanzmann thrombasthenia.

2.2. Other Disorders

Mutations in the ITGA2B gene can also cause another rare bleeding disorder called platelet-type bleeding disorder 16. People with this disorder have signs and symptoms similar to Glanzmann thrombasthenia (described above), including frequent nosebleeds (epistaxis), bleeding from the gums, or red or purple spots on the skin caused by bleeding underneath the skin (petechiae), but the episodes are typically milder.

Unlike Glanzmann thrombasthenia, this disorder results from a mutation in only one copy of the ITGA2B gene in each cell, and the mutations result in the formation of some integrin αIIbβ3 that is abnormally turned on (active), even when no clot is being formed. This abnormally active protein is unable to reach the surface of the platelet where it is needed to bind to other platelets during clot formation. The overactive integrin αIIbβ3 binds inappropriately to clotting proteins within the cell during the formation of platelets, causing the platelets to become misshapen and large. The abnormally shaped platelets have a shortened lifespan, so platelet numbers are often reduced, which impairs clot formation. (The combination of reduced numbers of enlarged platelets is referred to as macrothrombocytopenia.)

Because the mutation that causes this disorder affects only one copy of the ITGA2B gene, some normal integrin is formed and normal platelets produced, which accounts for the mild signs and symptoms in affected individuals.

3. Other Names for This Gene

  • alphaIIb protein

  • CD41

  • CD41B

  • GP2B

  • GPIIb

  • integrin alpha 2b

  • integrin alpha-IIb preproprotein

  • integrin, alpha 2b (platelet glycoprotein IIb of IIb/IIIa complex, antigen CD41)

  • integrin, alpha-2B

  • platelet fibrinogen receptor, alpha subunit

  • platelet glycoprotein IIb

  • platelet membrane glycoprotein IIb

References

  1. Kunishima S, Kashiwagi H, Otsu M, Takayama N, Eto K, Onodera M, Miyajima Y,Takamatsu Y, Suzumiya J, Matsubara K, Tomiyama Y, Saito H. Heterozygous ITGA2BR995W mutation inducing constitutive activation of the αIIbβ3 receptor affectsproplatelet formation and causes congenital macrothrombocytopenia. Blood. 2011May 19;117(20):5479-84. doi: 10.1182/blood-2010-12-323691.
  2. Nurden AT, Fiore M, Nurden P, Pillois X. Glanzmann thrombasthenia: a review ofITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, andmouse models. Blood. 2011 Dec 1;118(23):5996-6005. doi:10.1182/blood-2011-07-365635.
  3. Nurden AT, Pillois X, Fiore M, Alessi MC, Bonduel M, Dreyfus M, Goudemand J,Gruel Y, Benabdallah-Guerida S, Latger-Cannard V, Négrier C, Nugent D, Oiron RD, Rand ML, Sié P, Trossaert M, Alberio L, Martins N, Sirvain-Trukniewicz P, CoulouxA, Canault M, Fronthroth JP, Fretigny M, Nurden P, Heilig R, Vinciguerra C.Expanding the Mutation Spectrum Affecting αIIbβ3 Integrin in GlanzmannThrombasthenia: Screening of the ITGA2B and ITGB3 Genes in a Large International Cohort. Hum Mutat. 2015 May;36(5):548-61. doi: 10.1002/humu.22776.
  4. Nurden AT, Pillois X, Fiore M, Heilig R, Nurden P. Glanzmannthrombasthenia-like syndromes associated with Macrothrombocytopenias andmutations in the genes encoding the αIIbβ3 integrin. Semin Thromb Hemost. 2011Sep;37(6):698-706. doi: 10.1055/s-0031-1291380.
  5. Pillitteri D, Pilgrimm AK, Kirchmaier CM. Novel Mutations in the GPIIb andGPIIIa Genes in Glanzmann Thrombasthenia. Transfus Med Hemother.2010;37(5):268-277.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 366
Entry Collection: MedlinePlus
Revision: 1 time (View History)
Update Date: 23 Dec 2020
1000/1000
Video Production Service