Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1303 2022-12-15 14:51:13 |
2 format correct Meta information modification 1303 2022-12-16 02:46:55 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Kim, J.;  Lin, C.;  Stavre, Z.;  Greenblatt, M.B.;  Shim, J. Osteoblast-Osteoclast Communication and Bone Homeostasis. Encyclopedia. Available online: https://encyclopedia.pub/entry/38840 (accessed on 16 November 2024).
Kim J,  Lin C,  Stavre Z,  Greenblatt MB,  Shim J. Osteoblast-Osteoclast Communication and Bone Homeostasis. Encyclopedia. Available at: https://encyclopedia.pub/entry/38840. Accessed November 16, 2024.
Kim, Jung-Min, Chujiao Lin, Zheni Stavre, Matthew B. Greenblatt, Jae-Hyuck Shim. "Osteoblast-Osteoclast Communication and Bone Homeostasis" Encyclopedia, https://encyclopedia.pub/entry/38840 (accessed November 16, 2024).
Kim, J.,  Lin, C.,  Stavre, Z.,  Greenblatt, M.B., & Shim, J. (2022, December 15). Osteoblast-Osteoclast Communication and Bone Homeostasis. In Encyclopedia. https://encyclopedia.pub/entry/38840
Kim, Jung-Min, et al. "Osteoblast-Osteoclast Communication and Bone Homeostasis." Encyclopedia. Web. 15 December, 2022.
Osteoblast-Osteoclast Communication and Bone Homeostasis
Edit

Bone remodeling is tightly regulated by a cross-talk between bone-forming osteoblasts and bone-resorbing osteoclasts. Osteoblasts and osteoclasts communicate with each other to regulate cellular behavior, survival and differentiation through direct cell-to-cell contact or through secretory proteins. Osteoclasts also influence osteoblast formation and differentiation through secretion of soluble factors, including S1P, SEMA4D, CTHRC1 and C3. Here the current knowledge regarding membrane bound- and soluble factors governing cross-talk between osteoblasts and osteoclasts was reviewed.

bone osteoblast osteoclast

1. Soluble Factors Released from Osteoblasts

1.1. Macrophage Colony-Stimulating Factor (M-CSF)

M-CSF (also called as CSF1) is a hematopoietic growth factor that allows for survival, proliferation, differentiation, and mobility of mononuclear phagocyte lineages, including osteoclasts [1][2]. M-CSF, secreted from osteoblasts and bone marrow stromal cells, binds to its cognate receptor C-FMS on the surface of osteoclasts and monocytes/macrophages [3]. Osteopetrotic (op/op) mice where a thymidine insertion in the Csf1 gene resulted in M-CSF deficiency show decreased numbers of macrophages and osteoclasts at a young age. However, these phenotypes disappear during aging. Injection of recombinant M-CSF or production of soluble M-CSF in osteoblasts increases osteoclast numbers and rescues osteopetrotic phenotypes in op/op mice, demonstrating that M-CSF is crucial for osteoclast formation at least in young mice, but does not exclude the existence of M-CSF-independent compensatory mechanisms.

1.2. Receptor Activator of NF-κB (Nuclear Factor-Kappa B) Ligand (RANKL)

RANKL is also called osteoclast differentiation factor (ODF), TNF ligand superfamily member 11 (TNFSF11), TNF-related activation-induced cytokine (TRANCE), and OPG ligand (OPGL) [4][5]. RANKL is highly expressed in osteoblasts, osteocytes, activated T lymphocytes, and lymph nodes [6][7][8]. RANKL binds to its cognate receptor, receptor activator of NF-κB (RANK) on the surface of osteoclasts and osteoclast precursors, leading to osteoclast differentiation, fusion, and activation [9][10]. Mice deficient in Tnfrsf11a (RANK) or Tnfsf11 (RANKL) are phenocopies of one another, indicating the essential role of this RANKL/RANK signaling axis in bone remodeling [6][10]. Deletion of RANKL in mice results in severe osteopetrosis due to absence of osteoclasts, whereas overexpression of soluble RANKL leads to severe osteoporosis [6][11]. Accordingly, blocking RANKL signaling has been proposed as a promising therapeutic target for osteoporotic bone loss and related skeletal disorders.

1.3. Osteoprotegerin (OPG)

OPG is also known as osteoclastogenesis inhibitory factor (OCIF) and TNF receptor superfamily member 11B (TNFRSF11B) [5][12][13]. OPG was identified as a secreted glycoprotein synthesized by many types of cells, including osteoblasts, lung- or liver-residing cells, and B lymphocytes in the bone marrow [12][13][14]. Overexpression of OPG results in profound osteopetrosis due to inhibition of osteoclast formation, whereas Tnfrsf11b (OPG)—deficient mice exhibit rapid postnatal bone loss and severe bone porosity due to an increased osteoclast development [12][15]. OPG is considered to function as a decoy receptor binding to RANKL, negatively regulating osteoclast differentiation and activation by blocking the RANKL-RANK interaction [9][16].

1.4. WNT5A

The WNT pathway is crucial for the maintenance of bone homeostasis by regulating osteoblastogenesis and osteoclastogenesis through both β-catenin-dependent (canonical) and -independent (noncanonical) pathways [17]. A noncanonical WNT ligand, WNT5A, is highly expressed in osteoblast-lineage cells and binds to its cognate receptor, receptor tyrosine kinase-like orphan receptor 2 (ROR2), on the surface of osteoclasts [18]. Heterozygous deletion of Wnt5a or Ror2 in mice resulted in impaired development of bone marrow-derived monocytes (BMM) to mature osteoclasts. Corresponding defects in osteoclastogenesis were also observed in mice with osteoblast-specific deletion of Wnt5a or osteoclast-specific deletion of Ror2. WNT5A enhances RANKL-induced osteoclastogenesis by upregulating RANK expression in osteoclasts via activation of the Jun–N-terminal kinase (JNK) MAPK pathway.

1.5. WNT16

The WNT16 locus is closely associated with bone mineral density (BMD), cortical bone thickness, and fracture risk in humans [19][20][21]. WNT16 is highly expressed in osteoblast-residing cortical bone, but little to no expression is detected in osteoclasts [22]. Global deletion of Wnt16 results in a specific decrease in cortical bone mass and an increase in cortical porosity, along with spontaneous fractures where there is no alteration in trabecular bone. WNT16 suppresses osteoclastogenesis in both a direct and indirect manner. In addition to direct inhibition of osteoclastogenesis via the noncanonical JNK MAPK pathway, WNT16-induced phosphorylation of JUN upregulates expression of OPG in osteoblasts, providing a direct mechanism to suppress osteoclastogenesis. Osteoblast-specific deletion of Wnt16 in mice phenocopies mice with its global deletion, suggesting osteoblasts are a primary source of WNT16, with an impact on cortical bone and skeletal integrity. Table 1 provides a list of osteoblast-derived factors that regulate osteoclasts.
Table 1. Summary of the effect of osteoblast-derived factors on osteoclast behavior.

References

  1. Fixe, P.; Praloran, V. M-CSF: Haematopoietic growth factor or inflammatory cytokine? Cytokine 1998, 10, 32–37.
  2. Stanley, E.R.; Cifone, M.; Heard, P.M.; Defendi, V. Factors regulating macrophage production and growth: Identity of colony-stimulating factor and macrophage growth factor. J. Exp. Med. 1976, 143, 631–647.
  3. Lacey, D.L.; Erdmann, J.M.; Shima, M.; Kling, S.; Matayoshi, A.; Ohara, J.; Perkins, S.L. Interleukin 4 enhances osteoblast macrophage colony-stimulating factor, but not interleukin 6, production. Calcif. Tissue Int. 1994, 55, 21–28.
  4. Lacey, D.L.; Timms, E.; Tan, H.L.; Kelley, M.J.; Dunstan, C.R.; Burgess, T.; Elliott, R.; Colombero, A.; Elliott, G.; Scully, S.; et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998, 93, 165–176.
  5. Croft, M.; Benedict, C.A.; Ware, C.F. Clinical targeting of the TNF and TNFR superfamilies. Nat. Rev. Drug Discov. 2013, 12, 147–168.
  6. Kong, Y.Y.; Yoshida, H.; Sarosi, I.; Tan, H.L.; Timms, E.; Capparelli, C.; Morony, S.; Oliveira-dos-Santos, A.J.; Van, G.; Itie, A.; et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999, 397, 315–323.
  7. Yasuda, H.; Shima, N.; Nakagawa, N.; Yamaguchi, K.; Kinosaki, M.; Mochizuki, S.; Tomoyasu, A.; Yano, K.; Goto, M.; Murakami, A.; et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 1998, 95, 3597–3602.
  8. Xiong, J.; Onal, M.; Jilka, R.L.; Weinstein, R.S.; Manolagas, S.C.; O’Brien, C.A. Matrix-embedded cells control osteoclast formation. Nat. Med. 2011, 17, 1235–1241.
  9. Boyle, W.J.; Simonet, W.S.; Lacey, D.L. Osteoclast differentiation and activation. Nature 2003, 423, 337–342.
  10. Li, J.; Sarosi, I.; Yan, X.Q.; Morony, S.; Capparelli, C.; Tan, H.L.; McCabe, S.; Elliott, R.; Scully, S.; Van, G.; et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci. USA 2000, 97, 1566–1571.
  11. Mizuno, A.; Kanno, T.; Hoshi, M.; Shibata, O.; Yano, K.; Fujise, N.; Kinosaki, M.; Yamaguchi, K.; Tsuda, E.; Murakami, A.; et al. Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis. J. Bone Miner. Metab. 2002, 20, 337–344.
  12. Simonet, W.S.; Lacey, D.L.; Dunstan, C.R.; Kelley, M.; Chang, M.S.; Luthy, R.; Nguyen, H.Q.; Wooden, S.; Bennett, L.; Boone, T.; et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 1997, 89, 309–319.
  13. Yasuda, H.; Shima, N.; Nakagawa, N.; Mochizuki, S.I.; Yano, K.; Fujise, N.; Sato, Y.; Goto, M.; Yamaguchi, K.; Kuriyama, M.; et al. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): A mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology 1998, 139, 1329–1337.
  14. Li, Y.; Toraldo, G.; Li, A.; Yang, X.; Zhang, H.; Qian, W.P.; Weitzmann, M.N. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 2007, 109, 3839–3848.
  15. Bucay, N.; Sarosi, I.; Dunstan, C.R.; Morony, S.; Tarpley, J.; Capparelli, C.; Scully, S.; Tan, H.L.; Xu, W.; Lacey, D.L.; et al. osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998, 12, 1260–1268.
  16. Theoleyre, S.; Wittrant, Y.; Tat, S.K.; Fortun, Y.; Redini, F.; Heymann, D. The molecular triad OPG/RANK/RANKL: Involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev. 2004, 15, 457–475.
  17. Logan, C.Y.; Nusse, R. The Wnt signaling pathway in development and disease. Annu Rev. Cell Dev. Biol. 2004, 20, 781–810.
  18. Maeda, K.; Kobayashi, Y.; Udagawa, N.; Uehara, S.; Ishihara, A.; Mizoguchi, T.; Kikuchi, Y.; Takada, I.; Kato, S.; Kani, S.; et al. Wnt5a-Ror2 signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis. Nat. Med. 2012, 18, 405–412.
  19. Medina-Gomez, C.; Kemp, J.P.; Estrada, K.; Eriksson, J.; Liu, J.; Reppe, S.; Evans, D.M.; Heppe, D.H.; Vandenput, L.; Herrera, L.; et al. Meta-analysis of genome-wide scans for total body BMD in children and adults reveals allelic heterogeneity and age-specific effects at the WNT16 locus. PLoS Genet. 2012, 8, e1002718.
  20. Estrada, K.; Styrkarsdottir, U.; Evangelou, E.; Hsu, Y.H.; Duncan, E.L.; Ntzani, E.E.; Oei, L.; Albagha, O.M.; Amin, N.; Kemp, J.P.; et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat. Genet. 2012, 44, 491–501.
  21. Koller, D.L.; Zheng, H.F.; Karasik, D.; Yerges-Armstrong, L.; Liu, C.T.; McGuigan, F.; Kemp, J.P.; Giroux, S.; Lai, D.; Edenberg, H.J.; et al. Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women. J. Bone Miner. Res. 2013, 28, 547–558.
  22. Moverare-Skrtic, S.; Henning, P.; Liu, X.; Nagano, K.; Saito, H.; Borjesson, A.E.; Sjogren, K.; Windahl, S.H.; Farman, H.; Kindlund, B.; et al. Osteoblast-derived WNT16 represses osteoclastogenesis and prevents cortical bone fragility fractures. Nat. Med. 2014, 20, 1279–1288.
  23. Zhao, C.; Irie, N.; Takada, Y.; Shimoda, K.; Miyamoto, T.; Nishiwaki, T.; Suda, T.; Matsuo, K. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 2006, 4, 111–121.
  24. Wang, L.; Liu, S.; Zhao, Y.; Liu, D.; Liu, Y.; Chen, C.; Karray, S.; Shi, S.; Jin, Y. Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass. Cell Death Differ. 2015, 22, 1654–1664.
  25. Hayashi, M.; Nakashima, T.; Taniguchi, M.; Kodama, T.; Kumanogoh, A.; Takayanagi, H. Osteoprotection by semaphorin 3A. Nature 2012, 485, 69–74.
  26. Cummings, S.R.; San Martin, J.; McClung, M.R.; Siris, E.S.; Eastell, R.; Reid, I.R.; Delmas, P.; Zoog, H.B.; Austin, M.; Wang, A.; et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N. Engl. J. Med. 2009, 361, 756–765.
  27. Bekker, P.J.; Holloway, D.L.; Rasmussen, A.S.; Murphy, R.; Martin, S.W.; Leese, P.T.; Holmes, G.B.; Dunstan, C.R.; DePaoli, A.M. A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J. Bone Miner. Res. 2004, 19, 1059–1066.
  28. McClung, M.R.; Lewiecki, E.M.; Cohen, S.B.; Bolognese, M.A.; Woodson, G.C.; Moffett, A.H.; Peacock, M.; Miller, P.D.; Lederman, S.N.; Chesnut, C.H.; et al. Denosumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 2006, 354, 821–831.
  29. Sims, N.A.; Ng, K.W. Implications of osteoblast-osteoclast interactions in the management of osteoporosis by antiresorptive agents denosumab and odanacatib. Curr. Osteoporos. Rep. 2014, 12, 98–106.
  30. Drake, M.T.; Clarke, B.L.; Oursler, M.J.; Khosla, S. Cathepsin K Inhibitors for Osteoporosis: Biology, Potential Clinical Utility, and Lessons Learned. Endocr. Rev. 2017, 38, 325–350.
  31. Costa, A.G.; Cusano, N.E.; Silva, B.C.; Cremers, S.; Bilezikian, J.P. Cathepsin K: Its skeletal actions and role as a therapeutic target in osteoporosis. Nat. Rev. Rheumatol. 2011, 7, 447–456.
  32. Xue, Y.; Cai, T.; Shi, S.; Wang, W.; Zhang, Y.; Mao, T.; Duan, X. Clinical and animal research findings in pycnodysostosis and gene mutations of cathepsin K from 1996 to 2011. Orphanet. J. Rare Dis. 2011, 6, 20.
  33. Fratzl-Zelman, N.; Valenta, A.; Roschger, P.; Nader, A.; Gelb, B.D.; Fratzl, P.; Klaushofer, K. Decreased bone turnover and deterioration of bone structure in two cases of pycnodysostosis. J. Clin. Endocrinol. Metab. 2004, 89, 1538–1547.
  34. Debnath, S.; Yallowitz, A.R.; McCormick, J.; Lalani, S.; Zhang, T.; Xu, R.; Li, N.; Liu, Y.; Yang, Y.S.; Eiseman, M.; et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 2018, 562, 133–139.
  35. Recker, R.; Dempster, D.; Langdahl, B.; Giezek, H.; Clark, S.; Ellis, G.; de Villiers, T.; Valter, I.; Zerbini, C.A.; Cohn, D.; et al. Effects of Odanacatib on Bone Structure and Quality in Postmenopausal Women With Osteoporosis: 5-Year Data From the Phase 3 Long-Term Odanacatib Fracture Trial (LOFT) and its Extension. J. Bone Miner. Res. 2020, 35, 1289–1299.
  36. Mullard, A. Merck &Co. drops osteoporosis drug odanacatib. Nat. Rev. Drug Discov. 2016, 15, 669.
  37. Fan, Y.; Hanai, J.I.; Le, P.T.; Bi, R.; Maridas, D.; DeMambro, V.; Figueroa, C.A.; Kir, S.; Zhou, X.; Mannstadt, M.; et al. Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate. Cell Metab. 2017, 25, 661–672.
  38. Ishizuya, T.; Yokose, S.; Hori, M.; Noda, T.; Suda, T.; Yoshiki, S.; Yamaguchi, A. Parathyroid hormone exerts disparate effects on osteoblast differentiation depending on exposure time in rat osteoblastic cells. J. Clin. Investig. 1997, 99, 2961–2970.
  39. Silva, B.C.; Bilezikian, J.P. Parathyroid hormone: Anabolic and catabolic actions on the skeleton. Curr. Opin. Pharmacol. 2015, 22, 41–50.
  40. Keller, H.; Kneissel, M. SOST is a target gene for PTH in bone. Bone 2005, 37, 148–158.
  41. O’Brien, C.A.; Plotkin, L.I.; Galli, C.; Goellner, J.J.; Gortazar, A.R.; Allen, M.R.; Robling, A.G.; Bouxsein, M.; Schipani, E.; Turner, C.H.; et al. Control of bone mass and remodeling by PTH receptor signaling in osteocytes. PLoS ONE. 2008, 3, e2942.
More
Information
Subjects: Biology
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , ,
View Times: 740
Entry Collection: Biopharmaceuticals Technology
Revisions: 2 times (View History)
Update Date: 16 Dec 2022
1000/1000
ScholarVision Creations