You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Submitted Successfully!
Thank you for your contribution! You can also upload a video entry or images related to this topic. For video creation, please contact our Academic Video Service.
Version Summary Created by Modification Content Size Created at Operation
1 MICHELE GALLUCCIO -- 3422 2023-02-17 11:56:56 |
2 update references and layout Rita Xu Meta information modification 3422 2023-02-20 02:49:28 | |
3 update description Rita Xu + 2 word(s) 3424 2023-02-20 08:26:58 |

Video Upload Options

We provide professional Academic Video Service to translate complex research into visually appealing presentations. Would you like to try it?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Pochini, L.; Galluccio, M. Heterologous Expression of Human SoLute Carrier in Yeast. Encyclopedia. Available online: https://encyclopedia.pub/entry/41355 (accessed on 15 December 2025).
Pochini L, Galluccio M. Heterologous Expression of Human SoLute Carrier in Yeast. Encyclopedia. Available at: https://encyclopedia.pub/entry/41355. Accessed December 15, 2025.
Pochini, Lorena, Michele Galluccio. "Heterologous Expression of Human SoLute Carrier in Yeast" Encyclopedia, https://encyclopedia.pub/entry/41355 (accessed December 15, 2025).
Pochini, L., & Galluccio, M. (2023, February 17). Heterologous Expression of Human SoLute Carrier in Yeast. In Encyclopedia. https://encyclopedia.pub/entry/41355
Pochini, Lorena and Michele Galluccio. "Heterologous Expression of Human SoLute Carrier in Yeast." Encyclopedia. Web. 17 February, 2023.
Heterologous Expression of Human SoLute Carrier in Yeast
Edit

For more than 20 years, yeast has been a widely used system for the expression of human membrane transporters. Among them, more than 400 are members of the largest transporter family, the SoLute Carrier (SLC) superfamily. SLCs play critical roles in maintaining cellular homeostasis by transporting nutrients, ions, and waste products. Based on their involvement in drug absorption and in several human diseases, they are considered emerging therapeutic targets.

yeast expression SLC transporter

1. Introduction

Transporters account for 10% of the human genome. They regulate the flux of different molecules such as sugars, amino acids, ions, lipids, vitamins, and catabolites through plasma and subcellular membranes [1]. In addition to their physiological roles, many transporters are involved in drug absorption, distribution, metabolism, and excretion (ADME) processes. Moreover, many drugs can interact with membrane transporters, leading to side effects [2]. Indeed, about 60% of FDA-approved drug targets are membrane proteins, including a growing number of transporters [3][4]. A well-established functional classification categorizes transport proteins in channels and permeases. Channels catalyze the transport of ions down their electrochemical gradient, with a turnover rate up to 108 s−1. Permeases are involved in the transport of many different molecules with a lower turnover rate. On the basis of the transport driving force, permeases can be subdivided in primary and secondary active transporters [5]. The first use ATP hydrolysis to drive the transport of molecules against their concentration gradient. The secondary active transporters retrieve the driving force from the concentration gradient of the transported substrates and are grouped into symporters, antiporters, and uniporters. The uniporters catalyze the substrate movement in a thermodynamically favorable direction; the symporters or antiporters catalyze co-transport of more molecules in the same or in the opposite direction, respectively [5][6]. Among the transporters, the SoLute Carrier (SLC) superfamily currently includes 458 proteins grouped into 65 families [7][8]. Member proteins within each family share at least 20–25% sequence similarity with at least one other member of the family [7][9]. The number of members within the SLC families is heterogeneous, ranging from only one (SLC32, SLC40, SLC48, SLC50, SLC53, SLC61, SLC62, and SLC64) to 53 members for the largest family: SLC25, the mitochondrial carrier family [7]. The members of this superfamily act as secondary active transporters [10]. Regarding the molecular mechanism of transport, the secondary active transporters use the “alternating access” transport mechanism in which the ligand binding site is available on only one side of the membrane at a time; then, as a consequence of the substrate interaction, a protein conformational change does occur and the substrate is transported to the other side of the membrane [11]. Three major types of alternating access mechanisms have been described for SLC transporters: the rocker-switch, the gated pore and the elevator mechanism [10]. Analyzing hydropathy plots, the SLC transporters are predicted to present between 1–16 transmembrane domains (TMD), although in more than 80% of the members the number of TMD is between 7 and 12 [12]. Despite their role in human pathophysiology and the efforts employed in fulfilling knowledge of them, about 30% of the SLC members are still “orphans”, with no structural and functional data available [7][13]. The reason for this gap in information lies in the difficulty in expressing, purifying, and assaying the function of this kind of proteins [14]. These difficulties arise from the hydrophobic nature of the TMD and, in some cases, from very large (about 100 amino acids) hydrophilic moieties which connect TMDs [15][16]. Different expression hosts, either prokaryotic or eukaryotic, have been adopted with success allowing structure/function studies on SLC transporters such as, E. coli [17], L. lactis [18], S. cerevisiae [19], P. pastoris [20], S. frugiperda [21], HEK293F [22]. However, less than 10% of the human SLCs structure has been solved [23]. Due to very low cultivation costs, fast growth, easy handiness, and absence of toxicity, Escherichia coli is the most used host for protein over-expression. In particular, BL21(DE3) and its derivative strains are the most commonly used for heterologous membrane protein production [23]. Even though widely exploited for protein over-expression, in the case of human membrane transporters, E. coli could be ineffective, leading to the inclusion of a bodies formation from which it is difficult to recover the target protein in an active folded form [24][25]. On the other side, expression in insect or mammalian cell systems is characterized by high cultivation costs, slow growth, and needs special equipment, often resulting in low yield. A good middle ground is represented by the yeast expression system [26] which combines the advantages of ease of manipulation, fast growth, low cost of production, eukaryotic protein processing [27] (which can facilitate the expression of correctly-folded eukaryotic proteins) [28], heterodimer formation, and prosthetic group association to the recombinant proteins [29]. Moreover, the localization of an expressed membrane transporter in the yeast membrane can facilitate its recovery in a folded state [30]. Indeed, in this milieu, the human membrane proteins can find a more similar phospholipid/sterol composition with respect to the bacterial hosts [31]; furthermore, the possibility of increasing culture volume to obtain large quantities of folded protein [31][32] can be exploited either for functional or structural studies [20][33][34]. Indeed, yeast and especially P. pastoris can reach extremely high biomass, thus obviating the need to achieve extremely high levels of overexpression that could result in the aggregation and denaturation of membrane proteins.

2. Yeasts as a System for Heterologous Expression of Human SLC Transporters

A similar cellular architecture with respect to higher eukaryotes, sharing most of the metabolic and cellular pathways, and its simplicity in molecular and genetic manipulations make yeast particularly suited to produce human proteins for structure-function studies [35][36][37]. Indeed, yeast can perform many eukaryote-specific post-translational modifications such as proteolytic digestion, disulfide bridge formation, and some type of glycosylation [38]. However, differently from other eukaryotes, no trimming of mannose residues occurs in yeast [39]. Several yeast strains have been developed in which glycan remodeling has been induced, specifically deleting genes coding for glycosyltransferases and expressing the genes that carry out mammalian-specific glycosylation [40][41][42][43][44]. Indeed, DNA can be introduced or removed into/from the yeast chromosomes, enabling the creation of unique protein expression strains [45][46][47]. This “genetic” approach is largely used in yeast by exploiting homologous recombination: yeast transformation triggers the recombination between yeast sequences carried on the plasmid and homologous sequences in the yeast genome. This approach can serve different aims (Figure 1).
Figure 1. Uses of the homologous recombination in yeast.

2.1. The Homologous Recombination

The observation that linear DNA fragments can efficiently promote recombination in S. cerevisiae led to the development of several methods for DNA manipulation in yeast [48]. Transformation has been used to clone genes by genetic complementation [49], to clone functional chromosomal components such as origins of replication [50], centromeres [51], and telomeres [52], and to clone functional suppressors acting as dominant negative mutants [53]. Recombination-based DNA manipulation methods also include integrative DNA transformation, which is used to induce gene deletion [54], and allele rescue which involves the transplacement of a mutation from the chromosome onto a plasmid-derived copy of that gene (Table 1) [55]. Indeed, homologous recombination in Saccharomyces cerevisiae can be considered as an easy and highly efficient cloning alternative. Yeast recombination cloning allows in a single step the assembly of multiple DNA fragments, deriving for example from many PCR reactions [56] (Figure 1). It is extremely efficient, requiring only 29 nucleotides of overlapping sequences that can be added to the synthesized oligonucleotides. Starting from these observations, by exploiting homologous recombination a yeast cloning cassette was used to point out a versatile method called any-gene-any-plasmid (AGAP) allowing the cloning of any gene (or combination of DNA fragments) into any vector in a single step without the need for ligase or a molecular cloning kit [57]. Towards the aim of obtaining the expression of a membrane transporter different aspects must be taken into account to transform yeast with the gene of interest (Figure 2).
Figure 2. Workflow of a SLC production in yeast for structural and functional studies.
Table 1. Yeast strains and genotypes.
Host Strain Genotype Feature References
P. pastoris KM71H aox1::ARG4, arg4 Strain with MutS phenotype [58]
P. pastoris SMD1168H pep4 Strain without protease A activity [59]
S. cerevisiae PAP1500 MATα ura3-52 trp1::GAL10-GAL4 lys2-801 leu2Δ1 his3Δ200pep4::HIS3prb1Δ1.6Rcan1GAL Overexpression of the Gal4 transcription factor [60]
S. cerevisiae AB11c ena1-4Δnhx1Δnha1Δ Deletion of endogenous cation/proton antiporters and pumps [61]
S. cerevisiae MSY6210 MAT α leu2-3,112 ura3-52 his3200 trp1-901lys2-801suc2-9 smf1::HIS3,smf2::KANR Deletion of Mg2+ transporters [62]
S. cerevisiae MSY6211 MAT a leu2-3,112 ura3-52 his3200 trp1-901 ade2-101 suc2-9 smf3::LEU2 Deletion of Mg2+ transporters [62]
P. pastoris GS115 his4 Deletion of histidinol dehydrogenase [63]
S. cerevisiae EBY.S7 MATα hxt1-17Δgal2Δagt1Δstl1Δleu2-3,112 ura3-52 trp1-289 his3-Δ1 MAL2–8c SUC2 hxtΔfgy1 Deletion of hexose transporters [64]
S. cerevisiae EBY.F4–1 MATα hxt1-17Δgal2Δagt1Δstl1Δleu2-3,112 ura3-52 trp1-289 his3-Δ1 MAL2–8c SUC2 hxtΔfgy1 fgy41 Deletion of hexose transporters [64]
S. cerevisiae EBY.VW4000 MATa leu2-3,112 ura3-52 trp1-289 his3-1 MAL2-8c SUC2 Δhxt1-17 Δgal2 Δstl1::loxP Δagt1::loxP Δmph2::loxP Δmph3::loxP Deletion of hexose transporters [65]
S. cerevisiae SDY.022 MATa leu2-3,112 ura3-52 trp1-289 his3-∆1 MAL2-8C SUC2 ∆hxt1-17 ∆gal2 ∆agt1 ∆stl1 fgy1-1 erg4::kanMX Deletion of hexose transporters [66]
S. cerevisiae BJ5457 MATα ura3-52 trp1 lys2-801 leu2-Δ1 his3-Δ200 pep4:HIS3 prb1-delta1.6R can1 GAL Protease deficient [67]
S. cerevisiae RE700A MATa hxt1::HIS3::hxt4 hxt5::LEU2 hxt2::HIS3hxt3::LEU2::hxt6 hxt7::HIS3 Deletion of hexose transporters [68]
S. cerevisiae BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0 Minimize homologous recombination [59]
S. cerevisiae BY4742 GEV MATa, (PGAL10+gal1)Δ::loxP, leu2Δ0::PACT1-GEV-NatMX, gal4Δ::LEU2, HAP1+ Minimize homologous recombination [69]
P. pastoris SMD1168H pep4 Protease A deficiency [59]
S. cerevisiae FAB158 MATa his3- Δ200 leu2- Δ1 lys2-801 trp1- Δ1 ade2-101 ura3-52 tat2 Δ::HIS3 Deletion of tryptophan transporter [70]
S. cerevisiae TMY203 MATa his3- Δ200 leu2- Δ1 lys2-801 trp1- Δ1 ade2-101 ura3-52 tat1 Δ::kanMX4 tat2Δ::LEU2 Deletion of tryptophan transporters [70]
S. cerevisiae FAY18A MATa his3- Δ200 leu2- Δ1 lys2-801 trp1- Δ1 ade2-101 ura3-52 HPG1-1, Rsp5P514T Deletion of Rsp5 ubiquitin ligase [70]
S. cerevisiae XPY1263a MATa thi3Δ::natMX thi7D::kanMX Deletion of thiamine transporter [71]
S. cerevisiae BY4741mp MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0; mir1Δ; pic2Δ Deletion of phosphate and copper transporter [72]
S. cerevisiae BY4741 pic2Δ MATa, leu2,met15, ura3, his3, PIC2::KANMX Deletion of copper transporter [73]
S. cerevisiae WB-12 MATα ade2-1 trp1-1 ura3-1 can1-100 aac1::LEU2 aac2::HIS3 Deletion of adenine nucleotide carriers [74]
S. cerevisiae JL1-3Δ2 Matα leu2-3,112 his3-11,15 ade2-1 trp1-1 ura3-1can1-100 anc1::LEU2 Δ anc2::HIS3 anc3::URA3 Deletion of adenine nucleotide carriers [75]
S. cerevisiae W303-B1 Mata; ade2-1; his3-11, -15; leu2-3, -112; ura3-1; canR; cyr+ Poor leucine uptake [76]
S. cerevisiae W303-1A MATa: ade2-2; trp1-1; can1-100; leu2-3, 112; his 3-11, 15; ura3-1 Poor leucine uptake [77]
S. cerevisiae W303 MATa/MATα (leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15) [phi+] Poor leucine uptake [78]
S. cerevisiae W303 Wagc1Δ Mat a/Mat a, ura3-1/ura3-1, trp1- Δ2/trp1- Δ2, leu2-3,112/leu2-3,112, his3-11/his3-11, ade2-1/ade2-1, can1-100/can1-100 Poor leucine uptake; deletion of AGC1 carrier [79]
S. cerevisiae PW001 BY4741 agc1∆::URA3 Deletion of AGC1 carrier [80]
S. cerevisiae PW002 BY4741 agc1∆::HIS3 Deletion of AGC1 carrier [80]
S. cerevisiae ΔArg11 Y02386 MATa; his3Δ1; leu2Δ0; met15Δ0; ura3D0; YOR130c::KanMX4 Deletion of ornithine transporter 1 [81]
S. cerevisiae ΔAnt1 BJ1991 MATa, leu2, trp1, ura3-251, prb1-1122, and pep4-3 Deletion of ANT1 carrier [82]
S. cerevisiae TCY119 MAT α ura3–52 leu2–3, 112 trp1-Δ1 ade2 his3-Δ1::hisG aac1-Δ1::hisG aac2-Δ1::kanMX6 aac3-Δ1::hisG [r+, TRP1] Deletion of AAC1, AAC2 and AAC3 carriers [83]
S. cerevisiae W303 his3-11,15; ade2-1; leu2-3,112; ura3-1; trp1-1; can1-100; RIM2/RIM2::kanMX Poor leucine uptake; deletion of pyrimidine nucleotide carrier [84]
S. cerevisiae ST9352 MATa, aro10Δ, pdc5Δ, pTEF1->ARO7, pPGK1->ARO4, pTEF1->FjTAL, pTEF1->HsSLC25A44 Alteration of aromatic amino acid metabolism [85]
S. cerevisiae CEN.PK113-7D ndt1Δndt2Δ MATa MAL2-8c SUC2 ndt1Δndt2Δ Deletion of NAD transporter [86]
S. cerevisiae BY4742 ndt1Δndt2Δ MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0, ndt1Δndt2Δ Deletion of NAD transporter [87]
S. cerevisiae FOH33 MATα MAL2-8c SUC2 his3Δ ura3-52 hfd1Δ pox1Δ faa1Δ faa4Δ adh6Δ::kanMX gal80Δ gal1/10/7Δ::(GAL7p-MmCAR-ADH1t)+(GAL3p-npgA-FBA1t); pAOH9 Deletion of alcohol dehydrogenase [88]
S. cerevisiae KY114 MATα, gal, ura3-52, trp1, lys2, ade2, his d2000 Deletion of thymidine transport [89]
S. cerevisiae BY4742-YBR021W MATα, his3, leu2, lys2, ura3, ΔFUR4 Deletion of uridine permease [90]
S. cerevisiae DY150 Mata ade2-1 his3-11 leu2-3,112 trp1-1 ura3-52 can1-100(oc) Deletion of Fe2+/Mn2+ transporter [91]
S. cerevisiae YPL1 MATα fui1 Δ::
HIS3, ura3-52, lys2-801, HIS3 Δ
Deletion of uridine permease [92]
S. cerevisiae W303-Δpep4 leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 hwas3-11,15 Δ pep4 MATα Deletion of vacuolar endopeptidase Pep4 [93]
S. cerevisiae W303-1A MATa ade2-1, can1-100, cyh2, his3-11,15, leu1-c, leu2-3,112, trp1-1, ura3-1 No growth in absence of adenine [94]
S. cerevisiae FGY217 MATα, ura3-52, lys2 Δ 201 and pep4 Δ Deletion of vacuolar endopeptidase Pep4 [95]
S. cerevisiae BY4743 Mata/α his3Δ1/ his3Δ1 leu2Δ0/ leu2Δ0 lys2Δ0/+ met15Δ0/+ ura3Δ0/ ura3Δ0 Essential genes deletion [96]
S. cerevisiae BY4743 Δpmr1::KanMX Mata/α his3Δ1/ his3Δ1 leu2Δ0/ leu2Δ0 lys2Δ0/+ met15Δ0/+ ura3Δ0/ ura3Δ0, Δpmr1::KanMX Deletion of essential genes and Pmr1 Ca2+ and Mn2+ transporter [97]
S. cerevisiae ctr1 MATa ura3 lys2 ade2 trp1 his3 leu2 Dctr1::LEU2 Deletion of CTR1 transporter [98]
S. cerevisiae YPH499 MATa ura3-52 lys2-801ade2-101 trp1-Δ63 his3-Δ200 leu2-Δ1   [99]
S. cerevisiae YPH500 MAT α/ura3–52/lys2–801/ade2–101/trp1-Δ63/his3-Δ200/leu2-Δ1   [100]
S. cerevisiae STY50 MATa,his4-401,leu2-3,-112,trp1-1,ura3-52,HOL1-1,suc2::LEU2 Deletion of invertase 2 [101]
P. pastoris CBS7435 Wild type   [102]
S. cerevisiae YPH501 MATa/MATα ura3-52/ura3-52 lys2-801/lys2-801 ade2-101/ade2-101 trp1-Δ63/ trp1-Δ63 his3- Δ200/his3- Δ200 Ieu2- Δ1/leu2- Δ1   [100]
S. cerevisiae CB001L MATα, leu2, trp1, ura3, prb, pep4::LEU2 Deletion of vacuolar proteinase A and B [103]
S. cerevisiae JRY472 Δmpc1/2/3 Deletion of pyruvate carriers [104]
S. cerevisiae BY4741 gdt1Δpmr1Δ MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 gdt1::KanMX4 pmr1::KanMX4 Deletion of Ca2+ and Mg2+ transporters [105]

2.2. Vector Choice

A yeast vector may exist as a self-replicating particle, independently of the yeast genome, or be stably integrated into the yeast genome. This last case should be considered to reduce expression fluctuations. Moreover, a chromosomally borne transgene confers the advantage of a uniform cell population containing the transgene. In contrast, plasmid numbers vary from cell-to-cell, with as many as 50% of cells in a culture under selection lacking the plasmid. Yeast vectors can be grouped into five general classes, based on their mode of replication in yeast: YIp, YRp, YCp, YEp, and YLp plasmids. Except for the YLp plasmids (yeast linear plasmids), all these plasmids can be maintained in E. coli as well as in S. cerevisiae and thus are referred to as shuttle vectors. Indeed, they contain two types of selectable genes: plasmid-encoded drug resistance genes for bacterial selection and a yeast gene which acts as dominant selectable marker only when the recipient yeast cell has a recessive mutation in the corresponding chromosomal copy of the cloned gene [106]. Yeast integrating plasmids (YIp) contain selectable yeast genes but lack sequences that allow autonomous replication of the plasmid in yeast. The frequency of transformation of YIp plasmids is only 1 to 10 transformants/μg DNA, but transformation frequency can be increased 10- to 1000-fold by linearizing the plasmid within yeast sequences that are homologous to the intended site of integration on the yeast chromosome [106]. Besides integrating vectors, there are three classes of circular yeast plasmids characterized by extrachromosomal autonomous replication sequences (ARS) which confer the ability to replicate autonomously: YRp (yeast replicating plasmids), YCp (yeast centromeric plasmids), and YEp (yeast episomal plasmids). YRp plasmids have high frequencies of transformation (103 to 104 transformants/μg DNA), but transformants are very unstable both mitotically and meiotically. YRp plasmids can be present in high copy number (up to 100 copies per plasmid-bearing cell, although the average copy number per cell is 1 to 10). Introducing DNA portion from yeast centromeres into YRp-generated YCp plasmids allows an increase in plasmid stability during mitosis and meiosis. These plasmids (present in 1 to 2 copies per cell), have a loss rate of approximately 1% per generation. The increase in plasmid stability is fundamental for allowing protein production. The YEp vectors contain sequences from a naturally occurring yeast plasmid called the 2 μ circle and confer high transformation frequencies (∼104 to 105 transformants/μg DNA). Since they are propagated quite stably through mitosis and meiosis in high copy number, these plasmids are commonly used for high-level gene expression in yeast [106]. YLp (yeast linear plasmids) contain G-rich repeated sequences at their termini which act as telomeres and allow the plasmid to replicate as a linear molecule. They are highly unstable due to random segregation during mitosis. A crucial factor that drastically influences transcription and consequently translation rate is the promoter region. Commonly used promoters can be divided in two main classes: constitutive and inducible promoters (Table 2). Constitutive promoters lead to stable expression levels across varying culture conditions, while ‘dynamic’ or inducible promoters drive huge changes in expression level in response to specific stimuli [107] (Table 2).
Table 2. Plasmids: promoters and regulation.
Normally, constitutive strong promoters are used for biotechnological application to produce high levels of non-toxic target. Sometimes, the constitutive expression of certain proteins can be detrimental to cell growth due to product toxicity and the imposed metabolic burden [123]. To overcome this problem, several attempts at promoter engineering have been made aimed at tuning gene expression for biotechnological application [124].

2.3. Selection Strategies

The original and most commonly used strategy for the selection of transformed yeast cells exploits the auxotrophic markers: TRP1 [125], HIS3 [126], LEU2, URA3 [127], MET15, and ADE2 [128]. Expression plasmids are paired with available S. cerevisiae strains that are auxotrophic for tryptophan, histidine, leucine, uracil, methionine, and adenosine, respectively, by carrying full or functional knock-outs of these auxotrophic genes [129]. Besides auxotrophic markers, antibiotics can also be used as an alternative selection tool in a rich growth medium. However, since antibiotics affect ribosome function, expression studies should be performed in liquid media lacking antibiotics [129]. In the case of P. pastoris, the transformant selection is mostly conducted by using the antibiotic Zeocin, a member of the bleomycin/phleomycin family isolated from Streptomyces. Thus, clones deriving from multiple integration events can be selected increasing Zeocin concentration.

References

  1. Hediger, M.A.; Clemencon, B.; Burrier, R.E.; Bruford, E.A. The ABCs of membrane transporters in health and disease (SLC series): Introduction. Mol. Asp. Med. 2013, 34, 95–107.
  2. Zhou, Y.; Zhang, G.Q.; Wei, Y.H.; Zhang, J.P.; Zhang, G.R.; Ren, J.X.; Duan, H.G.; Rao, Z.; Wu, X.A. The impact of drug transporters on adverse drug reaction. Eur. J. Drug Metab. Pharmacokinet. 2013, 38, 77–85.
  3. Yildirim, M.A.; Goh, K.I.; Cusick, M.E.; Barabasi, A.L.; Vidal, M. Drug-target network. Nat. Biotechnol. 2007, 25, 1119–1126.
  4. Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 2017, 16, 19–34.
  5. Scalise, M.; Pochini, L.; Giangregorio, N.; Tonazzi, A.; Indiveri, C. Proteoliposomes as tool for assaying membrane transporter functions and interactions with xenobiotics. Pharmaceutics 2013, 5, 472–497.
  6. Stein, W.; Litman, T. Channels, Carriers, and Pumps: An Introduction to Membrane Transport, 2nd ed.; Academic Press: Cambridge, MA, USA, 2015.
  7. Pizzagalli, M.D.; Bensimon, A.; Superti-Furga, G. A guide to plasma membrane solute carrier proteins. FEBS J. 2021, 288, 2784–2835.
  8. Povey, S.; Lovering, R.; Bruford, E.; Wright, M.; Lush, M.; Wain, H. The HUGO Gene Nomenclature Committee (HGNC). Hum. Genet. 2001, 109, 678–680.
  9. Fredriksson, R.; Nordstrom, K.J.; Stephansson, O.; Hagglund, M.G.; Schioth, H.B. The solute carrier (SLC) complement of the human genome: Phylogenetic classification reveals four major families. FEBS Lett. 2008, 582, 3811–3816.
  10. Colas, C.; Ung, P.M.; Schlessinger, A. SLC Transporters: Structure, Function, and Drug Discovery. Medchemcomm 2016, 7, 1069–1081.
  11. Forrest, L.R.; Zhang, Y.W.; Jacobs, M.T.; Gesmonde, J.; Xie, L.; Honig, B.H.; Rudnick, G. Mechanism for alternating access in neurotransmitter transporters. Proc. Natl. Acad. Sci. USA 2008, 105, 10338–10343.
  12. Bai, X.; Moraes, T.F.; Reithmeier, R.A.F. Structural biology of solute carrier (SLC) membrane transport proteins. Mol. Membr. Biol. 2017, 34, 1–32.
  13. Cesar-Razquin, A.; Snijder, B.; Frappier-Brinton, T.; Isserlin, R.; Gyimesi, G.; Bai, X.; Reithmeier, R.A.; Hepworth, D.; Hediger, M.A.; Edwards, A.M.; et al. A Call for Systematic Research on Solute Carriers. Cell 2015, 162, 478–487.
  14. Junge, F.; Schneider, B.; Reckel, S.; Schwarz, D.; Dotsch, V.; Bernhard, F. Large-scale production of functional membrane proteins. Cell Mol. Life Sci. 2008, 65, 1729–1755.
  15. Koepsell, H. The SLC22 family with transporters of organic cations, anions and zwitterions. Mol. Asp. Med. 2013, 34, 413–435.
  16. Mueckler, M.; Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Asp. Med. 2013, 34, 121–138.
  17. Stockbridge, R.B.; Kolmakova-Partensky, L.; Shane, T.; Koide, A.; Koide, S.; Miller, C.; Newstead, S. Crystal structures of a double-barrelled fluoride ion channel. Nature 2015, 525, 548–551.
  18. Thangaratnarajah, C.; Ruprecht, J.J.; Kunji, E.R. Calcium-induced conformational changes of the regulatory domain of human mitochondrial aspartate/glutamate carriers. Nat. Commun. 2014, 5, 5491.
  19. Kapoor, K.; Finer-Moore, J.S.; Pedersen, B.P.; Caboni, L.; Waight, A.; Hillig, R.C.; Bringmann, P.; Heisler, I.; Muller, T.; Siebeneicher, H.; et al. Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides. Proc. Natl. Acad. Sci. USA 2016, 113, 4711–4716.
  20. Garaeva, A.A.; Oostergetel, G.T.; Gati, C.; Guskov, A.; Paulino, C.; Slotboom, D.J. Cryo-EM structure of the human neutral amino acid transporter ASCT2. Nat. Struct. Mol. Biol. 2018, 25, 515–521.
  21. Deng, D.; Sun, P.; Yan, C.; Ke, M.; Jiang, X.; Xiong, L.; Ren, W.; Hirata, K.; Yamamoto, M.; Fan, S.; et al. Molecular basis of ligand recognition and transport by glucose transporters. Nature 2015, 526, 391–396.
  22. Yan, R.; Zhao, X.; Lei, J.; Zhou, Q. Structure of the human LAT1-4F2hc heteromeric amino acid transporter complex. Nature 2019, 568, 127–130.
  23. Galluccio, M.; Console, L.; Pochini, L.; Scalise, M.; Giangregorio, N.; Indiveri, C. Strategies for Successful Over-Expression of Human Membrane Transport Systems Using Bacterial Hosts: Future Perspectives. Int. J. Mol. Sci 2022, 23, 3823.
  24. Geertsma, E.R.; Groeneveld, M.; Slotboom, D.J.; Poolman, B. Quality control of overexpressed membrane proteins. Proc. Natl. Acad. Sci. USA 2008, 105, 5722–5727.
  25. Schlegel, S.; Hjelm, A.; Baumgarten, T.; Vikstrom, D.; de Gier, J.W. Bacterial-based membrane protein production. Biochim. Biophys. Acta 2014, 1843, 1739–1749.
  26. Darby, R.A.; Cartwright, S.P.; Dilworth, M.V.; Bill, R.M. Which yeast species shall I choose? Saccharomyces cerevisiae versus Pichia pastoris (review). Methods Mol. Biol. 2012, 866, 11–23.
  27. Byrne, B. Pichia pastoris as an expression host for membrane protein structural biology. Curr. Opin. Struct. Biol. 2015, 32, 9–17.
  28. Lee, J.Y.; Chen, H.; Liu, A.; Alba, B.M.; Lim, A.C. Auto-induction of Pichia pastoris AOX1 promoter for membrane protein expression. Protein Expr. Purif. 2017, 137, 7–12.
  29. Souabni, H.; Ezzine, A.; Bizouarn, T.; Baciou, L. Functional Assembly of Soluble and Membrane Recombinant Proteins of Mammalian NADPH Oxidase Complex. Methods Mol. Biol. 2017, 1635, 27–43.
  30. Pingitore, P.; Pochini, L.; Scalise, M.; Galluccio, M.; Hedfalk, K.; Indiveri, C. Large scale production of the active human ASCT2 (SLC1A5) transporter in Pichia pastoris—Functional and kinetic asymmetry revealed in proteoliposomes. Biochim. Biophys. Acta 2013, 1828, 2238–2246.
  31. Claes, K.; Guerfal, M.; Callewaert, N. Membrane protein expression and analysis in yeast. Methods Enzymol. 2015, 556, 123–140.
  32. Hartmann, L.; Kugler, V.; Wagner, R. Expression of Eukaryotic Membrane Proteins in Pichia pastoris. Methods Mol. Biol. 2016, 1432, 143–162.
  33. Scalise, M.; Pappacoda, G.; Mazza, T.; Console, L.; Pochini, L.; Indiveri, C. Cysteine 467 of the ASCT2 Amino Acid Transporter Is a Molecular Determinant of the Antiport Mechanism. Int. J. Mol. Sci. 2022, 23, 1127.
  34. Pedersen, B.P.; Kumar, H.; Waight, A.B.; Risenmay, A.J.; Roe-Zurz, Z.; Chau, B.H.; Schlessinger, A.; Bonomi, M.; Harries, W.; Sali, A.; et al. Crystal structure of a eukaryotic phosphate transporter. Nature 2013, 496, 533–536.
  35. Cregg, J.M.; Cereghino, J.L.; Shi, J.; Higgins, D.R. Recombinant protein expression in Pichia pastoris. Mol. Biotechnol. 2000, 16, 23–52.
  36. Bill, R.M. Yeast—A panacea for the structure-function analysis of membrane proteins? Curr. Genet. 2001, 40, 157–171.
  37. Karathia, H.; Vilaprinyo, E.; Sorribas, A.; Alves, R. Saccharomyces cerevisiae as a model organism: A comparative study. PLoS ONE 2011, 6, e16015.
  38. Eckart, M.R.; Bussineau, C.M. Quality and authenticity of heterologous proteins synthesized in yeast. Curr. Opin. Biotechnol. 1996, 7, 525–530.
  39. Gemmill, T.R.; Trimble, R.B. Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim. Biophys. Acta 1999, 1426, 227–237.
  40. Chiba, Y.; Suzuki, M.; Yoshida, S.; Yoshida, A.; Ikenaga, H.; Takeuchi, M.; Jigami, Y.; Ichishima, E. Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J. Biol. Chem. 1998, 273, 26298–26304.
  41. Nakanishi-Shindo, Y.; Nakayama, K.; Tanaka, A.; Toda, Y.; Jigami, Y. Structure of the N-linked oligosaccharides that show the complete loss of alpha-1,6-polymannose outer chain from och1, och1 mnn1, and och1 mnn1 alg3 mutants of Saccharomyces cerevisiae. J. Biol. Chem. 1993, 268, 26338–26345.
  42. Oka, T.; Jigami, Y. Reconstruction of de novo pathway for synthesis of UDP-glucuronic acid and UDP-xylose from intrinsic UDP-glucose in Saccharomyces cerevisiae. FEBS J. 2006, 273, 2645–2657.
  43. Chigira, Y.; Oka, T.; Okajima, T.; Jigami, Y. Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: Production of O-fucosylated epidermal growth factor domains. Glycobiology 2008, 18, 303–314.
  44. Wach, A. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 1996, 12, 259–265.
  45. Longtine, M.S.; McKenzie, A., 3rd; Demarini, D.J.; Shah, N.G.; Wach, A.; Brachat, A.; Philippsen, P.; Pringle, J.R. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 1998, 14, 953–961.
  46. Storici, F.; Resnick, M.A. The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast. Methods Enzymol. 2006, 409, 329–345.
  47. Guldener, U.; Heck, S.; Fielder, T.; Beinhauer, J.; Hegemann, J.H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996, 24, 2519–2524.
  48. Rothstein, R. Targeting, disruption, replacement, and allele rescue: Integrative DNA transformation in yeast. Methods Enzymol. 1991, 194, 281–301.
  49. Nasmyth, K.A.; Reed, S.I. Isolation of genes by complementation in yeast: Molecular cloning of a cell-cycle gene. Proc. Natl. Acad. Sci. USA 1980, 77, 2119–2123.
  50. Chan, C.S.; Tye, B.K. Autonomously replicating sequences in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1980, 77, 6329–6333.
  51. Clarke, L.; Carbon, J. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 1980, 287, 504–509.
  52. Szostak, J.W.; Blackburn, E.H. Cloning yeast telomeres on linear plasmid vectors. Cell 1982, 29, 245–255.
  53. Herskowitz, I. Functional inactivation of genes by dominant negative mutations. Nature 1987, 329, 219–222.
  54. Gardner, J.M.; Jaspersen, S.L. Manipulating the yeast genome: Deletion, mutation, and tagging by PCR. Methods Mol. Biol. 2014, 1205, 45–78.
  55. Orr-Weaver, T.L.; Szostak, J.W.; Rothstein, R.J. Yeast transformation: A model system for the study of recombination. Proc. Natl. Acad. Sci. USA 1981, 78, 6354–6358.
  56. Oldenburg, K.R.; Vo, K.T.; Michaelis, S.; Paddon, C. Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res. 1997, 25, 451–452.
  57. Joska, T.M.; Mashruwala, A.; Boyd, J.M.; Belden, W.J. A universal cloning method based on yeast homologous recombination that is simple, efficient, and versatile. J. Microbiol. Methods 2014, 100, 46–51.
  58. Zehnpfennig, B.; Wiriyasermkul, P.; Carlson, D.A.; Quick, M. Interaction of alpha-Lipoic Acid with the Human Na+/Multivitamin Transporter (hSMVT). J. Biol. Chem. 2015, 290, 16372–16382.
  59. Sarder, H.A.M.; Li, X.; Funaya, C.; Cordat, E.; Schmitt, M.J.; Becker, B. Saccharomyces cerevisiae: First Steps to a Suitable Model System To Study the Function and Intracellular Transport of Human Kidney Anion Exchanger 1. mSphere 2020, 5, e00802-19.
  60. Scharff-Poulsen, P.; Pedersen, P.A. Saccharomyces cerevisiae-based platform for rapid production and evaluation of eukaryotic nutrient transporters and transceptors for biochemical studies and crystallography. PLoS ONE 2013, 8, e76851.
  61. Xiang, M.; Feng, M.; Muend, S.; Rao, R. A human Na+/H+ antiporter sharing evolutionary origins with bacterial NhaA may be a candidate gene for essential hypertension. Proc. Natl. Acad. Sci. USA 2007, 104, 18677–18681.
  62. Techau, M.E.; Valdez-Taubas, J.; Popoff, J.F.; Francis, R.; Seaman, M.; Blackwell, J.M. Evolution of differences in transport function in Slc11a family members. J. Biol. Chem. 2007, 282, 35646–35656.
  63. Doring, F.; Walter, J.; Will, J.; Focking, M.; Boll, M.; Amasheh, S.; Clauss, W.; Daniel, H. Delta-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J. Clin. Investig. 1998, 101, 2761–2767.
  64. Wieczorke, R.; Dlugai, S.; Krampe, S.; Boles, E. Characterisation of mammalian GLUT glucose transporters in a heterologous yeast expression system. Cell Physiol. Biochem. 2003, 13, 123–134.
  65. Wieczorke, R.; Krampe, S.; Weierstall, T.; Freidel, K.; Hollenberg, C.P.; Boles, E. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. Febs. Lett. 1999, 464, 123–128.
  66. Schmidl, S.; Tamayo Rojas, S.A.; Iancu, C.V.; Choe, J.Y.; Oreb, M. Functional Expression of the Human Glucose Transporters GLUT2 and GLUT3 in Yeast Offers Novel Screening Systems for GLUT-Targeting Drugs. Front. Mol. Biosci. 2020, 7, 598419.
  67. Bonar, P.; Casey, J.R. Purification of functional human Cl−/HCO3− exchanger, AE1, over-expressed in Saccharomyces cerevisiae. Protein Expr. Purif. 2010, 74, 106–115.
  68. Levine, K.B.; Robichaud, T.K.; Hamill, S.; Sultzman, L.A.; Carruthers, A. Properties of the human erythrocyte glucose transport protein are determined by cellular context. Biochemistry 2005, 44, 5606–5616.
  69. Li, X.; Cordat, E.; Schmitt, M.J.; Becker, B. Boosting endoplasmic reticulum folding capacity reduces unfolded protein response activation and intracellular accumulation of human kidney anion exchanger 1 in Saccharomyces cerevisiae. Yeast 2021, 38, 521–534.
  70. Abe, F.; Iida, H. Pressure-induced differential regulation of the two tryptophan permeases Tat1 and Tat2 by ubiquitin ligase Rsp5 and its binding proteins, Bul1 and Bul2. Mol. Cell Biol 2003, 23, 7566–7584.
  71. Huang, Z.; Srinivasan, S.; Zhang, J.; Chen, K.; Li, Y.; Li, W.; Quiocho, F.A.; Pan, X. Discovering thiamine transporters as targets of chloroquine using a novel functional genomics strategy. PLoS Genet. 2012, 8, e1003083.
  72. Mayr, J.A.; Merkel, O.; Kohlwein, S.D.; Gebhardt, B.R.; Bohles, H.; Fotschl, U.; Koch, J.; Jaksch, M.; Lochmuller, H.; Horvath, R.; et al. Mitochondrial phosphate-carrier deficiency: A novel disorder of oxidative phosphorylation. Am. J. Hum. Genet. 2007, 80, 478–484.
  73. Boulet, A.; Vest, K.E.; Maynard, M.K.; Gammon, M.G.; Russell, A.C.; Mathews, A.T.; Cole, S.E.; Zhu, X.; Phillips, C.B.; Kwong, J.Q.; et al. The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis. J. Biol. Chem. 2018, 293, 1887–1896.
  74. Hatanaka, T.; Takemoto, Y.; Hashimoto, M.; Majima, E.; Shinohara, Y.; Terada, H. Significant expression of functional human type 1 mitochondrial ADP/ATP carrier in yeast mitochondria. Biol. Pharm. Bull. 2001, 24, 595–599.
  75. De Marcos Lousa, C.; Trezeguet, V.; Dianoux, A.C.; Brandolin, G.; Lauquin, G.J. The human mitochondrial ADP/ATP carriers: Kinetic properties and biogenesis of wild-type and mutant proteins in the yeast S. cerevisiae. Biochemistry 2002, 41, 14412–14420.
  76. Hinz, W.; Faller, B.; Gruninger, S.; Gazzotti, P.; Chiesi, M. Recombinant human uncoupling protein-3 increases thermogenesis in yeast cells. FEBS Lett. 1999, 448, 57–61.
  77. Brown, A.M.; Dolan, J.W.; Willi, S.M.; Garvey, W.T.; Argyropoulos, G. Endogenous mutations in human uncoupling protein 3 alter its functional properties. FEBS Lett. 1999, 464, 189–193.
  78. Cohen, R.; Engelberg, D. Commonly used Saccharomyces cerevisiae strains (e.g., BY4741, W303) are growth sensitive on synthetic complete medium due to poor leucine uptake. FEMS Microbiol. Lett. 2007, 273, 239–243.
  79. Cavero, S.; Vozza, A.; del Arco, A.; Palmieri, L.; Villa, A.; Blanco, E.; Runswick, M.J.; Walker, J.E.; Cerdan, S.; Palmieri, F.; et al. Identification and metabolic role of the mitochondrial aspartate-glutamate transporter in Saccharomyces cerevisiae. Mol. Microbiol. 2003, 50, 1257–1269.
  80. Wongkittichote, P.; Tungpradabkul, S.; Wattanasirichaigoon, D.; Jensen, L.T. Prediction of the functional effect of novel SLC25A13 variants using a S. cerevisiae model of AGC2 deficiency. J. Inherit. Metab. Dis. 2013, 36, 821–830.
  81. Doimo, M.; Lopreiato, R.; Basso, V.; Bortolotto, R.; Tessa, A.; Santorelli, F.M.; Trevisson, E.; Salviati, L. Heterologous Expression in Yeast of Human Ornithine Carriers ORNT1 and ORNT2 and of ORNT1 Alleles Implicated in HHH Syndrome in Humans. JIMD Rep. 2016, 28, 119–126.
  82. Visser, W.F.; van Roermund, C.W.; Waterham, H.R.; Wanders, R.J. Identification of human PMP34 as a peroxisomal ATP transporter. Biochem. Biophys. Res. Commun. 2002, 299, 494–497.
  83. Smith, C.P.; Thorsness, P.E. The molecular basis for relative physiological functionality of the ADP/ATP carrier isoforms in Saccharomyces cerevisiae. Genetics 2008, 179, 1285–1299.
  84. Di Noia, M.A.; Todisco, S.; Cirigliano, A.; Rinaldi, T.; Agrimi, G.; Iacobazzi, V.; Palmieri, F. The human SLC25A33 and SLC25A36 genes of solute carrier family 25 encode two mitochondrial pyrimidine nucleotide transporters. J. Biol. Chem. 2014, 289, 33137–33148.
  85. Darbani, B. Genome Evolutionary Dynamics Meets Functional Genomics: A Case Story on the Identification of SLC25A44. Int. J. Mol. Sci. 2021, 22, 5669.
  86. Kory, N.; Uit de Bos, J.; van der Rijt, S.; Jankovic, N.; Gura, M.; Arp, N.; Pena, I.A.; Prakash, G.; Chan, S.H.; Kunchok, T.; et al. MCART1/SLC25A51 is required for mitochondrial NAD transport. Sci. Adv. 2020, 6, eabe5310.
  87. Luongo, T.S.; Eller, J.M.; Lu, M.J.; Niere, M.; Raith, F.; Perry, C.; Bornstein, M.R.; Oliphint, P.; Wang, L.; McReynolds, M.R.; et al. SLC25A51 is a mammalian mitochondrial NAD(+) transporter. Nature 2020, 588, 174–179.
  88. Hu, Y.; Zhu, Z.; Nielsen, J.; Siewers, V. Heterologous transporter expression for improved fatty alcohol secretion in yeast. Metab. Eng. 2018, 45, 51–58.
  89. Vickers, M.F.; Young, J.D.; Baldwin, S.A.; Ellison, M.J.; Cass, C.E. Functional production of mammalian concentrative nucleoside transporters in Saccharomyces cerevisiae. Mol. Membr. Biol. 2001, 18, 73–79.
  90. Zhang, J.; Smith, K.M.; Tackaberry, T.; Visser, F.; Robins, M.J.; Nielsen, L.P.; Nowak, I.; Karpinski, E.; Baldwin, S.A.; Young, J.D.; et al. Uridine binding and transportability determinants of human concentrative nucleoside transporters. Mol. Pharmacol. 2005, 68, 830–839.
  91. Lin, H.; Kumanovics, A.; Nelson, J.M.; Warner, D.E.; Ward, D.M.; Kaplan, J. A single amino acid change in the yeast vacuolar metal transporters ZRC1 and COT1 alters their substrate specificity. J. Biol. Chem. 2008, 283, 33865–33873.
  92. SenGupta, D.J.; Lum, P.Y.; Lai, Y.; Shubochkina, E.; Bakken, A.H.; Schneider, G.; Unadkat, J.D. A single glycine mutation in the equilibrative nucleoside transporter gene, hENT1, alters nucleoside transport activity and sensitivity to nitrobenzylthioinosine. Biochemistry 2002, 41, 1512–1519.
  93. Boswell-Casteel, R.C.; Johnson, J.M.; Roe-Žurž, Z.; Duggan, K.D.; Schmitz, H.; Hays, F.A. Expression and purification of human and Saccharomyces cerevisiae equilibrative nucleoside transporters. Protein Expr. Purif. 2018, 142, 68–74.
  94. Endres, C.J.; Sengupta, D.J.; Unadkat, J.D. Mutation of leucine-92 selectively reduces the apparent affinity of inosine, guanosine, NBMPR and dilazep for the human equilibrative nucleoside transporter, hENT1. Biochem. J. 2004, 380, 131–137.
  95. Cotrim, C.A.; Jarrott, R.J.; Whitten, A.E.; Choudhury, H.G.; Drew, D.; Martin, J.L. Heterologous Expression and Biochemical Characterization of the Human Zinc Transporter 1 (ZnT1) and Its Soluble C-Terminal Domain. Front. Chem. 2021, 9, 667803.
  96. Winzeler, E.A.; Shoemaker, D.D.; Astromoff, A.; Liang, H.; Anderson, K.; Andre, B.; Bangham, R.; Benito, R.; Boeke, J.D.; Bussey, H.; et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999, 285, 901–906.
  97. Tuschl, K.; Clayton, P.T.; Gospe, S.M., Jr.; Gulab, S.; Ibrahim, S.; Singhi, P.; Aulakh, R.; Ribeiro, R.T.; Barsottini, O.G.; Zaki, M.S.; et al. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am. J. Hum. Genet. 2012, 90, 457–466.
  98. Zhou, B.; Gitschier, J. hCTR1: A human gene for copper uptake identified by complementation in yeast. Proc. Natl. Acad. Sci. USA 1997, 94, 7481–7486.
  99. Uemura, S.; Mochizuki, T.; Kurosaka, G.; Hashimoto, T.; Masukawa, Y.; Abe, F. Functional analysis of human aromatic amino acid transporter MCT10/TAT1 using the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta Biomembr. 2017, 1859, 2076–2085.
  100. Sikorski, R.S.; Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989, 122, 19–27.
  101. Strahl-Bolsinger, S.; Scheinost, A. Transmembrane topology of pmt1p, a member of an evolutionarily conserved family of protein O-mannosyltransferases. J. Biol. Chem. 1999, 274, 9068–9075.
  102. Kuberl, A.; Schneider, J.; Thallinger, G.G.; Anderl, I.; Wibberg, D.; Hajek, T.; Jaenicke, S.; Brinkrolf, K.; Goesmann, A.; Szczepanowski, R.; et al. High-quality genome sequence of Pichia pastoris CBS7435. J. Biotechnol. 2011, 154, 312–320.
  103. Muraoka, M.; Miki, T.; Ishida, N.; Hara, T.; Kawakita, M. Variety of nucleotide sugar transporters with respect to the interaction with nucleoside mono- and diphosphates. J. Biol. Chem. 2007, 282, 24615–24622.
  104. Nagampalli, R.S.K.; Quesnay, J.E.N.; Adamoski, D.; Islam, Z.; Birch, J.; Sebinelli, H.G.; Girard, R.; Ascencao, C.F.R.; Fala, A.M.; Pauletti, B.A.; et al. Human mitochondrial pyruvate carrier 2 as an autonomous membrane transporter. Sci. Rep. 2018, 8, 3510.
  105. Stribny, J.; Thines, L.; Deschamps, A.; Goffin, P.; Morsomme, P. The human Golgi protein TMEM165 transports calcium and manganese in yeast and bacterial cells. J. Biol. Chem. 2020, 295, 3865–3874.
  106. Lundblad, V. Yeast cloning vectors and genes. Curr. Protoc. Mol. Biol. 2001.
  107. Peng, B.; Williams, T.C.; Henry, M.; Nielsen, L.K.; Vickers, C.E. Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: A comparison of yeast promoter activities. Microb. Cell Fact. 2015, 14, 91.
  108. Ellis, S.B.; Brust, P.F.; Koutz, P.J.; Waters, A.F.; Harpold, M.M.; Gingeras, T.R. Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol. Cell Biol. 1985, 5, 1111–1121.
  109. West, R.W., Jr.; Yocum, R.R.; Ptashne, M. Saccharomyces cerevisiae GAL1-GAL10 divergent promoter region: Location and function of the upstream activating sequence UASG. Mol. Cell Biol. 1984, 4, 2467–2478.
  110. Ye, L.; Berden, J.A.; van Dam, K.; Kruckeberg, A.L. Expression and activity of the Hxt7 high-affinity hexose transporter of Saccharomyces cerevisiae. Yeast 2001, 18, 1257–1267.
  111. Ruohonen, L.; Aalto, M.K.; Keranen, S. Modifications to the ADH1 promoter of Saccharomyces cerevisiae for efficient production of heterologous proteins. J. Biotechnol. 1995, 39, 193–203.
  112. Musti, A.M.; Zehner, Z.; Bostian, K.A.; Paterson, B.M.; Kramer, R.A. Transcriptional mapping of two yeast genes coding for glyceraldehyde 3-phosphate dehydrogenase isolated by sequence homology with the chicken gene. Gene 1983, 25, 133–143.
  113. Bitter, G.A.; Egan, K.M. Expression of heterologous genes in Saccharomyces cerevisiae from vectors utilizing the glyceraldehyde-3-phosphate dehydrogenase gene promoter. Gene 1984, 32, 263–274.
  114. Pedersen, P.A.; Rasmussen, J.H.; Joorgensen, P.L. Expression in high yield of pig alpha 1 beta 1 Na,K-ATPase and inactive mutants D369N and D807N in Saccharomyces cerevisiae. J. Biol. Chem. 1996, 271, 2514–2522.
  115. Mumberg, D.; Muller, R.; Funk, M. Regulatable promoters of Saccharomyces cerevisiae: Comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 1994, 22, 5767–5768.
  116. Tuite, M.F.; Dobson, M.J.; Roberts, N.A.; King, R.M.; Burke, D.C.; Kingsman, S.M.; Kingsman, A.J. Regulated high efficiency expression of human interferon-alpha in Saccharomyces cerevisiae. EMBO J. 1982, 1, 603–608.
  117. Guarente, L.; Lalonde, B.; Gifford, P.; Alani, E. Distinctly regulated tandem upstream activation sites mediate catabolite repression of the CYC1 gene of S. cerevisiae. Cell 1984, 36, 503–511.
  118. Humphries, A.; Ationu, A.; Wild, B.; Layton, D.M. The consequence of nucleotide substitutions in the triosephosphate isomerase (TPI) gene promoter. Blood Cells Mol. Dis. 1999, 25, 210–217.
  119. Elgersma, Y.; van den Berg, M.; Tabak, H.F.; Distel, B. An efficient positive selection procedure for the isolation of peroxisomal import and peroxisome assembly mutants of Saccharomyces cerevisiae. Genetics 1993, 135, 731–740.
  120. Steiner, S.; Philippsen, P. Sequence and promoter analysis of the highly expressed TEF gene of the filamentous fungus Ashbya gossypii. Mol. Gen. Genet. 1994, 242, 263–271.
  121. Becker, D.M.; Fikes, J.D.; Guarente, L. A cDNA encoding a human CCAAT-binding protein cloned by functional complementation in yeast. Proc. Natl. Acad. Sci. USA 1991, 88, 1968–1972.
  122. Etcheverry, T. Induced expression using yeast copper metallothionein promoter. Methods Enzymol. 1990, 185, 319–329.
  123. Chen, X.; Li, S.; Liu, L. Engineering redox balance through cofactor systems. Trends Biotechnol. 2014, 32, 337–343.
  124. Na, D.; Kim, T.Y.; Lee, S.Y. Construction and optimization of synthetic pathways in metabolic engineering. Curr. Opin. Microbiol. 2010, 13, 363–370.
  125. Tschumper, G.; Carbon, J. Sequence of a yeast DNA fragment containing a chromosomal replicator and the TRP1 gene. Gene 1980, 10, 157–166.
  126. Struhl, K.; Davis, R.W. A physical, genetic and transcriptional map of the cloned his3 gene region of Saccharomyces cerevisiae. J. Mol. Biol. 1980, 136, 309–332.
  127. Rose, M.; Grisafi, P.; Botstein, D. Structure and function of the yeast URA3 gene: Expression in Escherichia coli. Gene 1984, 29, 113–124.
  128. Brachmann, C.B.; Davies, A.; Cost, G.J.; Caputo, E.; Li, J.; Hieter, P.; Boeke, J.D. Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 1998, 14, 115–132.
  129. Britton, Z.; Young, C.; Can, O.; McNeely, P.; Naranjo, A.; Robinson, A.S. Membrane Protein Expression in Saccharomyces cerevisiae. In Production of Membrane Proteins: Strategies for Expression and Isolation; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 37–73.
More
Upload a video for this entry
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : Lorena Pochini , Michele Galluccio
View Times: 582
Revisions: 3 times (View History)
Update Date: 20 Feb 2023
Notice
You are not a member of the advisory board for this topic. If you want to update advisory board member profile, please contact office@encyclopedia.pub.
OK
Confirm
Only members of the Encyclopedia advisory board for this topic are allowed to note entries. Would you like to become an advisory board member of the Encyclopedia?
Yes
No
${ textCharacter }/${ maxCharacter }
Submit
Cancel
There is no comment~
${ textCharacter }/${ maxCharacter }
Submit
Cancel
${ selectedItem.replyTextCharacter }/${ selectedItem.replyMaxCharacter }
Submit
Cancel
Confirm
Are you sure to Delete?
Yes No
Academic Video Service