Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 534 word(s) 534 2020-12-15 07:31:16

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Xu, R. Methylmalonic Acidemia. Encyclopedia. Available online: https://encyclopedia.pub/entry/4154 (accessed on 05 December 2024).
Xu R. Methylmalonic Acidemia. Encyclopedia. Available at: https://encyclopedia.pub/entry/4154. Accessed December 05, 2024.
Xu, Rita. "Methylmalonic Acidemia" Encyclopedia, https://encyclopedia.pub/entry/4154 (accessed December 05, 2024).
Xu, R. (2020, December 23). Methylmalonic Acidemia. In Encyclopedia. https://encyclopedia.pub/entry/4154
Xu, Rita. "Methylmalonic Acidemia." Encyclopedia. Web. 23 December, 2020.
Methylmalonic Acidemia
Edit

Methylmalonic acidemia is an inherited disorder in which the body is unable to process certain proteins and fats (lipids) properly.

genetic conditions

1. Introduction

The effects of methylmalonic acidemia, which usually appear in early infancy, vary from mild to life-threatening. Affected infants can experience vomiting, dehydration, weak muscle tone (hypotonia), developmental delay, excessive tiredness (lethargy), an enlarged liver (hepatomegaly), and failure to gain weight and grow at the expected rate (failure to thrive). Long-term complications can include feeding problems, intellectual disability, chronic kidney disease, and inflammation of the pancreas (pancreatitis). Without treatment, this disorder can lead to coma and death in some cases.

2. Frequency

This condition occurs in an estimated 1 in 50,000 to 100,000 people.

3. Causes

Mutations in the MMUT, MMAA, MMAB, MMADHC, and MCEE genes cause methylmalonic acidemia. The long term effects of methylmalonic acidemia depend on which gene is mutated and the severity of the mutation.

About 60 percent of methylmalonic acidemia cases are caused by mutations in the MMUT gene. This gene provides instructions for making an enzyme called methylmalonyl CoA mutase. This enzyme works with vitamin B12 (also called cobalamin) to break down several protein building blocks (amino acids), certain lipids, and cholesterol. Mutations in the MMUT gene alter the enzyme's structure or reduce the amount of the enzyme, which prevents these molecules from being broken down properly. As a result, a substance called methylmalonyl CoA and other potentially toxic compounds can accumulate in the body's organs and tissues, causing the signs and symptoms of methylmalonic acidemia.

Mutations in the MMUT gene that prevent the production of any functional enzyme result in a form of the condition designated mut0. Mut0 is the most severe form of methylmalonic acidemia and has the poorest outcome. Mutations that change the structure of methylmalonyl CoA mutase but do not eliminate its activity cause a form of the condition designated mut-. The mut- form is typically less severe, with more variable symptoms than the mut0 form.

Some cases of methylmalonic acidemia are caused by mutations in the MMAA, MMAB, or MMADHC gene. Proteins produced from the MMAA, MMAB, and MMADHC genes are needed for the proper function of methylmalonyl CoA mutase. Mutations that affect proteins produced from these three genes can impair the activity of methylmalonyl CoA mutase, leading to methylmalonic acidemia.

A few other cases of methylmalonic acidemia are caused by mutations in the MCEE gene. This gene provides instructions for producing an enzyme called methylmalonyl CoA epimerase. Like methylmalonyl CoA mutase, this enzyme also plays a role in the breakdown of amino acids, certain lipids, and cholesterol. Disruption in the function of methylmalonyl CoA epimerase leads to a mild form of methylmalonic acidemia.

It is likely that mutations in other, unidentified genes also cause methylmalonic acidemia.

4. Inheritance

This condition is inherited in an autosomal recessive pattern, which means both copies of the MMUT, MMAA, MMAB, MMADHC, or MCEE gene in each cell have mutations. Most often, the parents of an individual with an autosomal recessive condition are carriers of one copy of the mutated gene but do not show signs and symptoms of the condition.

5. Other Names for This Condition

  • isolated methylmalonic acidemia
  • methylmalonic aciduria
  • MMA

References

  1. Coelho D, Suormala T, Stucki M, Lerner-Ellis JP, Rosenblatt DS, Newbold RF,Baumgartner MR, Fowler B. Gene identification for the cblD defect of vitamin B12 metabolism. N Engl J Med. 2008 Apr 3;358(14):1454-64. doi: 10.1056/NEJMoa072200.
  2. Deodato F, Boenzi S, Santorelli FM, Dionisi-Vici C. Methylmalonic andpropionic aciduria. Am J Med Genet C Semin Med Genet. 2006 May 15;142C(2):104-12.Review.
  3. Fowler B, Leonard JV, Baumgartner MR. Causes of and diagnostic approach tomethylmalonic acidurias. J Inherit Metab Dis. 2008 Jun;31(3):350-60. doi:10.1007/s10545-008-0839-4.
  4. Hörster F, Baumgartner MR, Viardot C, Suormala T, Burgard P, Fowler B,Hoffmann GF, Garbade SF, Kölker S, Baumgartner ER. Long-term outcome inmethylmalonic acidurias is influenced by the underlying defect (mut0, mut-, cblA,cblB). Pediatr Res. 2007 Aug;62(2):225-30.
  5. Hörster F, Hoffmann GF. Pathophysiology, diagnosis, and treatment ofmethylmalonic aciduria-recent advances and new challenges. Pediatr Nephrol. 2004 Oct;19(10):1071-4.
  6. Manoli I, Sloan JL, Venditti CP. Isolated Methylmalonic Acidemia. 2005 Aug 16 [updated 2016 Dec 1]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH,Stephens K, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): Universityof Washington, Seattle; 1993-2020. Available fromhttp://www.ncbi.nlm.nih.gov/books/NBK1231/
  7. Miousse IR, Watkins D, Coelho D, Rupar T, Crombez EA, Vilain E, Bernstein JA, Cowan T, Lee-Messer C, Enns GM, Fowler B, Rosenblatt DS. Clinical and molecularheterogeneity in patients with the cblD inborn error of cobalamin metabolism. JPediatr. 2009 Apr;154(4):551-6. doi: 10.1016/j.jpeds.2008.10.043.
  8. Ogier de Baulny H, Saudubray JM. Branched-chain organic acidurias. SeminNeonatol. 2002 Feb;7(1):65-74. Review.
  9. Tanpaiboon P. Methylmalonic acidemia (MMA). Mol Genet Metab. 2005May;85(1):2-6. Review.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 444
Entry Collection: MedlinePlus
Revision: 1 time (View History)
Update Date: 23 Dec 2020
1000/1000
ScholarVision Creations