Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1611 2022-12-30 04:57:51 |
2 format corrected. Meta information modification 1611 2022-12-30 05:13:00 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Bai, J.;  Luo, L.;  Li, A.;  Lai, X.;  Zhang, X.;  Yu, Y.;  Wang, H.;  Wu, N.;  Zhang, L. Carbon Sequestration by Biofuel Crop Switchgrass. Encyclopedia. Available online: https://encyclopedia.pub/entry/39602 (accessed on 24 April 2024).
Bai J,  Luo L,  Li A,  Lai X,  Zhang X,  Yu Y, et al. Carbon Sequestration by Biofuel Crop Switchgrass. Encyclopedia. Available at: https://encyclopedia.pub/entry/39602. Accessed April 24, 2024.
Bai, Jian, Laicong Luo, Aixin Li, Xiaoqin Lai, Xi Zhang, Yadi Yu, Hao Wang, Nansheng Wu, Ling Zhang. "Carbon Sequestration by Biofuel Crop Switchgrass" Encyclopedia, https://encyclopedia.pub/entry/39602 (accessed April 24, 2024).
Bai, J.,  Luo, L.,  Li, A.,  Lai, X.,  Zhang, X.,  Yu, Y.,  Wang, H.,  Wu, N., & Zhang, L. (2022, December 30). Carbon Sequestration by Biofuel Crop Switchgrass. In Encyclopedia. https://encyclopedia.pub/entry/39602
Bai, Jian, et al. "Carbon Sequestration by Biofuel Crop Switchgrass." Encyclopedia. Web. 30 December, 2022.
Carbon Sequestration by Biofuel Crop Switchgrass
Edit

Under the macroenvironmental background of global warming, all countries are working to limit climate change. Internationally, biofuel plants are considered to have great potential in carbon neutralization. Several countries have begun using biofuel crops as energy sources to neutralize carbon emissions. Switchgrass (Panicum virgatum) is considered a resource-efficient low-input crop that produces bioenergy. 

biofuel crops carbon sequestration greenhouse gas emissions net ecosystem CO2 exchange

1. Introduction

In recent years, global climate change, especially global warming, has attracted widespread attention from all walks of life worldwide. Internationally, the United Nations Framework Convention on Climate Change (UNFCCC) reached The Paris Agreement at the Paris Climate Change Conference. The Paris Agreement aims to limit the increase in global average temperatures to 2 °C from pre-industrial periods and to limit temperature increases to 1.5 °C to constrain global temperature rise as soon as possible. The leading cause of global warming is the increase in greenhouse gases produced by human activities [1][2]; the main greenhouse gases are carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) [3].
To limit temperature growth to 2 °C, the remaining global cumulative CO2 emissions should not exceed 400–1000 Gt by the end of the century. Therefore, how to effectively control carbon emissions, especially human-induced carbon emissions, has attracted more attention from the international community. For non-CO2 greenhouse gases, CH4 and N2O are of concern. According to the global warming potential (GWP) calculation, the GWP of CH4 is about 23–25 times that of CO2 and the GWP of N2O is about 296 times that of CO2 [4].
Carbon emitted from fossil fuels since the industrial revolution is about 420 Gt C [5]. Globally, CH4 and N2O emissions from agriculture exceed 610 million tons per year, accounting for 12% of total emissions [6]. Therefore, reducing agriculture’s carbon emissions is a crucial issue. Biofuel crops are mainly perennial (herbaceous or woody) that improve soil quality, promote nutrient cycling and carbon fixation, and can produce large quantities of high-carbon biomass. Compared with fossil fuels, biofuel crops have greater advantages in energy utilization [7] (Figure 1). Furthermore, biofuel crops require less maintenance and input and can be adapted to marginal soils. Eggelston et al. [8] showed that 300–1300 Mt C fossil fuels can be replaced if 10–15% of agricultural land is used to grow biofuel crops. Moreover, under the circumstances, CH4 emissions from agriculture can be reduced by 15–56% and N2O emissions can be reduced by 9–26%.
Figure 1. Carbon turnover process of biofuel crops vs. fossil fuels.
Switchgrass (Panicum virgatum), a species of grass in the family Poaceae, is an adaptable perennial herbaceous C4 plant native to North America. It is mainly distributed in several countries south of 55° north latitude. There are two ecotypes, including upland and lowland. In general, lowland types, which can grow up to more than 3 m, have larger biomass than upland types [9]. The tillers of the upland ecotype are usually shorter and better adapted to cold and dry habitats [10]. Since the mid-1980s, switchgrass has been mainly used as a renewable biofuel source for research. So far, switchgrass has been used in various forms of biofuel conversion processes, including cellulosic ethanol production, biogas, and direct combustion [11][12]. As a biofuel source, switchgrass has a lower demand for fertilizers and pesticides, which allows switchgrass to produce good yields on the land of the best part of soil types [13]. The climate benefits of biofuels are mainly manifested in (1) the use of alternative fossil fuels; (2) reducing greenhouse gas emissions during biofuel production, mainly through soil C accumulation and avoidance of greenhouse gas emissions.

2. Carbon Sequestration by Switchgrass

Soil and plant carbon sequestration is a practical way to mitigate CO2 emissions [14][15]. As early as the 1990s, Ma et al. [16] studied the effects of soil management measures, including nitrogen (N) application, row spacing, and harvest frequency, on carbon sequestration in switchgrass fields established for 2–3 years. The results found that the soil management measures of switchgrass did not change the soil carbon concentration. Interestingly, they compared the soils of the switchgrass and their adjacent fallow soils that had been established for some time (10 years). The results showed that the soil organic carbon (SOC) of the switchgrass was significantly higher than that of the fallow land; the SOC of the 0–15 cm soil increased by 44.8% and in the 15–30 cm soil it increased by 28.2% [16]. Therefore, switchgrass soil can store more soil carbon, although detecting it may take several years. Carbon sequestration in the switchgrass field does not occur only in the topsoil. Liebig et al. [17] show that switchgrass soils below 30 cm can also effectively sequester SOC. C stored in deep soils is not prone to mineralization and erosion. According to a four-year measurement, after four growing seasons, the SOC produced by switchgrass is 9.45 Mg ha−1 [18]. Different ages of switchgrass have different changes in the underground 30 cm SOC. A prediction from Anderson et al. [19] of net changes in SOC indicated that the change of switchgrass to the underground SOC increases with time and the switchgrass cultivated for 15 years increases by about 6.49 Mg ha−1 (Table 1). Hong et al. [20] found that the biomass of switchgrass fields across locations in the USA increased significantly in the first three years after the establishment (Figure 2). The total yield in the third and fourth years was similar (Figure 2). At a soil depth of 1 m, the SOC of switchgrass soil was 9.4% higher than that of farmland and 8.1% higher than that of Andropogon gerardi, while the quality of soil N is basically the same as that of farmland [21].
Figure 2. Average biomass yield and N concentrations in biomass of switchgrass across locations in the USA. Data were replotted from Hong et al. [20].
Although the effects of switchgrass soil management measures on soil carbon sequestration did not have a significant effect in the study of Ma et al. [16], some studies have shown that fertilizer management measures and harvesting methods have essential effects on switchgrass carbon sequestration [22][23][24][25]. On the Conservation Reserve Program (CRP) land dominated by switchgrass in South Dakota, there is no benefit if the N applied exceeds 56 kg ha−1 [24]. The application of NH4NO3 and manure can effectively increase switchgrass’s soil carbon sequestration, especially at soil depths of 30–90 cm [23]. Switchgrass is a perennial herb whose roots can grow deep in the soil. It has considerable root biomass, which is more than the aboveground biomass [16]. The root biomass of switchgrass in different soil types at different depths is shown as follows (Table 2). Zan et al. [26] showed that switchgrass has a biomass 4–5 times that of maize and can store 2.2 Mg C ha−1 yr−1. Liebig et al. [17] found that the cumulative rate of C was 1.1 Mg C ha−1 yr−1, most of which occurred at depths of 30 cm underground. Tulbure et al. [27] used RF (Random Forest packet in R) to analyze the effects of multiple factors such as fertilizer, genetics, and precipitation on yield. The results showed that the total variance of RF interpretation was 75%, with N fertilizer being the most important explanatory variable, followed by genetics, precipitation, and management measures.

3. Net Ecosystem CO2 Exchange of Switchgrass

Net ecosystem CO2 exchange (NEE) is the result of imbalances between total primary production (GPP) and ecosystem respiration (Re), which can affect carbon dynamics and budgets [29]. A better understanding of switchgrass’s NEE changes will help assess switchgrass’s potential for climate change mitigation. Some NEE of biofuel crops are shown below (Table 3). Zeri et al. [30] found that switchgrass has a stronger carbon sink capacity at the initial establishment stage than Miscanthus × giganteus (giant miscanthus, a sterile hybrid of Miscanthus sinensis and Miscanthus sacchariflorus). Compared with corn, switchgrass absorbs more carbon. The NEE of switchgrass is −336 ± 40 g C m−2 and that of corn is 64 ± 41 g C m−2 [31]. From 2012 to 2013, the analysis of the NEE of switchgrass [32][33][34] showed that it had a stronger carbon sink capability than sorghum land. This may be because that switchgrass has a net carbon sink of about 4–5 months (April/May–August) and sorghum has only 3 months of net carbon sink (June–August).
Surprisingly, in a study by Zenone et al. [37], the switchgrass field did not exist as a carbon sink but produced CO2 emissions. However, their measurements were only carried out for 2 years. In contrast, in the 4-year study [18], CO2 can be fixed each year and NEE stabilized at higher values from the second year, although the cumulative biomass in the first year was relatively low. Zenone et al. [37] and Virgilio et al. [18] conducted studies on a newly established switchgrass field. For mature switchgrass fields, Eichelmann et al. [35] conducted two years of data collection and found that NEE is 106 ± 45 g C m−2 in the first year, which was represented as a carbon source, while the NEE in the second year was −59 ± 45 g C m−2, which was manifested as a carbon sink. Previous four-year studies of mature switchgrass fields [36] showed that the first three years of switchgrass forests served as a sink of net CO2, while the following year became a source of CO2 emissions. These results suggest that switchgrass may be able to act as a powerful carbon sink in its establishment years, then its benefits will be reduced or even transformed into a carbon source.

References

  1. Lynas, M.; Houlton, B.Z.; Perry, S. Greater than 99% consensus on human caused climate change in the peer-reviewed scientific literature. Environ. Res. Lett. 2021, 16, 114005.
  2. Lu, X.; Li, Y.; Wang, H.; Singh, B.P.; Hu, S.; Luo, Y.; Li, J.; Xiao, Y.; Cai, X.; Li, Y. Responses of soil greenhouse gas emissions to different application rates of biochar in a subtropical Chinese chestnut plantation. Agric. For. Meteorol. 2019, 271, 168–179.
  3. Forster, P.; Storelvmo, T. Chapter 7: The Earths energy budget, climate feedbacks, and climate sensitivity. In Climate Change 2021: The Physical Science Basis; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Eds.; Cambridge University Press: Cambridge, Britain, 2021; pp. 923–1025. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter07.pdf (accessed on 8 July 2022).
  4. Robertson, G.P.; Grace, P.R. Greenhouse gas fluxes in tropical and temperate agriculture: The need for a full-cost accounting of global warming potentials. In Tropical Agriculture in Transition—Opportunities for Mitigating Greenhouse Gas Emissions? Springer: Dordrecht, The Netherlands, 2004; pp. 51–63.
  5. McCarthy, J.J.; Canziani, O.F.; Leary, N.A.; Dokken, D.J.; White, K.S. Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; pp. 75–913.
  6. Frank, S.; Havlík, P.; Stehfest, E.; van Meijl, H.; Witzke, P.; Pérez-Domínguez, I.; van Dijk, M.; Doelman, J.C.; Fellmann, T.; Koopman, J.F. Agricultural non-CO2 emission reduction potential in the context of the 1.5 °C target. Nat. Clim. Chang. 2019, 9, 66–72.
  7. Kole, C.; Joshi, C.P.; Shonnard, D.R. Handbook of Bioenergy Crop Plants; CRC Press: Boca Raton, FL, USA, 2012; pp. 3–119.
  8. Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/meeting/pdfiles/Washington_Report.pdf (accessed on 1 September 2022).
  9. Porter, C.L., Jr. An analysis of variation between upland and lowland switchgrass, Panicum virgatum L., in central Oklahoma. Ecology 1966, 47, 980–992.
  10. Gonulal, E.; Soylu, S.; Sahin, M. Effects of different water stress levels on biomass yield and agronomic traits of switchgrass (Panicum virgatum L.) cultivars under arid and semi-arid conditions. Turkish J. Field Crop. 2021, 26, 25–34.
  11. Bransby, D.I.; McLaughlin, S.B.; Parrish, D.J. A review of carbon and nitrogen balances in switchgrass grown for energy. Biomass Bioenergy 1998, 14, 379–384.
  12. McLaughlin, S.B.; Kszos, L.A. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 2005, 28, 515–535.
  13. Lemus, R.; Lal, R. Bioenergy crops and carbon sequestration. Crit. Rev. Plant Sci. 2005, 24, 1–21.
  14. Kucharik, C.J.; Brye, K.R.; Norman, J.M.; Foley, J.A.; Gower, S.T.; Bundy, L.G. Measurements and modeling of carbon and nitrogen cycling in agroecosystems of southern Wisconsin: Potential for SOC sequestration during the next 50 years. Ecosystems 2001, 4, 237–258.
  15. Ussiri, D.A.; Lal, R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Res. 2009, 104, 39–47.
  16. Ma, Z.; Wood, C.W.; Bransby, D.I. Soil management impacts on soil carbon sequestration by switchgrass. Biomass Bioenergy 2000, 18, 469–477.
  17. Liebig, M.A.; Johnson, H.A.; Hanson, J.D.; Frank, A.B. Soil carbon under switchgrass stands and cultivated cropland. Biomass Bioenergy 2005, 28, 347–354.
  18. Di Virgilio, N.; Facini, O.; Nocentini, A.; Nardino, M.; Rossi, F.; Monti, A. Four-year measurement of net ecosystem gas exchange of switchgrass in a Mediterranean climate after long-term arable land use. Glob. Chang. Biol. Bioenergy 2019, 11, 466–482.
  19. Anderson Teixeira, K.J.; Davis, S.C.; Masters, M.D.; Delucia, E.H. Changes in soil organic carbon under biofuel crops. Glob. Chang. Biol. Bioenergy 2009, 1, 75–96.
  20. Hong, C.O.; Owens, V.N.; Bransby, D.; Farris, R.; Fike, J.; Heaton, E.; Kim, S.; Mayton, H.; Mitchell, R.; Viands, D. Switchgrass response to nitrogen fertilizer across diverse environments in the USA: A regional feedstock partnership report. Bioenergy Res. 2014, 7, 777–788.
  21. Omonode, R.A.; Vyn, T.J. Vertical distribution of soil organic carbon and nitrogen under warm-season native grasses relative to croplands in west-central Indiana, USA. Agr. Ecosyst. Environ. 2006, 117, 159–170.
  22. Follett, R.F.; Vogel, K.P.; Varvel, G.E.; Mitchell, R.B.; Kimble, J. Soil carbon sequestration by switchgrass and no-till maize grown for bioenergy. Bioenergy Res. 2012, 5, 866–875.
  23. Lee, D.K.; Owens, V.N.; Doolittle, J.J. Switchgrass and soil carbon sequestration response to ammonium nitrate, manure, and harvest frequency on conservation reserve program land. Agron. J. 2007, 99, 462–468.
  24. Mulkey, V.R.; Owens, V.N.; Lee, D.K. Management of switchgrass-dominated conservation reserve program lands for biomass production in South Dakota. Crop Sci. 2006, 46, 712–720.
  25. Al-Kaisi, M.M.; Grote, J.B. Cropping systems effects on improving soil carbon stocks of exposed subsoil. Soil Sci. Soc. Am. J. 2007, 71, 1381–1388.
  26. Zan, C.S.; Fyles, J.W.; Girouard, P.; Samson, R.A. Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec. Agr. Ecosyst. Environ. 2001, 86, 135–144.
  27. Tulbure, M.G.; Wimberly, M.C.; Boe, A.; Owens, V.N. Climatic and genetic controls of yields of switchgrass, a model bioenergy species. Agr. Ecosyst. Environ. 2012, 146, 121–129.
  28. Bates, C.T.; Escalas, A.; Kuang, J.; Hale, L.; Wang, Y.; Herman, D.; Nuccio, E.E.; Wan, X.; Bhattacharyya, A.; Fu, Y. Conversion of marginal land into switchgrass conditionally accrues soil carbon but reduces methane consumption. ISME J. 2022, 16, 10–25.
  29. Zhang, Z.; Zhang, R.; Cescatti, A.; Wohlfahrt, G.; Buchmann, N.; Zhu, J.; Chen, G.; Moyano, F.; Pumpanen, J.; Hirano, T. Effect of climate warming on the annual terrestrial net ecosystem CO2 exchange globally in the boreal and temperate regions. Sci. Rep. 2017, 7, 3108.
  30. Zeri, M.; Anderson-Teixeira, K.; Hickman, G.; Masters, M.; DeLucia, E.; Bernacchi, C.J. Carbon exchange by establishing biofuel crops in Central Illinois. Agr. Ecosyst. Environ. 2011, 144, 319–329.
  31. Eichelmann, E.; Wagner-Riddle, C.; Warland, J.; Deen, B.; Voroney, P. Comparison of carbon budget, evapotranspiration, and albedo effect between the biofuel crops switchgrass and corn. Agr. Ecosyst. Environ. 2016, 231, 271–282.
  32. Wagle, P.; Kakani, V.G. Seasonal variability in net ecosystem carbon dioxide exchange over a young switchgrass stand. Glob. Chang. Biol. Bioenergy 2014, 6, 339–350.
  33. Wagle, P.; Kakani, V.G.; Huhnke, R.L. Net ecosystem carbon dioxide exchange of dedicated bioenergy feedstocks: Switchgrass and high biomass sorghum. Agric. For. Meteorol. 2015, 207, 107–116.
  34. Wagle, P.; Kakani, V.G.; Huhnke, R.L. Evapotranspiration and ecosystem water use efficiency of switchgrass and high biomass sorghum. Agron. J. 2016, 108, 1007–1019.
  35. Eichelmann, E.; Wagner Riddle, C.; Warland, J.; Deen, B.; Voroney, P. Carbon dioxide exchange dynamics over a mature switchgrass stand. Glob. Chang. Biol. Bioenergy 2016, 8, 428–442.
  36. Skinner, R.H.; Adler, P.R. Carbon dioxide and water fluxes from switchgrass managed for bioenergy production. Agr. Ecosyst. Environ. 2010, 138, 257–264.
  37. Zenone, T.; Gelfand, I.; Chen, J.; Hamilton, S.K.; Robertson, G.P. From set-aside grassland to annual and perennial cellulosic biofuel crops: Effects of land use change on carbon balance. Agric. For. Meteorol. 2013, 182, 1–12.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , , , , ,
View Times: 1.0K
Revisions: 2 times (View History)
Update Date: 30 Dec 2022
1000/1000