Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1829 2023-02-02 08:02:05 |
2 layout & ref Meta information modification 1829 2023-02-02 09:36:19 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Shorobi, F.M.;  Nisa, F.Y.;  Saha, S.;  Chowdhury, M.A.H.;  Srisuphanunt, M.;  Hossain, K.H.;  Rahman, M.A. Major Pharmacological Actions of Quercetin. Encyclopedia. Available online: https://encyclopedia.pub/entry/40758 (accessed on 16 November 2024).
Shorobi FM,  Nisa FY,  Saha S,  Chowdhury MAH,  Srisuphanunt M,  Hossain KH, et al. Major Pharmacological Actions of Quercetin. Encyclopedia. Available at: https://encyclopedia.pub/entry/40758. Accessed November 16, 2024.
Shorobi, Fauzia Mahanaz, Fatema Yasmin Nisa, Srabonti Saha, Muhammad Abid Hasan Chowdhury, Mayuna Srisuphanunt, Kazi Helal Hossain, Md. Atiar Rahman. "Major Pharmacological Actions of Quercetin" Encyclopedia, https://encyclopedia.pub/entry/40758 (accessed November 16, 2024).
Shorobi, F.M.,  Nisa, F.Y.,  Saha, S.,  Chowdhury, M.A.H.,  Srisuphanunt, M.,  Hossain, K.H., & Rahman, M.A. (2023, February 02). Major Pharmacological Actions of Quercetin. In Encyclopedia. https://encyclopedia.pub/entry/40758
Shorobi, Fauzia Mahanaz, et al. "Major Pharmacological Actions of Quercetin." Encyclopedia. Web. 02 February, 2023.
Major Pharmacological Actions of Quercetin
Edit

Quercetin (3,3′,4′,5,7-pentahydroxy-2-phenylchromen-4-one), the major representative of the flavonoid subclass of flavonols, is derived from the Latin word “Quercetum,” meaning “Oak Forest”. It can be found in a variety of foods, including fruits and vegetables, and has been reported to be effective against a variety of viruses. 

quercetin antiviral action flavonoid medicinal plant

1. Natural Sources of Quercetin and Its Isolation from Plants

Quercetin is one of the most consumed and important bioflavonoid components and is widely found in different varieties of fruits and vegetables. Plant species, growing conditions, harvest conditions, and storage methods can influence the polyphenolic composition of fruits and vegetables. Quercetin is found in abundance in onions, apples, and wine. According to several studies, Quercetin is also found in tea, pepper, coriander, fennel, radish, and dill [1]. More than 20 plants species produce Quercetin: Foeniculum vulgare, Curcuma domestica valeton, Santalum album, Cuscuta reflexa, Withania somnifera, Emblica officinalis, Mangifera indica, Daucus carota, Momordica charantia, Ocimum sanctum, Psoralea corylifolia, Swertia chirayita, Solanum nigrum, and Glycyrrhiza glabra, Morua alba, Camellia sinensis [2], Allium fistulosum, A. cepa, Calamus scipionum, Moringa oleifera, Centella asiatica, Hypericum hircinum, H. perforatum, Apium graveolens, Brassica oleracea var. Italica, B. oleracea var. sabellica, Coriandrum sativum, Lactuca sativa, Nasturtium officinale, Asparagus officinalis, Capparis spinosa, Prunus domestica, P. avium, Malus domestica, Vaccinium oxycoccus, and Solanum lycopersicum [3]. Quercetin is available in capsule and powder form as a dietary supplement. The plasma Quercetin concentration rises when Quercetin is consumed in the form of foods or supplements (Table 1). As a result, everyday consumption of Quercetin-rich foods increases Quercetin bioavailability and contributes to the prevention of lifestyle-related disorders [1].
Quercetin was isolated from a fractionated extract of Rubus fruticosus by using an optimized column in HPLC and increasing its concentration by using a nanofiltration membrane [4]. Extraction of Quercetin from different plant sources can be followed by effective sample preparation techniques known as the sea sand disruption method (SSDM). The SSDM is used due to its recovery efficiency [5]. During the isolation of Quercetin and its derivatives in plants’ source, SSDM is used to eliminate errors in the study [6]. Flavonoids are isolated from the crude extract of plants by using various organic solutions followed by HPLC analysis, which is further characterized by FTIR, NMR, and mass spectroscopy [7]. Quercetin-3-O-rhamnoside was isolated from P. thonningii leaves by using different organic solvents [8]. According to one study, dihydroQuercetin, one of the Quercetin derivates, was isolated from Larix gmelinii using ultrasound-assisted and microwave-assisted alternate digestion methods because they required less extraction time, less energy, and were more cost-effective than conventional solvent extraction methods [9]. Another derivative known as Isorhamnetin was isolated from the crude extract of Stigma maydis through two-stage high-speed countercurrent chromatography processes, where two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water are used at volume ratios of 5:5:5:5 and 5:5:6:4 to ensure the purity [10].
Table 1. Quercetin and its derivatives from different plant sources and their biological effects in various experimental models.

2. Absorption, Metabolism, Distribution, and Excretion of Quercetin

Quercetin is taken as glycosides, with glycosyl groups released during chewing, digestion, and absorption. In humans, only a small percentage of Quercetin is absorbed in the stomach, and the primary site of absorption is the small intestine [44]. Two methods allow Quercetin glycosides to be absorbed in the intestine. One method is lactose polarizing hydrolase (LPH) in the brush border membrane, and another method is the interaction with the sodium-dependent glucose transporter (SGLT1) [2]. The gut microbiota plays a crucial role in the absorption of Quercetin by enzymatic hydrolysis. After absorption, the metabolism of Quercetin takes place in various organs, including the small intestine, colon, liver, and kidney. Biotransformation enzymes in the small intestine and liver create methylated, sulfated, and glucuronate forms of Quercetin metabolites due to phase II metabolism [1]. After that, these are released into the bloodstream via the portal vein of the liver. In the small intestine and colon, Quercetin metabolism leads to the generation of phenolic acids. The metabolites of Quercetin are found in human plasma as methylated glucuronide or unmethylated sulfate. The major metabolite of Quercetin, Quercetin-3-o-b-D-glucuronide, is delivered to target tissues via plasma to exert biological activity [1]. Quercetin had a short half-life and rapid clearance in the blood, and its metabolites appeared in the plasma 30 min after ingestion; however, considerable amounts were excreted over 24 h [45]. In comparison to other phytochemicals, Quercetin has a high bioavailability. The bioavailability of Quercetin decreases when consumed as a supplement rather than food. Quercetin is excreted from the human body in the feces and urine, and in high doses, it can be discharged through the lungs. 3-hydroxy phenylacetic acid, hippuric acid, and benzoic acid are the excretory products of Quercetin [1].

3. Major Pharmacological Actions of Quercetin

Flavonoids, particularly Quercetin, which has well-known antioxidant effects, are gaining popularity these days. Quercetin has been identified as a potential anticancer drug with activity both in in vitro and in vivo models. Quercetin is used to inhibit the spread of various cancers, such as lung, prostate, liver, breast, colon, and cervical cancers, by modifying oxidative stress factors and antioxidant enzymes [46]. Because of its chemoprotective action against tumor cell lines through metastasis and apoptosis, Quercetin is thought to be a promising anticancer option [47]. Furthermore, another study revealed the powerful efficiency of combined Quercetin-doxorubicin treatment in maintaining T-cell tumor-specific responses, resulting in better immune responses against breast tumor growth [48]. Antioxidants work against asthma pathogenesis by avoiding oxidative damage through a variety of methods. Quercetin plays a role in scavenging free radicals that can lead to cell death by damaging DNA and cell membranes. In addition, it has been noted that Quercetin decreases the production and release of histamine and other mediators involved in the development of allergic reactions in mast cells, suggesting that it could be effective against asthma [49]. In in vitro and in vivo studies, Quercetin has been shown to protect neurons from oxidative and neurotoxic chemicals, saving the central nervous system from oxidative stress-induced neurodegenerative diseases, especially Alzheimer’s disease (AD) and Parkinson’s disease (PD). Quercetin has been shown as anti-Alzheimer’s because it improves mitochondrial morphology, improves memory impairments, protects cognitive deficits, and reduces neurodegeneration [1].

References

  1. Ulusoy, H.G.; Sanlier, N. A minireview of quercetin: From its metabolism to possible mechanisms of its biological activities. Crit. Rev. Food Sci. Nutr. 2019, 60, 3290–3303.
  2. Shakya, A.; Correspondence, A. Medicinal plants: Future source of new drugs. Int. J. Herb. Med. 2016, 4, 59–64.
  3. David, A.V.A.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016, 10, 84–89.
  4. Zahoor, M.; Shah, A.B.; Naz, S.; Ullah, R.; Bari, A.; Mahmood, H.M. Isolation of Quercetin from Rubus fruticosus, Their Concentration through NF/RO Membranes, and Recovery through Carbon Nanocomposite. A Pilot Plant Study. BioMed. Res. Int. 2020, 2020, 8216435.
  5. Wianowska, D. Application of Sea Sand Disruption Method for HPLC Determination of Quercetin in Plants. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1037–1043.
  6. Wianowska, D.; Dawidowicz, A.L.; Bernacik, K.; Typek, R. Determining the true content of quercetin and its derivatives in plants employing SSDM and LC–MS analysis. Eur. Food Res. Technol. 2017, 243, 27–40.
  7. Saraswathi, V.S.; Saravanan, D.; Santhakumar, K. Isolation of quercetin from the methanolic extract of Lagerstroemia speciosa by HPLC technique, its cytotoxicity against MCF-7 cells and photocatalytic activity. J. Photochem. Photobiol. B Biol. 2017, 171, 20–26.
  8. Tsague, R.K.T.; Kenmogne, S.B.; Tchienou, G.E.D.; Parra, K.; Ngassoum, M.B. Sequential extraction of quercetin-3-O-rhamnoside from Piliostigma thonningii Schum. leaves using microwave technology. SN Appl. Sci. 2020, 2, 1–17.
  9. Yang, X.; Zhu, X.; Ji, H.; Deng, J.; Lu, P.; Jiang, Z.; Li, X.; Wang, Y.; Wang, C.; Zhao, J.; et al. Quercetin synergistically reactivates human immunodeficiency virus type 1 latency by activating nuclear factor-κB. Mol. Med. Rep. 2017, 17, 2501–2508.
  10. Cao, X.; Wei, Y.; Ito, Y. Preparative Isolation of Isorhamnetin from Stigma Maydis using High Speed Countercurrent Chromatography. J. Liq. Chromatogr. Relat. Technol. 2009, 32, 273–280.
  11. Mehrbod, P.; Abdalla, M.A.; Fotouhi, F.; Heidarzadeh, M.; Aro, A.O.; Eloff, J.N.; McGaw, L.J.; Fasina, F.O. Immunomodulatory properties of quercetin-3-O-α-L-rhamnopyranoside from Rapanea melanophloeos against influenza a virus. BMC Complement. Altern. Med. 2018, 18, 184.
  12. Nile, S.H.; Kim, D.H.; Nile, A.; Park, G.S.; Gansukh, E.; Kai, G. Probing the effect of quercetin 3-glucoside from Dianthus superbus L against influenza virus infection- In vitro and in silico biochemical and toxicological screening. Food Chem. Toxicol. 2019, 135, 110985.
  13. Chiow, K.; Phoon, M.; Putti, T.; Tan, B.K.; Chow, V.T. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac. J. Trop. Med. 2016, 9, 1–7.
  14. Bose, M.; Kamra, M.; Mullick, R.; Bhattacharya, S.; Das, S.; Karande, A.A. Identification of a flavonoid isolated from plum (Prunus domestica) as a potent inhibitor of Hepatitis C virus entry. Sci. Rep. 2017, 7, 3965.
  15. Trujillo-Correa, A.I.; Quintero-Gil, D.C.; Diaz-Castillo, F.; Quiñones, W.; Robledo, S.M.; Martinez-Gutierrez, M. In vitro and in silico anti-dengue activity of compounds obtained from Psidium guajava through bioprospecting. BMC Complement. Altern. Med. 2019, 19, 298.
  16. Bachmetov, L.; Gal-Tanamy, M.; Shapira, A.; Vorobeychik, M.; Giterman-Galam, T.; Sathiyamoorthy, P.; Golan-Goldhirsh, A.; Benhar, I.; Zemel, R. Suppression of hepatitis C virus by the flavonoid quercetin is mediated by inhibition of NS3 protease activity. J. Viral. Hepat. 2012, 19, e81–e88.
  17. Choi, H.J.; Song, J.H.; Park, K.S.; Kwon, D.H. Inhibitory effects of quercetin 3-rhamnoside on influenza A virus replication. Eur. J. Pharm. Sci. 2009, 37, 329–333.
  18. dos Santos, A.E.; Kuster, R.M.; Yamamoto, K.A.; Salles, T.S.; Campos, R.; de Meneses, M.D.; Ferreira, D. Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity. Parasit Vectors 2014, 7, 130.
  19. Galochkina, A.V.; Anikin, V.B.; Babkin, V.A.; Ostrouhova, L.A.; Zarubaev, V.V. Virus-inhibiting activity of dihydroquercetin, a flavonoid from Larix sibirica, against coxsackievirus B4 in a model of viral pancreatitis. Arch. Virol. 2016, 161, 929–938.
  20. Gansukh, E.; Kazibwe, Z.; Pandurangan, M.; Judy, G.; Kim, D.H. Probing the impact of quercetin-7-O-glucoside on influenza virus replication influence. Phytomedicine 2016, 23, 958–967.
  21. Hung, P.-Y.; Ho, B.-C.; Lee, S.-Y.; Chang, S.-Y.; Kao, C.-L.; Lee, S.-S.; Lee, C.-N. Houttuynia cordata Targets the Beginning Stage of Herpes Simplex Virus Infection. PLoS ONE 2015, 10, e0115475.
  22. Jeong, H.J.; Ryu, Y.B.; Park, S.-J.; Kim, J.H.; Kwon, H.-J.; Kim, J.H.; Park, K.H.; Rho, M.-C.; Lee, W.S. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorganic Med. Chem. 2009, 17, 6816–6823.
  23. Ortega, J.T.; Suárez, A.I.; Serrano, M.L.; Baptista, J.; Pujol, F.H.; Rangel, H.R. The role of the glycosyl moiety of myricetin derivatives in anti-HIV-1 activity in vitro. AIDS Res. Ther. 2017, 14, 57.
  24. Dou, X.; Zhou, Z.; Ren, R.; Xu, M. Apigenin, flavonoid component isolated from Gentiana veitchiorum flower suppresses the oxidative stress through LDLR-LCAT signaling pathway. Biomed. Pharmacother. 2020, 128, 110298.
  25. Qian, S.; Fan, W.; Qian, P.; Zhang, D.; Wei, Y.; Chen, H.; Li, X. Apigenin Restricts FMDV Infection and Inhibits Viral IRES Driven Translational Activity. Viruses 2015, 7, 1613–1626.
  26. El-Toumy, S.A.; Salib, J.Y.; El Kashak, W.A.; Marty, C.; Bedoux, G.; Bourgougnon, N. Antiviral effect of polyphenol rich plant extracts on herpes simplex virus type 1. Food Sci. Hum. Wellness 2018, 7, 91–101.
  27. Qiu, X.; Kroeker, A.; He, S.; Kozak, R.; Audet, J.; Mbikay, M.; Chrétien, M. Prophylactic Efficacy of Quercetin 3-β- O-d-Glucoside against Ebola Virus Infection. Antimicrob. Agents Chemother. 2016, 60, 5182–5188.
  28. Quecan, B.X.V.; Santos, J.T.C.; Rivera, M.L.C.; Hassimotto, N.M.A.; Almeida, F.A.; Pinto, U.M. Effect of Quercetin Rich Onion Extracts on Bacterial Quorum Sensing. Front. Microbiol. 2019, 10, 867.
  29. Sati, P.; Dhyani, P.; Bhatt, I.D.; Pandey, A. Ginkgo biloba flavonoid glycosides in antimicrobial perspective with reference to extraction method. J. Tradit. Complement. Med. 2019, 9, 15–23.
  30. Dayem, A.A.; Choi, H.Y.; Kim, Y.B.; Cho, S.-G. Antiviral Effect of Methylated Flavonol Isorhamnetin against Influenza. PLoS ONE 2015, 10, e0121610.
  31. Liu, Z.; Zhao, J.; Li, W.; Shen, L.; Huang, S.; Tang, J.; Duan, J.; Fang, F.; Huang, Y.; Chang, H.; et al. Computational screen and experimental validation of anti-influenza effects of quercetin and chlorogenic acid from traditional Chinese medicine. Sci. Rep. 2016, 6, 19095.
  32. Murali, K.S.; Sivasubramanian, S.; Vincent, S.; Murugan, S.B.; Giridaran, B.; Dinesh, S.; Gunasekaran, P.; Krishnasamy, K.; Sathishkumar, R. Anti—Chikungunya activity of luteolin and apigenin rich fraction from Cynodon dactylon. Asian Pac. J. Trop. Med. 2015, 8, 352–358.
  33. Liu, A.-L.; Liu, B.; Qin, H.-L.; Lee, S.; Wang, Y.-T.; Du, G.-H. Anti-Influenza Virus Activities of Flavonoids from the Medicinal Plant Elsholtzia rugulosa. Planta Med. 2008, 74, 847–851.
  34. Ahmed, O.M.; Fahim, H.I.; Ahmed, H.Y.; Almuzafar, H.; Ahmed, R.R.; Amin, K.A.; El-Nahass, E.-S.; Abdelazeem, W.H. The Preventive Effects and the Mechanisms of Action of Navel Orange Peel Hydroethanolic Extract, Naringin, and Naringenin in N-Acetyl-p-aminophenol-Induced Liver Injury in Wistar Rats. Oxidative Med. Cell. Longev. 2019, 2019, 2745352.
  35. Cataneo, A.H.D.; Kuczera, D.; Koishi, A.C.; Zanluca, C.; Silveira, G.F.; de Arruda, T.B.; Suzukawa, A.A.; Bortot, L.O.; Dias-Baruffi, M.; Verri, W.A.V., Jr.; et al. The citrus flavonoid naringenin impairs the in vitro infection of human cells by Zika virus. Sci. Rep. 2019, 9, 16348.
  36. Bellavite, P.; Donzelli, A. Hesperidin and SARS-CoV-2: New Light on the Healthy Function of Citrus Fruits. Antioxidants 2020, 9, 742.
  37. Paredes, A.; Alzuru, M.; Mendez, J.; Rodríguez-Ortega, M. Anti-Sindbis Activity of Flavanones Hesperetin and Naringenin. Biol. Pharm. Bull. 2003, 26, 108–109.
  38. Al-Ashaal, H.A.; El-Sheltawy, S.T. Antioxidant capacity of hesperidin from Citrus peel using electron spin resonance and cytotoxic activity against human carcinoma cell lines. Pharm. Biol. 2011, 49, 276–282.
  39. Nahmias, Y.; Goldwasser, J.; Casali, M.; van Poll, D.; Wakita, T.; Chung, R.T.; Yarmush, M.L. Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology 2008, 47, 1437–1445.
  40. Si-Si, W.; Liao, L.; Ling, Z.; Yun-Xia, Y. Inhibition of TNF-α/IFN-γ induced RANTES expression in HaCaT cell by naringin. Pharm. Biol. 2011, 49, 810–814.
  41. Yan, H.; Ma, L.; Wang, H.; Wu, S.; Huang, H.; Gu, Z.; Jiang, J.; Li, Y. Luteolin decreases the yield of influenza A virus in vitro by interfering with the coat protein I complex expression. J. Nat. Med. 2019, 73, 487–496.
  42. De Sousa, L.R.F.; Wu, H.; Nebo, L.; Fernandes, J.B.; das Graças Fernandes da Silva, M.F.; Kiefer, W.; Kanitz, M.; Bodem, J.; Diederich, W.E.; Schirmeister, T.; et al. Flavonoids as noncompetitive inhibitors of Dengue virus NS2B-NS3 protease: Inhibition kinetics and docking studies. Bioorg. Med. Chem. 2015, 23, 466–470.
  43. Frabasile, S.; Koishi, A.C.; Kuczera, D.; Silveira, G.F.; Verri, W.A., Jr.; Duarte Dos Santos, C.N.; Bordignon, J. The citrus flavanone naringenin impairs dengue virus replication in human cells. Sci. Rep. 2017, 7, 41864.
  44. Almeida, A.F.; Borge, G.I.A.; Piskula, M.; Tudose, A.; Tudoreanu, L.; Valentová, K.; Williamson, G.; Santos, C.N. Bioavailability of Quercetin in Humans with a Focus on Interindividual Variation. Compr. Rev. Food Sci. Food Saf. 2018, 17, 714–731.
  45. Moon, J.H.; Nakata, R.; Oshima, S.; Inakuma, T.; Terao, J. Accumulation of quercetin conjugates in blood plasma after the short-term ingestion of onion by women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 279, R461–R467.
  46. Batiha, G.E.-S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods 2020, 9, 374.
  47. Gibellini, L.; Pinti, M.; Nasi, M.; Montagna, J.P.; De Biasi, S.; Roat, E.; Bertoncelli, L.; Cooper, E.L.; Cossarizza, A. Quercetin and Cancer Chemoprevention. Evid. -Based Complement. Altern. Med. 2011, 2011, 591356.
  48. Du, G.; Lin, H.; Yang, Y.; Zhang, S.; Wu, X.; Wang, M.; Ji, L.; Lu, L.; Yu, L.; Han, G. Dietary quercetin combining intratumoral doxorubicin injection synergistically induces rejection of established breast cancer in mice. Int. Immunopharmacol. 2010, 10, 819–826.
  49. Sakai-Kashiwabara, M.; Asano, K. Inhibitory Action of Quercetin on Eosinophil Activation In Vitro. Evid. -Based Complement. Altern. Med. 2013, 2013, 127105.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , , ,
View Times: 538
Revisions: 2 times (View History)
Update Date: 02 Feb 2023
1000/1000
ScholarVision Creations