| Version | Summary | Created by | Modification | Content Size | Created at | Operation |
|---|---|---|---|---|---|---|
| 1 | Jesper Bonnet Moeller | -- | 2394 | 2023-02-16 09:48:04 | | | |
| 2 | Lindsay Dong | -1 word(s) | 2393 | 2023-02-17 03:08:32 | | |
The human gastrointestinal microbiota contains a diverse consortium of microbes, including bacteria, protozoa, viruses, and fungi. Through millennia of co-evolution, the host–microbiota interactions have shaped the immune system to both tolerate and maintain the symbiotic relationship with commensal microbiota, while exerting protective responses against invading pathogens. Microbiome research is dominated by studies describing the impact of prokaryotic bacteria on gut immunity with a limited understanding of their relationship with other integral microbiota constituents. However, converging evidence shows that eukaryotic organisms, such as commensal protozoa, can play an important role in modulating intestinal immune responses as well as influencing the overall health of the host. The presence of several protozoa species has recently been shown to be a common occurrence in healthy populations worldwide, suggesting that many of these are commensals rather than invading pathogens.
Recently, it was shown that colonization with Blastocystis ST4 attenuates colonic inflammation in a dextran sulfate sodium (DSS)-induced colitis mouse model via induction of T helper (Th) 2 cells and T regulatory (Treg) cells [76]. Mice colonized with Blastocystis ST4 showed a decrease of tumor necrosis factor-α expressing (TNF) CD4+ T-cells and an upregulation of signature Th2 cytokines interleukin (IL)-4, IL-5, and IL-13, as well as the anti-inflammatory cytokine IL-10 [76]. Additionally, a marked increase of abundance of SCFA-producing bacteria, such as Ruminococcaceae and Roseburia, was observed following Blastocystis ST4 colonization. Analysis of the SCFA content in feces from colitic mice that had received fecal matter transplant from Blastocystis ST4-colonized mice revealed enrichment of 6 SCFAs (butyric, isobutyric, valeric, isovaleric, 2-methylbutyric, and caproic acid) compared to mice that received fecal matter transplant from Blastocystis-free mice [76]. Importantly, recent reports have repeatedly suggested a highly beneficial role of SCFAs on gut homeostasis and immune modulation [77]. SCFAs in the intestinal lumen are absorbed by colonocytes where they enter the citric acid cycle and are used for energy production. Unmetabolized SCFAs enter the systemic circulation and travel to different organs, serving as substrates or signaling molecules for various cellular processes such as chemotaxis, proliferation, and differentiation [78][79]. SCFAs achieve this by acting as histone deacetylase (HDAC) inhibitors as well as activators of cell surface receptors [78]. It has been demonstrated that butyrate, created by SCFA-producing microorganisms in the intestines, can facilitate generation of extrathymic Tregs via enhanced acetylation of Foxp3 locus in CD4+ T cells.
On the other hand, Blastocystis ST7 has been suggested to have immunocompromising functions, and several potential virulence factors have been identified that could support the notion of pathogenicity. Antigens from Blastocystis ST7 have been reported to induce the mitogen-activated protein kinase-dependent expression of pro-inflammatory cytokines such as IL-1β, IL-6, and tumor necrosis factor, in macrophages, mouse intestinal explants, and colonic tissue [80]. Furthermore, Blastocystis ST7 has a significantly higher activity of cysteine proteases compared to other Blastocystis subtypes. Cysteine proteases are a characteristic feature of parasitic protozoa (e.g., Entamoeba histolytica and Cryptosporidium spp.) that have been shown to facilitate invasion of host tissue, as well as immune evasion [81].
Intestinal protozoa have co-evolved with humans, and their interactions with the human host seem to be highly dynamic and variable, with some species and subtypes exhibiting beneficial properties, while others manifest adverse immunomodulatory effects. The fact that many of these protozoa species cause dormant persistent colonization that often leads to life-long affiliation with their host, points towards commensalism or even symbiosis rather than parasitism. In line with that, colonization with intestinal protozoa appears to significantly increase the diversity of the gut microbiota and selectively modulate the composition of different bacterial communities. Some outstanding questions remain as to whether a therapeutic impact might be achieved by diversification of the human gut via controlled colonization with commensal protozoa strains or by FMT from protozoa-colonized healthy donors to patients with IBD or other gastrointestinal diseases. FMT is an emerging therapy with a successful track record against severe intestinal bacterial infections and a potential therapeutic candidate against diseases associated with microbial dysbiosis [82].