Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1186 2022-12-22 06:14:23 |
2 Reference format revised. Meta information modification 1186 2022-12-23 04:19:24 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Yao, Y.;  Xu, B. Skin Health Promoting Effects of Natural Polysaccharides. Encyclopedia. Available online: https://encyclopedia.pub/entry/39067 (accessed on 16 November 2024).
Yao Y,  Xu B. Skin Health Promoting Effects of Natural Polysaccharides. Encyclopedia. Available at: https://encyclopedia.pub/entry/39067. Accessed November 16, 2024.
Yao, Yueying, Baojun Xu. "Skin Health Promoting Effects of Natural Polysaccharides" Encyclopedia, https://encyclopedia.pub/entry/39067 (accessed November 16, 2024).
Yao, Y., & Xu, B. (2022, December 22). Skin Health Promoting Effects of Natural Polysaccharides. In Encyclopedia. https://encyclopedia.pub/entry/39067
Yao, Yueying and Baojun Xu. "Skin Health Promoting Effects of Natural Polysaccharides." Encyclopedia. Web. 22 December, 2022.
Skin Health Promoting Effects of Natural Polysaccharides
Edit

Skincare is one of the most profitable product categories today. Consumers’ demand for skin-friendly products has stimulated the development of natural-ingredient-based cosmeceutical preparations over synthetic chemicals. Thus, natural polysaccharides have gained much attention since the promising potent efficacy in wound healing, moisturizing, antiaging, and whitening. The challenge is to raise awareness of polysaccharides with excellent bioactivities from natural sources and consequently incorporate them in novel and safer cosmetics. 

natural polysaccharides skin health cosmetics

1. Introduction

The skin is the largest organ of the human body and is also the first line of defense from the external environment [1]. Due to its extensive area, it is easily exposed to and even damaged by a range of external factors such as ultraviolet radiation, which may lead to wounds, dehydration, skin aging, melanin deposition, microbial invasion, and skin barrier abnormalities [2]. Hence, different strategies to treat skin problems or promote skin health have been used, such as the use of skin care products or some physical therapies [3]. Among various treatments, natural skin care compounds are considered more skin-friendly from the perspective of consumers, so natural reagents are readily accepted and the demand for natural skin care products is increased [4].
Naturally occurring polysaccharides can be obtained from plants, algae, and fungi through a series of steps of extraction, isolation, and purification [5]. They display distinct structural features, including their molecular weight, monosaccharide composition, glycosidic linkages, three-dimensional conformations, charge properties, and types and numbers of groups, which contribute to their functional properties and determine their extensive applications [6]. The application of some functional polysaccharides in cosmetics is based on their functionalities in the formulation technology, such as thickener, film former, conditioner, emulsifier, and gelling agent, which generally rely on their physicochemical properties [4]. On the other hand, bioactive polysaccharides are role by the ability of water retention, water absorption, anti-oxidant, anti-inflammation, anti-collagenase, anti-elastase, anti-melanogenic, or anti-tyrosinase [7]. Recently, the use of low-cost natural polysaccharides for skin applications has been gaining more attention because of their promising potent efficacy in wound healing, moisturizing, antiaging, and whitening, which in most cases depends not only on their physicochemical properties but also biological activities [7]. However, reliable natural reagents are still in short supply as many problems need to be solved before they can be converted into products, such as the instability of natural ingredients, low efficacy, and biosafety concerns [8][9]

2. Skin Health Promoting Effects

2.1. Wound Healing

Wound healing is a complex dynamic process that is classically divided into four sequential and orchestrated stages of hemostasis, inflammation, proliferation, and tissue remodeling [3]. Repair refers to the body’s attempt to restore normal structure and function after injury, and its success mainly depends on the degree of injuries, necrotic tissue, tissue regeneration capacity, and foreign body infection [10][11]. In recent decades, various strategies have been developed to improve healing and to limit scar formation by modulating wound healing processes, especially using natural polysaccharides as wound healing agents regarding their biodegradable, biocompatibility, and low toxicity characteristics compared with synthetic polymers [12].
In addition to facilitating skin wound healing, their high film-forming ability and beneficial barrier properties contribute to their potential to be developed as an ideal biodegradable film to promote wound healing efficiency by providing a wound physiological environment [13][14]. Moreover, poly (vinyl alcohol) (PVA) is a non-toxic vinyl polymer with good chemical stability, biocompatibility, film-forming properties, and hydrophobicity, which is often used as a crosslinking agent to reinforce the functional properties of polysaccharide films [15].

2.2. Moisturizing

Moisturizing is a critical part of skin care and has a positive effect on enhancing skin barrier function, metabolism, and appearance. From an aesthetic point of view, dryness of the skin can lead to some undesirable experiences that can undermine a person’s confidence, such as painful, itchy, tingles, stings, and uncomfortable sensory feelings, or redness, dry white patches, crackers, and even fissures appearance, or the uneven and rough tactile feelings [4]. Additionally, if this skin condition persists for a long time, the skin will lose elasticity and wrinkles will gradually appear [4]. Thus, moisturizing products formulated with humectants or occlusive ingredients are used to retain the content of water in stratum corneum (SC) or suppress transepidermal water loss (TEWL) [7].
Although natural polysaccharides exhibit strong bioactivity, most studies demonstrated that the moisturizing effect of polysaccharides could be significantly improved through chemical structure modification [16][17]. Polysaccharides with a higher molecular weight are more likely to form a net-like structure to prevent water loss, resulting in better moisturizing retention properties [16]. Functional groups of polysaccharides, including pyruvate groups, glyoxylate groups, uronic acid groups, and sulfate groups, are potential factors for moisturizing retention [16].

2.3. Anti-Aging

Skin aging can be divided into endogenous and exogenous processes. The endogenous aging process is associated with reduced antioxidant status and cell proliferation capacity. Senescent cells express genes that produce inflammatory cytokines, growth factors, and degradative enzymes [7]. Exposure to nicotine or air pollution, sunlight through ultraviolet (UV) radiation, diet, and medication can be the main exogenous factors [18]. Both intrinsic and extrinsic aging can lead to the weakening of the skin’s structural integrity and loss of physiological functions [19], which is manifested in the decrease of elasticity, appearance of wrinkles, dryness, changes in the thickness of the epidermis, dermal-epidermal junction, and dermis [20].
Reactive oxygen species (ROS) are continuously produced as a by-product of mitochondrial aerobic metabolism and have been proven to play a beneficial role in maintaining the body or cell health when present in a small amount [21]. However, excessive ROS in the body can induce and accelerate the intrinsic aging process, especially in skin that is usually present in areas that are not exposed to sunlight. In addition, the occurrence of photoaging relates to the production of ROS as well. Repeated exposure to solar UV can cause an increase in ROS, damage the cell structure and function, and mediate inflammatory responses [22][23]. Consequently, excessive ROS can activate numerous signaling pathways, leading to decreased skin collagen production, stimulate the production of senescence-associated secretory phenotype (SASP), and promote synthesis and activation of matrix metalloproteinases (MMPs), which ultimately accelerate the aging process of skin [24] (Figure 1).
/media/item_content/202212/63a51dd9a2106polysaccharides-03-00048-g001.png
Figure 1. The schematic diagram of UV irradiation-induced skin aging and polysaccharides acting for skin protection.

2.4. Whitening

Melanin, the dominant pigment responsible for skin color, derives from tyrosine through a series of oxidative reactions in melanosomes. The first period of melanogenesis is called the Raper-Mason pathway, which depends on tyrosinase (TYR), the rate-limiting enzyme [25]. Moreover, some proteins are involved in the maturation of melanosomes, like tyrosinase-related proteins (TRP1 and TRP2) [26]. After that, melanosomes are transported to nearby keratinocytes and deposited around the nucleus, where they work and eventually degrade [8]. Thus, the whole process of melanogenesis includes melanin synthesis, transport, and degradation.
Melanin synthesis is the most studied area in the regulation of melanogenesis rather than the transport and degradation [27]. First and foremost, according to the melanogenesis pathway, the expression and activation of tyrosinase have the most direct impact on the synthesis of melanin. Secondly, oxidative stress triggered by ROS is another crucial factor in stimulating melanin synthesis [28]. Besides, the Microphthalmia-associated transcription factor (MITF) is a critical transcription factor that can increase the expression of TYR, TRP1, and TRP2. Several signaling pathways can modulate MITF, such as the cAMP/PKA/CREB signaling pathway [29], and the MAPFs signaling pathway [30].

References

  1. Kim, J.-E.; Lee, K.W. Molecular targets of phytochemicals for skin inflammation. Curr. Pharm. Des. 2018, 24, 1533.
  2. Oli, A.N.; Eze, D.E.; Gugu, T.H.; Ezeobi, I.; Maduagwu, U.N.; Ihekwereme, C.P. Multi-antibiotic resistant extended-spectrum beta-lactamase producing bacteria pose a challenge to the effective treatment of wound and skin infections. Pan Afr. Med. J. 2017, 27, 66.
  3. Albuquerque, P.B.S.; de Oliveira, W.F.; dos Santos Silva, P.M.; dos Santos Correia, M.T.; Kennedy, J.F.; Coelho, L.C.B.B. Skincare application of medicinal plant polysaccharides—A review. Carbohydr. Polym. 2022, 277, 118824.
  4. Kanlayavattanakul, M.; Lourith, N. Biopolysaccharides for Skin Hydrating Cosmetics. Polysaccharides: Bioactivity and Biotechnology; Springer International Publishing: New York, NY, USA, 2015; p. 1867.
  5. Liu, Z.-h.; Niu, F.-j.; Xie, Y.-x.; Xie, S.-m.; Liu, Y.-n.; Yang, Y.-y.; Zhou, C.-z.; Wan, X.-h. A review: Natural polysaccharides from medicinal plants and microorganisms and their anti-herpetic mechanism. Biomed. Pharmacother. 2020, 129, 110469.
  6. Yuan, Q.; Li, H.; Wei, Z.; Lv, K.; Gao, C.; Liu, Y.; Zhao, L. Isolation, structures and biological activities of polysaccharides from Chlorella: A review. Int. J. Biol. Macromol. 2020, 163, 2199.
  7. Bedoux, G.; Hardouin, K.; Burlot, A.S.; Bourgougnon, N. Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2014; Volume 71.
  8. Hu, Y.; Zeng, H.; Huang, J.; Jiang, L.; Chen, J.; Zeng, Q. Traditional Asian herbs in skin whitening: The current development and limitations. Front. Pharmacol. 2020, 11, 982.
  9. Tseng, C.-C.; Yeh, H.-Y.; Liao, Z.-H.; Hung, S.-W.; Chen, B.; Lee, P.-T.; Nan, F.-H.; Shih, W.-L.; Chang, C.-C.; Lee, M.-C. An in vitro study shows the potential of Nostoc commune (Cyanobacteria) polysaccharides extract for wound-healing and anti-allergic use in the cosmetics industry. J. Funct. Foods 2021, 87, 104754.
  10. Belvedere, R.; Pessolano, E.; Porta, A.; Tosco, A.; Parente, L.; Petrella, F.; Perretti, M.; Petrella, A. Mesoglycan induces the secretion of microvesicles by keratinocytes able to activate human fibroblasts and endothelial cells: A novel mechanism in skin wound healing. Eur. J. Pharmacol. 2020, 869, 172894.
  11. Ribeiro, D.M.L.; Carvalho Júnior, A.R.; Vale de Macedo, G.H.R.; Chagas, V.L.; Silva, L.d.S.; Cutrim, B.d.S.; Santos, D.M.; Soares, B.L.L.; Zagmignan, A.; de Miranda, R.d.C.M. Polysaccharide-based formulations for healing of skin-related wound infections: Lessons from animal models and clinical trials. Biomolecules 2019, 10, 63.
  12. Summa, M.; Russo, D.; Penna, I.; Margaroli, N.; Bayer, I.S.; Bandiera, T.; Athanassiou, A.; Bertorelli, R. A biocompatible sodium alginate/povidone iodine film enhances wound healing. Eur. J. Pharm. Biopharm. 2018, 122, 17.
  13. Eleroui, M.; Feki, A.; Hamzaoui, A.; Kammoun, I.; Bouhamed, M.; Boudawara, O.; Ayed, I.B.; Amara, I.B. Preparation and characterization of a novel hamada scoparia polysaccharide composite films and evaluation of their effect on cutaneous wound healing in rat. Int. J. Pharm. 2021, 608, 121056.
  14. Han, H.-S.; Song, K.B. Noni (Morinda citrifolia) fruit polysaccharide films containing blueberry (Vaccinium corymbosum) leaf extract as an antioxidant packaging material. Food Hydrocoll. 2021, 112, 106372.
  15. Feki, A.; Bardaa, S.; Hajji, S.; Ktari, N.; Hamdi, M.; Chabchoub, N.; Kallel, R.; Boudawara, T.; Nasri, M.; Amara, I.B. Falkenbergia rufolanosa polysaccharide–Poly (vinyl alcohol) composite films: A promising wound healing agent against dermal laser burns in rats. Int. J. Biol. Macromol. 2020, 144, 954.
  16. Zhang, T.; Guo, Q.; Xin, Y.; Liu, Y. Comprehensive review in moisture retention mechanism of polysaccharides from algae, plants, bacteria and fungus. Arab. J. Chem. 2022, 15, 104163.
  17. Zhang, L.; Zhang, W.; Wang, Q.; Wang, D.; Dong, D.; Mu, H.; Ye, X.S.; Duan, J. Purification, antioxidant and immunological activities of polysaccharides from Actinidia chinensis roots. Int. J. Biol. Macromol. 2015, 72, 975–983.
  18. Koohgoli, R.; Hudson, L.; Naidoo, K.; Wilkinson, S.; Chavan, B.; Birch-Machin, M.A. Bad air gets under your skin. Exp. Dermatol. 2017, 26, 384.
  19. Durai, P.C.; Thappa, D.M.; Kumari, R.; Malathi, M. Aging in elderly: Chronological versus photoaging. Indian J. Dermatol. 2012, 57, 343.
  20. Wang, A.S.; Dreesen, O. Biomarkers of cellular senescence and skin aging. Front. Genet. 2018, 9, 247.
  21. Lephart, E.D. Skin aging and oxidative stress: Equol’s anti-aging effects via biochemical and molecular mechanisms. Ageing Res. Rev. 2016, 31, 36.
  22. Sajo, M.; Joy, E.; Kim, C.-S.; Kim, S.-K.; Shim, K.Y.; Kang, T.-Y.; Lee, K.-J. Antioxidant and anti-inflammatory effects of shungite against ultraviolet B irradiation-induced skin damage in hairless mice. Oxidative Med. Cell. Longev. 2017, 2017, 7340143.
  23. Petruk, G.; Del Giudice, R.; Rigano, M.M.; Monti, D.M. Antioxidants from plants protect against skin photoaging. Oxidative Med. Cell. Longev. 2018, 2018, 1454936.
  24. Kammeyer, A.; Luiten, R. Oxidation events and skin aging. Ageing Res. Rev. 2015, 21, 16.
  25. Meng, T.-X.; Zhang, C.-F.; Miyamoto, T.; Ishikawa, H.; Shimizu, K.; Ohga, S.; Kondo, R. The melanin biosynthesis stimulating compounds isolated from the fruiting bodies of Pleurotus citrinopileatus. J. Cosmet. Dermatol. Sci. Appl. 2012, 2, 151.
  26. Liu, Z.-J.; Wang, Y.-L.; Li, Q.-L.; Yang, L. Improved antimelanogenesis and antioxidant effects of polysaccharide from Cuscuta chinensis Lam seeds after enzymatic hydrolysis. Braz. J. Med. Biol. Res. 2018, 51, e7256.
  27. Pavan, W.J.; Sturm, R.A. The genetics of human skin and hair pigmentation. Annu. Rev. Genom. Hum. Genet. 2019, 20, 41.
  28. Schalka, S. New data on hyperpigmentation disorders. J. Eur. Acad. Dermatol. Venereol. 2017, 31, 18.
  29. Yun, C.-Y.; Ko, S.M.; Choi, Y.P.; Kim, B.J.; Lee, J.; Kim, J.M.; Kim, J.Y.; Song, J.Y.; Kim, S.-H.; Hwang, B.Y. α-Viniferin improves facial hyperpigmentation via accelerating feedback termination of cAMP/PKA-signaled phosphorylation circuit in facultative melanogenesis. Theranostics 2018, 8, 2031.
  30. Xu, Z.; Chen, L.; Jiang, M.; Wang, Q.; Zhang, C.; Xiang, L.F. CCN1/Cyr61 stimulates melanogenesis through integrin α6β1, p38 MAPK, and ERK1/2 signaling pathways in human epidermal melanocytes. J. Investig. Dermatol. 2018, 138, 1825.
More
Information
Subjects: Dermatology
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : ,
View Times: 654
Revisions: 2 times (View History)
Update Date: 23 Dec 2022
1000/1000
ScholarVision Creations