Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 4856 2022-11-24 14:20:58 |
2 Format correction Meta information modification 4856 2022-11-29 08:39:33 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Novacescu, D.;  Feciche, B.O.;  Cumpanas, A.A.;  Bardan, R.;  Rusmir, A.V.;  Bitar, Y.A.;  Barbos, V.I.;  Cut, T.G.;  Raica, M.;  Latcu, S.C. Definitive Diagnosis in Renal Cell Carcinoma. Encyclopedia. Available online: https://encyclopedia.pub/entry/36835 (accessed on 27 July 2024).
Novacescu D,  Feciche BO,  Cumpanas AA,  Bardan R,  Rusmir AV,  Bitar YA, et al. Definitive Diagnosis in Renal Cell Carcinoma. Encyclopedia. Available at: https://encyclopedia.pub/entry/36835. Accessed July 27, 2024.
Novacescu, Dorin, Bogdan Ovidiu Feciche, Alin Adrian Cumpanas, Razvan Bardan, Andrei Valentin Rusmir, Yahya Almansour Bitar, Vlad Ilie Barbos, Talida Georgiana Cut, Marius Raica, Silviu Constantin Latcu. "Definitive Diagnosis in Renal Cell Carcinoma" Encyclopedia, https://encyclopedia.pub/entry/36835 (accessed July 27, 2024).
Novacescu, D.,  Feciche, B.O.,  Cumpanas, A.A.,  Bardan, R.,  Rusmir, A.V.,  Bitar, Y.A.,  Barbos, V.I.,  Cut, T.G.,  Raica, M., & Latcu, S.C. (2022, November 28). Definitive Diagnosis in Renal Cell Carcinoma. In Encyclopedia. https://encyclopedia.pub/entry/36835
Novacescu, Dorin, et al. "Definitive Diagnosis in Renal Cell Carcinoma." Encyclopedia. Web. 28 November, 2022.
Definitive Diagnosis in Renal Cell Carcinoma
Edit

Despite significant progress regarding clinical detection/imaging evaluation modalities and genetic/molecular characterization of pathogenesis, advanced renal cell carcinoma (RCC) remains an incurable disease and overall RCC mortality has been steadily rising for decades. Concomitantly, clinical definitions have been greatly nuanced and refined. RCCs are viewed as a heterogeneous series of cancers, with the same anatomical origin, but fundamentally different metabolisms and clinical behaviors. 

renal cell carcinoma (RCC) immunohistochemistry (IHC) molecular pathology differential diagnosis subtyping prognosis

1. Introduction

Over the past decades, major technological and scientific breakthroughs have allowed for the development of important clinical tools for better RCC detection, evaluation, and therapeutic decision-making, while also reshaping medical understanding of RCC pathogenesis and progression-driving molecularities. Even so, RCC remains, to this day, one of the deadliest urological malignancies, accounting for ~3% of the total cancer burden in the global adult population [1].
The widespread integration of ultrasonography (US) and computer tomography (CT) in routine clinical practice has significantly improved RCC detection yields, reflected in the long-standing and still ongoing stable increase in RCC incidence rates globally [2]. Concurrently, a significant drop in RCC initial stage at diagnosis has also occurred, with most RCCs being detected incidentally currently, as asymptomatic, localized, small renal masses. Within this subgroup of RCC cases, 5-year survival rates have been significantly improved as a consequence of earlier curative intervention, i.e., partial/radical nephrectomy [3]. Conversely, despite important recent progress in systemic RCC therapeutic management, advanced RCC patients remain incurable, with persistently poor clinical outcomes. Thus, overall, RCC-specific mortality rates have been steadily increasing since the 1990s (~1.1%/year) [3][4].
To address these pervasive clinical limitations, regarding systemic/recurrent RCC therapeutic management and outcomes, contemporary RCC clinical definitions have been greatly nuanced and refined to better serve in RCC subtyping, prognosis assessment, and therapeutic response prediction. Classically, RCCs were simply defined as malignant parenchymatous renal neoplasms, spawning from tubular epithelial cellularity. However, in light of recent extensive RCC genomic profiling efforts and comprehensive metabolic molecular analyses, RCCs are currently viewed as an extremely heterogenic group of distinctive tumor subtypes, which only share an anatomical origin, while having different cellular progenitors, within the renal parenchyma. In fact, individual RCC subtypes demonstrate relatively specific, yet widely pleomorphic, tumor-driving molecular pathologies and pathognomonic genomics. This emerging intricate molecular amalgamation of novel RCC metabolic profiles, is firmly corroborated by the similarly extensive and well-documented clinical variability in RCC malignant behavior and therapeutic response, both between different RCC cases and disease phenotypes comparatively, but also during the natural evolution of individual RCCs (disease progression, systemic dissemination, and/or metastatic recurrence) [5][6].
In lack of a definitive systemic treatment modality for advanced RCCs, integration of the amounting fundamental medical knowledge regarding RCC molecular pathology into RCC clinical management has been paramount to obtaining improved risk stratification and evidence-based therapeutic decision-making. As a result, definitive pathological diagnosis and RCC subtyping have become more nuanced and cumbersome, with the latest guidelines (i.e., the World Health Organization—WHO’s 4th edition of the Urological Tumors Classification, 2016) identifying almost twenty distinct subtypes of malignant renal cell tumors, alongside mesenchymal, neuroendocrine, nephroblastic, and cystic variants [5][7]. Even so, these classifications will only become more comprehensive further on, as additional RCC entities, with distinguishing clinical, morphological, immunohistochemical, and/or molecular traits, have already been identified and are still awaiting formal acknowledgement [8][9][10][11][12][13][14][15].
To further complicate the already elaborate and dynamic landscape of RCC clinical management, systemic RCC therapy has been greatly diversified recently, with the advent of personalized oncological therapy and RCC tumor microenvironment molecular/genomic characterization initiatives. Notably, focused evaluation of the biologic implications of various inflammatory pathways regarding RCC metabolomics and proliferation, mainly the Von Hippel–Lindau (VHL), mechanistic target of rapamycin (mTOR), tumor necrosis factor (TNF), and Janus kinase/signal transducer and activator of transcription (JAK/STAT) [16] pathways, has proven fruitful, providing multiple clinically relevant RCC-associated-antigen targeted molecules. Moreover, immunotherapy, a novel and promising type of oncotherapy, aiming to reactivate the cytotoxic immune response against tumor cells, has found important applications in advanced/recurrent RCC therapeutic management. Despite clinical difficulties regarding adequate immunotherapy response prediction for RCCs and the extensive therapy-associated costs, immunotherapy represents the only type of oncotherapy which allows, even theoretically, for the elaboration of a definitive cure for disseminated RCCs/cancer in general, as it is the only oncotherapy capable of targeting and annihilating non-dividing, quiescent, stem-like dysplastic cells [7][17].
Currently, as clinical definitions have become greatly nuanced, a complete RCC diagnosis requires careful multimodal evaluation, in a well-coordinated and phased approach, involving, at times, very difficult differentials.

2. Conventional Staining and RCC Microscopic Morphological Evaluation

Notwithstanding the long-held, central role of RCC morphological evaluation, using standard microscopy and conventional hematoxylin–eosin (HE) staining, in RCC definitive pathological diagnosis, essential for further therapeutic decision-making and predicting prognosis/risk stratification, in light of recent insights into RCC molecular pathology, the method, although still important, has become insufficient for adequate RCC subtyping. Even within the classical triad of conventional morphologies, namely clear cell (ccRCC), papillary (pRCC), and chromophobe (chRCC), which demonstrate relatively distinctive architectures and cellular features, microscopic evaluation of morphology remains subjective and user-dependent. Additionally, more often than not, meticulous evaluation will encounter, at least focally, overlapping patterns and/or atypical architectures, hindering definitive RCC subtyping. High-grade cellularity and severely dedifferentiated renal tumors lose characteristic morphological traits completely and cannot be subtyped using solely conventional staining microscopy. Determining metastatic cell origin, in advanced RCCs, with the additional difficulty of non-renal origin differentials, will most certainly require ancillary studies [6].
In fact, as a general consensus among pathologists, no truly reliable, objective, and validated histologic/ultrastructural criteria exist for distinguishing between benign and malignant renal epithelial tumors [18], with the very meek exception of oncocytomas and small low-grade papillary adenomas (≤5 mm) [18]. Furthermore, the amounting, emergent RCC clinical entities, have shown, for the most part, unspecific and poorly defined architectures, with heavily disputed morphological growth characteristics. Even within conventional RCC morphologies, absolute homogeneity is extremely rare and non-specific arrangement patterns (solid, papillary, tubular/cystic, sarcomatoid/rhabdoid) and cellular features (cytoplasmic clearing, eosinophilia/basophilia) are routinely identified, particularly in high-grade and/or poorly preserved tumor areas. Clearly, meticulous sampling of gross RCC specimens, especially in those which prove to be difficult to classify, will prove to be much more useful and cost-effective than additional staining. Transitional areas, from well-differentiated/low-grade patterns to more unusual, pleomorphic patterns, should be sought after and evaluated preferentially, as they usually offer the most useful diagnostic information [6][19].
All in all, conventional microscopic evaluation of RCC morphology remains an important initial step in tumor pathological analysis. It allows for an essential primary classification into RCC predominant morphological trait subgroups, simplifying the differential diagnosis and guiding further targeted analysis, while greatly reducing financial costs. Even so, it has become insufficient for an accurate definitive RCC diagnosis and prognosis assessment.

3. Definitions and Comprehensive Profiles for RCC Subtyping

Definitive RCC pathological diagnosis, meaning irrefutable demonstration of tumor renal cell origin and accurate RCC subtype identification, as well as the subsequent prognosis assessment, requires careful integration of clinical, pathological, and molecular characteristics, to allow for objective carcinogenic metabolic profiling and characterization of progression-driving tumor biology. Thus, as our understanding of RCC molecular pathology has become more nuanced, ancillary studies, mainly immunohistochemistry (IHC), has become integrated in clinical practice, as essential tools for routine RCC pathological evaluation. Despite the plethora of seemingly promising diagnostic and predictive applications reported, for the dozens of novel tumor-associated molecules and their corresponding IHC targeted-antibodies, due to the lack of validation studies, these data constitute no more than level 2/3 evidence. Moreover, heterogeneity within existing data regarding specific IHC methodology and antibody clone used (monoclonal/polyclonal) further encumbers comparisons between existing results [20][21][22][23][24][25][26]. In fact, as an investigative method, IHC has multiple inherent conceptual limitations, as well as significant technical (clone selection, titration, validation, false positives/negatives etc.) and interpretative (subcellular localization and pattern) weaknesses [19]. Table 1 provides a comprehensive summary of evidence regarding morphological, IHC, and genetic profiles for all currently accepted RCC subtypes.
A recurring issue is represented by the indiscriminate use of an inordinate number of antibodies, without a reasonable, structured, diagnostic approach, which only serves to generate additional confusion, while simultaneously wasting valuable resources. For this reason, in 2012, the International Society of Urological Pathology (ISUP) reviewed the use of IHC antibodies in adult renal tumors, in order to develop best practice recommendations regarding determining site of origin, typing, and prognosis, with the ultimate goal of establishing formal panels of biomarkers for specific diagnostic difficulties and, implicitly, establishing adequate guidelines for stewardship [6][19]. For a more systematic and practical approach to RCC subtyping, individual, differential diagnosis-driven IHC marker panels have been established (see Table 2), in order to differentiate among entities within the main RCC subgroups, manifesting specific morphological characteristics, namely predominantly clear cell (cc) population, significant papillary (p) component, extensive cytoplasmic eosinophilia, predominant sarcomatoid growth pattern, and architecture suggestive of distal nephron origin—collecting duct carcinoma (CDC) and renal medullary carcinoma (RMC). Quantitative and qualitative assessments of the staining results are equally important and continuous refinement of antibody panels, taking into account the proven value of new IHC markers and new clones of established markers, as they enter the market, is mandatory [6].
Overall, Paired box (PAX) 8, a transcription factor (415 aminoacids/48 kDa), involved in kidney, thyroid, and paramesonephric duct-derived, organogenesis, and homeostasis, represents the most useful IHC marker for establishing the diagnosis of metastatic RCC(mRCC) [27], being expressed in all RCC subtypes, including sarcomatoid RCC, mucinous tubular and spindle cell carcinoma (MTSC), and microphtalmia (MiT)-family translocation RCC, with a sensitivity of approximately 95% [28]. In healthy kidney tissue, PAX8 normally manifests diffuse staining in the, preferentially distal, renal tubules, and patchy staining of urothelium in the renal pelvis. In accordance with this pattern of developmental expression, in addition to RCCs, PAX8 consistently stains Műllerian neoplasms and thyroid neoplasms, and, in smaller subsets (~20%), urothelial carcinomas of the renal pelvis, Wolffian duct lesions, and thymic neoplasms [6].
Out of the PAX gene family for tissue specific transcription factors [29], PAX8 is generally the more sensitive marker [30]. PAX2 stains similarly to PAX8 [31][32]; with the possibly useful difference of negative PAX2 staining in thyroid neoplasms, admittedly only reported in small series [33]. When using older, polyclonal preparations, endocrine neoplasms (pancreatic islet cell tumors and gastrointestinal tract carcinoids) are often positive for PAX8; however, cross-reactivity with PAX6 is clarifying [34]. Additionally, B-cell lymphomas stain positive on polyclonal PAX8 preparation, while also manifesting cross-reaction with PAX5.
Table 1. Summary of evidence regarding RCC histological, IHC, and genetic profiles [5][6][19][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62][63][64][65][66][67][68][69][70][71][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86][87][88][89][90][91][92][93][94][95][96][97][98][99][100][101][102][103][104][105][106][107][108][109][110][111][112][113][114][115][116].
Table 2. Differential diagnosis-driven IHC panels and profiles for morphological RCC traits [6][19].
Novel PAX8 antibodies (PAX8R1), to address the specificity issues of polyclonal PAX8 preparations, have been developed. They bind to the C-terminal of PAX8, targeting amino acids 318–426, which are highly divergent among PAX proteins, thus abolishing cross-reactivity with other PAX species [117].
Further nuancing of IHC differential diagnosis in mRCC involves markers almost always negative in RCC, such as pulmonary marker TTF-1, the intestinal marker homeobox protein CDX2, p63, prostate-specific antigen, and estrogen receptor, which will be useful in excluding other carcinomas that may manifest cross-positivity for PAX8. Positive staining with any of the aforementioned markers represents a strong argument against the diagnosis of mRCC [6]. Another useful distinction, between urothelial and renal epithelial origins, can be made using GATA3, a transcription factor involved in cell differentiation and proliferation in a variety of tissues and cell types, which will be expressed in most urothelial tumors, but not in RCCs [118][119].
Other supportive IHC markers of mRCC, currently in common practice—cluster of differentiation (CD)10, RCC marker antigen (RCCm), Kidney-Specific Cadherin (Ksp-cadherin)—manifest inadequate specificity and are not usually indicated or useful, outside of very specific, punctual, diagnostic subtleties.
RCCm stains a proximal tubular antigen and demonstrates focal labeling in approximately 80% of RCC [120][121], yet with notoriously poor specificity, seeing as it also labels many other carcinomas (breast, lung, colon, and of adrenal origin). It is useful in differentiating clear cell RCC (ccRCC) from ovarian clear cell carcinoma, as PAX8 would be positive in both tumors, whereas RCCm would be positive only in the renal neoplasm. Moreover, PAX8 is negative in adrenal cortical neoplasms, which preferentially stain for steroid factor-1 [122].
Another proximal tubular marker, CD10, also manifests high sensitivity, but again very low specificity for RCC, as lung, bladder, colon, and ovarian carcinomas all label for CD10 [123]. However, CD10 fairly consistently labels ccRCC, thus CD10 negative metastatic lesions represent an argument against this diagnosis for the primary tumor.
Lastly, Ksp-cadherin, a distal tubular marker, manifests high sensitivity for chromophobe RCC (chRCC), although it is not so useful in the metastatic diagnosis context, as the chromophobe variant rarely disseminates systemically [124]. Even so, at least focal staining can also be seen in other renal tumor variants, including high-grade ccRCC.

References

  1. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30.
  2. Decastro, G.J.; McKiernan, J.M. Epidemiology, Clinical Staging, and Presentation of Renal Cell Carcinoma. Urol. Clin. N. Am. 2008, 35, 581–592.
  3. Kane, C.J.; Mallin, K.; Ritchey, J.; Cooperberg, M.R.; Carroll, P.R. Renal Cell Cancer Stage Migration: Analysis of the National Cancer Data Base. Cancer 2008, 113, 78–83.
  4. Mancini, M.; Righetto, M.; Baggio, G. Gender-Related Approach to Kidney Cancer Management: Moving Forward. Int. J. Mol. Sci. 2020, 21, 3378.
  5. Moch, H.; Cubilla, A.L.; Humphrey, P.A.; Reuter, V.E.; Ulbright, T.M. The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. Eur. Urol. 2016, 70, 93–105.
  6. Reuter, V.E.; Argani, P.; Zhou, M.; Delahunt, B.; Members of the ISUP Immunohistochemistry in Diagnostic Urologic Pathology Group. Best Practices Recommendations in the Application of Immunohistochemistry in the Kidney Tumors: Report from the International Society of Urologic Pathology Consensus Conference. Am. J. Surg. Pathol. 2014, 38, e35–e49.
  7. Novacescu, D.; Cut, T.G.; Cumpanas, A.A.; Latcu, S.C.; Bardan, R.; Ferician, O.; Secasan, C.-C.; Rusmir, A.; Raica, M. Evaluating Established Roles, Future Perspectives and Methodological Heterogeneity for Wilms’ Tumor 1 (WT1) Antigen Detection in Adult Renal Cell Carcinoma, Using a Novel N-Terminus Targeted Antibody (Clone WT49). Biomedicines 2022, 10, 912.
  8. Peckova, K.; Martinek, P.; Ohe, C.; Kuroda, N.; Bulimbasic, S.; Condom Mundo, E.; Perez Montiel, D.; Lopez, J.I.; Daum, O.; Rotterova, P.; et al. Chromophobe Renal Cell Carcinoma with Neuroendocrine and Neuroendocrine-like Features. Morphologic, Immunohistochemical, Ultrastructural, and Array Comparative Genomic Hybridization Analysis of 18 Cases and Review of the Literature. Ann. Diagn. Pathol. 2015, 19, 261–268.
  9. Hes, O.; Condom Mundo, E.; Peckova, K.; Lopez, J.I.; Martinek, P.; Vanecek, T.; Falconieri, G.; Agaimy, A.; Davidson, W.; Petersson, F.; et al. Biphasic Squamoid Alveolar Renal Cell Carcinoma: A Distinctive Subtype of Papillary Renal Cell Carcinoma? Am. J. Surg. Pathol. 2016, 40, 664–675.
  10. Trpkov, K.; Hes, O.; Bonert, M.; Lopez, J.I.; Bonsib, S.M.; Nesi, G.; Comperat, E.; Sibony, M.; Berney, D.M.; Martinek, P.; et al. Eosinophilic, Solid, and Cystic Renal Cell Carcinoma: Clinicopathologic Study of 16 Unique, Sporadic Neoplasms Occurring in Women. Am. J. Surg. Pathol. 2016, 40, 60–71.
  11. Falzarano, S.M.; McKenney, J.K.; Montironi, R.; Eble, J.N.; Osunkoya, A.O.; Guo, J.; Zhou, S.; Xiao, H.; Dhanasekaran, S.M.; Shukla, S.; et al. Renal Cell Carcinoma Occurring in Patients With Prior Neuroblastoma: A Heterogenous Group of Neoplasms. Am. J. Surg. Pathol. 2016, 40, 989–997.
  12. Kusano, H.; Togashi, Y.; Akiba, J.; Moriya, F.; Baba, K.; Matsuzaki, N.; Yuba, Y.; Shiraishi, Y.; Kanamaru, H.; Kuroda, N.; et al. Two Cases of Renal Cell Carcinoma Harboring a Novel STRN-ALK Fusion Gene. Am. J. Surg. Pathol. 2016, 40, 761–769.
  13. Hes, O.; Compérat, E.M.; Rioux-Leclercq, N. Clear Cell Papillary Renal Cell Carcinoma, Renal Angiomyoadenomatous Tumor, and Renal Cell Carcinoma with Leiomyomatous Stroma Relationship of 3 Types of Renal Tumors: A Review. Ann. Diagn. Pathol. 2016, 21, 59–64.
  14. Hakimi, A.A.; Tickoo, S.K.; Jacobsen, A.; Sarungbam, J.; Sfakianos, J.P.; Sato, Y.; Morikawa, T.; Kume, H.; Fukayama, M.; Homma, Y.; et al. TCEB1-Mutated Renal Cell Carcinoma: A Distinct Genomic and Morphological Subtype. Mod. Pathol. 2015, 28, 845–853.
  15. Dawane, R.; Grindstaff, A.; Parwani, A.V.; Brock, T.; White, W.M.; Nodit, L. Thyroid-like Follicular Carcinoma of the Kidney: One Case Report and Review of the Literature. Am. J. Clin. Pathol. 2015, 144, 796–804.
  16. Shi, J.; Wang, K.; Xiong, Z.; Yuan, C.; Wang, C.; Cao, Q.; Yu, H.; Meng, X.; Xie, K.; Cheng, Z.; et al. Impact of Inflammation and Immunotherapy in Renal Cell Carcinoma. Oncol. Lett. 2020, 20, 272.
  17. Iiyama, T.; Udaka, K.; Takeda, S.; Takeuchi, T.; Adachi, Y.C.; Ohtsuki, Y.; Tsuboi, A.; Nakatsuka, S.; Elisseeva, O.A.; Oji, Y.; et al. WT1 (Wilms’ Tumor 1) Peptide Immunotherapy for Renal Cell Carcinoma. Microbiol. Immunol. 2007, 51, 519–530.
  18. Partin, A.W.; Wein, A.J.; Kavoussi, L.R.; Peters, C.A.; Dmochowski, R.R. Neoplasms of the Upper Urinary Tract. In Campbell-Walsh-Wein Urology, 12th ed.; Elsevier Health Sciences; Elsevier: Amsterdam, The Netherlands, 2020; Volume 2, pp. 1438–1439, 2148.
  19. Amin, M.B.; Epstein, J.I.; Ulbright, T.M.; Humphrey, P.A.; Egevad, L.; Montironi, R.; Grignon, D.; Trpkov, K.; Lopez-Beltran, A.; Zhou, M.; et al. Best Practices Recommendations in the Application of Immunohistochemistry in Urologic Pathology: Report From the International Society of Urological Pathology Consensus Conference. Am. J. Surg. Pathol. 2014, 38, 1017–1022.
  20. Zhou, M.; Roma, A.; Magi-Galluzzi, C. The Usefulness of Immunohistochemical Markers in the Differential Diagnosis of Renal Neoplasms. Clin. Lab. Med. 2005, 25, 247–257.
  21. Skinnider, B.F.; Amin, M.B. An Immunohistochemical Approach to the Differential Diagnosis of Renal Tumors. Semin. Diagn. Pathol. 2005, 22, 51–68.
  22. Reuter, V.E.; Tickoo, S.K. Differential Diagnosis of Renal Tumours with Clear Cell Histology. Pathology 2010, 42, 374–383.
  23. Tickoo, S.K.; Reuter, V.E. Differential Diagnosis of Renal Tumors with Papillary Architecture. Adv. Anat. Pathol. 2011, 18, 120–132.
  24. Truong, L.D.; Shen, S.S. Immunohistochemical Diagnosis of Renal Neoplasms. Arch. Pathol. Lab. Med. 2011, 135, 92–109.
  25. Shen, S.S.; Truong, L.D.; Scarpelli, M.; Lopez-Beltran, A. Role of Immunohistochemistry in Diagnosing Renal Neoplasms: When Is It Really Useful? Arch. Pathol. Lab. Med. 2012, 136, 410–417.
  26. Tan, P.H.; Cheng, L.; Rioux-Leclercq, N.; Merino, M.J.; Netto, G.; Reuter, V.E.; Shen, S.S.; Grignon, D.J.; Montironi, R.; Egevad, L.; et al. Renal Tumors: Diagnostic and Prognostic Biomarkers. Am. J. Surg. Pathol. 2013, 37, 1518–1531.
  27. Ordóñez, N.G. Value of PAX 8 Immunostaining in Tumor Diagnosis: A Review and Update. Adv. Anat. Pathol. 2012, 19, 140–151.
  28. Sangoi, A.R.; Karamchandani, J.; Kim, J.; Pai, R.K.; McKenney, J.K. The Use of Immunohistochemistry in the Diagnosis of Metastatic Clear Cell Renal Cell Carcinoma: A Review of PAX-8, PAX-2, HKIM-1, RCCma, and CD10. Adv. Anat. Pathol. 2010, 17, 377–393.
  29. Chi, N.; Epstein, J.A. Getting Your Pax Straight: Pax Proteins in Development and Disease. Trends Genet. 2002, 18, 41–47.
  30. Sangoi, A.R.; Fujiwara, M.; West, R.B.; Montgomery, K.D.; Bonventre, J.V.; Higgins, J.P.; Rouse, R.V.; Gokden, N.; McKenney, J.K. Immunohistochemical Distinction of Primary Adrenal Cortical Lesions from Metastatic Clear Cell Renal Cell Carcinoma: A Study of 248 Cases. Am. J. Surg. Pathol. 2011, 35, 678–686.
  31. Ozcan, A.; Zhai, J.; Hamilton, C.; Shen, S.S.; Ro, J.Y.; Krishnan, B.; Truong, L.D. PAX-2 in the Diagnosis of Primary Renal Tumors: Immunohistochemical Comparison With Renal Cell Carcinoma Marker Antigen and Kidney-Specific Cadherin. Am. J. Clin. Pathol. 2009, 131, 393–404.
  32. Sharma, S.G.; Gokden, M.; McKenney, J.K.; Phan, D.C.; Cox, R.M.; Kelly, T.; Gokden, N. The Utility of PAX-2 and Renal Cell Carcinoma Marker Immunohistochemistry in Distinguishing Papillary Renal Cell Carcinoma from Nonrenal Cell Neoplasms with Papillary Features. Appl. Immunohistochem. Mol. Morphol. 2010, 18, 494–498.
  33. Zhai, Q.J.; Ozcan, A.; Hamilton, C.; Shen, S.S.; Coffey, D.; Krishnan, B.; Truong, L.D. PAX-2 Expression in Non-Neoplastic, Primary Neoplastic, and Metastatic Neoplastic Tissue: A Comprehensive Immunohistochemical Study. Appl. Immunohistochem. Mol. Morphol. 2010, 18, 323–332.
  34. Lorenzo, P.I.; Moreno, C.; Delgado, I.; Cobo-Vuilleumier, N.; Meier, R.; Gomez-Izquierdo, L.; Berney, T.; Garcia-Carbonero, R.; Rojas, A.; Gauthier, B. Immunohistochemical Assessment of Pax8 Expression during Pancreatic Islet Development and in Human Neuroendocrine Tumors. Histochem. Cell Biol. 2011, 136, 595–607.
  35. Paner, G.P.; Srigley, J.R.; Radhakrishnan, A.; Cohen, C.; Skinnider, B.F.; Tickoo, S.K.; Young, A.N.; Amin, M.B. Immunohistochemical Analysis of Mucinous Tubular and Spindle Cell Carcinoma and Papillary Renal Cell Carcinoma of the Kidney: Significant Immunophenotypic Overlap Warrants Diagnostic Caution. Am. J. Surg. Pathol. 2006, 30, 13–19.
  36. The Cancer Genome Atlas Research Network. Comprehensive Molecular Characterization of Clear Cell Renal Cell Carcinoma. Nature 2013, 499, 43–49.
  37. Srigley, J.R.; Delahunt, B.; Eble, J.N.; Egevad, L.; Epstein, J.I.; Grignon, D.; Hes, O.; Moch, H.; Montironi, R.; Tickoo, S.K.; et al. The International Society of Urological Pathology (ISUP) Vancouver Classification of Renal Neoplasia. Am. J. Surg. Pathol. 2013, 37, 1469–1489.
  38. Cheville, J.C.; Lohse, C.M.; Zincke, H.; Weaver, A.L.; Leibovich, B.C.; Frank, I.; Blute, M.L. Sarcomatoid Renal Cell Carcinoma: An Examination of Underlying Histologic Subtype and an Analysis of Associations with Patient Outcome. Am. J. Surg. Pathol. 2004, 28, 435–441.
  39. Mantilla, J.G.; Antic, T.; Tretiakova, M. GATA3 as a Valuable Marker to Distinguish Clear Cell Papillary Renal Cell Carcinomas from Morphologic Mimics. Hum. Pathol. 2017, 66, 152–158.
  40. Chevarie-Davis, M.; Riazalhosseini, Y.; Arseneault, M.; Aprikian, A.; Kassouf, W.; Tanguay, S.; Latour, M.; Brimo, F. The Morphologic and Immunohistochemical Spectrum of Papillary Renal Cell Carcinoma: Study Including 132 Cases with Pure Type 1 and Type 2 Morphology as Well as Tumors with Overlapping Features. Am. J. Surg. Pathol. 2014, 38, 887–894.
  41. Perret, A.G.; Clemencon, A.; Li, G.; Tostain, J.; Peoc’h, M. Differential Expression of Prognostic Markers in Histological Subtypes of Papillary Renal Cell Carcinoma. BJU Int. 2008, 102, 183–187.
  42. Pal, S.K.; Ali, S.M.; Yakirevich, E.; Geynisman, D.M.; Karam, J.A.; Elvin, J.A.; Frampton, G.M.; Huang, X.; Lin, D.I.; Rosenzweig, M.; et al. Characterization of Clinical Cases of Advanced Papillary Renal Cell Carcinoma via Comprehensive Genomic Profiling. Eur. Urol. 2018, 73, 71–78.
  43. Cancer Genome Atlas Research Network; Linehan, W.M.; Spellman, P.T.; Ricketts, C.J.; Creighton, C.J.; Fei, S.S.; Davis, C.; Wheeler, D.A.; Murray, B.A.; Schmidt, L.; et al. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N. Engl. J. Med. 2016, 374, 135–145.
  44. Saleeb, R.M.; Brimo, F.; Farag, M.; Rompré-Brodeur, A.; Rotondo, F.; Beharry, V.; Wala, S.; Plant, P.; Downes, M.R.; Pace, K.; et al. Toward Biological Subtyping of Papillary Renal Cell Carcinoma With Clinical Implications Through Histologic, Immunohistochemical, and Molecular Analysis. Am. J. Surg. Pathol. 2017, 41, 1618–1629.
  45. Yang, X.J.; Tan, M.-H.; Kim, H.L.; Ditlev, J.A.; Betten, M.W.; Png, C.E.; Kort, E.J.; Futami, K.; Furge, K.A.; Takahashi, M.; et al. A Molecular Classification of Papillary Renal Cell Carcinoma. Cancer Res. 2005, 65, 5628–5637.
  46. Antonelli, A.; Tardanico, R.; Balzarini, P.; Arrighi, N.; Perucchini, L.; Zanotelli, T.; Cozzoli, A.; Zani, D.; Cunico, S.C.; Simeone, C. Cytogenetic Features, Clinical Significance and Prognostic Impact of Type 1 and Type 2 Papillary Renal Cell Carcinoma. Cancer Genet. Cytogenet. 2010, 199, 128–133.
  47. Klatte, T.; Rao, P.N.; de Martino, M.; LaRochelle, J.; Shuch, B.; Zomorodian, N.; Said, J.; Kabbinavar, F.F.; Belldegrun, A.S.; Pantuck, A.J. Cytogenetic Profile Predicts Prognosis of Patients with Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2009, 27, 746–753.
  48. Sanders, M.E.; Mick, R.; Tomaszewski, J.E.; Barr, F.G. Unique Patterns of Allelic Imbalance Distinguish Type 1 from Type 2 Sporadic Papillary Renal Cell Carcinoma. Am. J. Pathol. 2002, 161, 997–1005.
  49. Schraml, P.; Müller, D.; Bednar, R.; Gasser, T.; Sauter, G.; Mihatsch, M.J.; Moch, H. Allelic Loss at the D9S171 Locus on Chromosome 9p13 Is Associated with Progression of Papillary Renal Cell Carcinoma. J. Pathol. 2000, 190, 457–461.
  50. Delahunt, B.; Eble, J.N.; Egevad, L.; Samaratunga, H. Grading of Renal Cell Carcinoma. Histopathology 2019, 74, 4–17.
  51. Zhao, W.; Tian, B.; Wu, C.; Peng, Y.; Wang, H.; Gu, W.-L.; Gao, F.-H. DOG1, Cyclin D1, CK7, CD117 and Vimentin Are Useful Immunohistochemical Markers in Distinguishing Chromophobe Renal Cell Carcinoma from Clear Cell Renal Cell Carcinoma and Renal Oncocytoma. Pathol. Res. Pract. 2015, 211, 303–307.
  52. Memeo, L.; Jhang, J.; Assaad, A.M.; McKiernan, J.M.; Murty, V.V.V.S.; Hibshoosh, H.; Tong, G.-X.; Mansukhani, M.M. Immunohistochemical Analysis for Cytokeratin 7, KIT, and PAX2: Value in the Differential Diagnosis of Chromophobe Cell Carcinoma. Am. J. Clin. Pathol. 2007, 127, 225–229.
  53. Huo, L.; Sugimura, J.; Tretiakova, M.S.; Patton, K.T.; Gupta, R.; Popov, B.; Laskin, W.B.; Yeldandi, A.; Teh, B.T.; Yang, X.J. C-Kit Expression in Renal Oncocytomas and Chromophobe Renal Cell Carcinomas. Hum. Pathol. 2005, 36, 262–268.
  54. Hornsby, C.D.; Cohen, C.; Amin, M.B.; Picken, M.M.; Lawson, D.; Yin-Goen, Q.; Young, A.N. Claudin-7 Immunohistochemistry in Renal Tumors: A Candidate Marker for Chromophobe Renal Cell Carcinoma Identified by Gene Expression Profiling. Arch. Pathol. Lab. Med. 2007, 131, 1541–1546.
  55. Osunkoya, A.O.; Cohen, C.; Lawson, D.; Picken, M.M.; Amin, M.B.; Young, A.N. Claudin-7 and Claudin-8: Immunohistochemical Markers for the Differential Diagnosis of Chromophobe Renal Cell Carcinoma and Renal Oncocytoma. Hum. Pathol. 2009, 40, 206–210.
  56. Adley, B.P.; Gupta, A.; Lin, F.; Luan, C.; Teh, B.T.; Yang, X.J. Expression of Kidney-Specific Cadherin in Chromophobe Renal Cell Carcinoma and Renal Oncocytoma. Am. J. Clin. Pathol. 2006, 126, 79–85.
  57. Shen, S.S.; Krishna, B.; Chirala, R.; Amato, R.J.; Truong, L.D. Kidney-Specific Cadherin, a Specific Marker for the Distal Portion of the Nephron and Related Renal Neoplasms. Mod. Pathol. 2005, 18, 933–940.
  58. Langner, C.; Ratschek, M.; Rehak, P.; Schips, L.; Zigeuner, R. Expression of MUC1 (EMA) and E-Cadherin in Renal Cell Carcinoma: A Systematic Immunohistochemical Analysis of 188 Cases. Mod. Pathol. 2004, 17, 180–188.
  59. Martignoni, G.; Pea, M.; Brunelli, M.; Chilosi, M.; Zamó, A.; Bertaso, M.; Cossu-Rocca, P.; Eble, J.N.; Mikuz, G.; Puppa, G.; et al. CD10 Is Expressed in a Subset of Chromophobe Renal Cell Carcinomas. Mod. Pathol. 2004, 17, 1455–1463.
  60. Martignoni, G.; Pea, M.; Chilosi, M.; Brunelli, M.; Scarpa, A.; Colato, C.; Tardanico, R.; Zamboni, G.; Bonetti, F. Parvalbumin Is Constantly Expressed in Chromophobe Renal Carcinoma. Mod. Pathol. 2001, 14, 760–767.
  61. Adam, A.C.; Scriba, A.; Ortmann, M.; Huss, S.; Kahl, P.; Steiner, S.; Störkel, S.; Büttner, R. Immunohistochemical Analysis of Cytochrome C Oxidase Facilitates Differentiation between Oncocytoma and Chromophobe Renal Cell Carcinoma. Appl. Immunohistochem. Mol. Morphol. 2015, 23, 54–59.
  62. Iczkowski, K.A.; Czaja, R.C. Eosinophilic Kidney Tumors: Old and New. Arch. Pathol. Lab. Med. 2019, 143, 1455–1463.
  63. Erlmeier, F.; Hartmann, A.; Autenrieth, M.; Wiedemann, M.; Ivanyi, P.; Steffens, S.; Weichert, W. PD-1/PD-L1 Expression in Chromophobe Renal Cell Carcinoma: An Immunological Exception? Med. Oncol. 2016, 33, 120.
  64. Michalova, K.; Tretiakova, M.; Pivovarcikova, K.; Alaghehbandan, R.; Perez Montiel, D.; Ulamec, M.; Osunkoya, A.; Trpkov, K.; Yuan, G.; Grossmann, P.; et al. Expanding the Morphologic Spectrum of Chromophobe Renal Cell Carcinoma: A Study of 8 Cases with Papillary Architecture. Ann. Diagn. Pathol. 2020, 44, 151448.
  65. Ng, K.L.; Ellis, R.J.; Samaratunga, H.; Morais, C.; Gobe, G.C.; Wood, S.T. Utility of Cytokeratin 7, S100A1 and Caveolin-1 as Immunohistochemical Biomarkers to Differentiate Chromophobe Renal Cell Carcinoma from Renal Oncocytoma. Transl. Urol. 2019, 8 (Suppl. 2), S123–S137.
  66. Liu, Y.J.; Ussakli, C.; Antic, T.; Liu, Y.; Wu, Y.; True, L.; Tretiakova, M.S. Sporadic Oncocytic Tumors with Features Intermediate between Oncocytoma and Chromophobe Renal Cell Carcinoma: Comprehensive Clinicopathological and Genomic Profiling. Hum. Pathol. 2020, 104, 18–29.
  67. Brunelli, M.; Eble, J.N.; Zhang, S.; Martignoni, G.; Delahunt, B.; Cheng, L. Eosinophilic and Classic Chromophobe Renal Cell Carcinomas Have Similar Frequent Losses of Multiple Chromosomes from among Chromosomes 1, 2, 6, 10, and 17, and This Pattern of Genetic Abnormality Is Not Present in Renal Oncocytoma. Mod. Pathol. 2005, 18, 161–169.
  68. Davis, C.; Ricketts, C.J.; Wang, M.; Yang, L.; Cherniack, A.; Shen, H.; Buhay, C.; Kang, H.; Kim, S.; Fahey, C.; et al. The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. Cancer Cell 2014, 26, 319–330.
  69. Casuscelli, J.; Weinhold, N.; Gundem, G.; Wang, L.; Zabor, E.C.; Drill, E.; Wang, P.I.; Nanjangud, G.J.; Redzematovic, A.; Nargund, A.M.; et al. Genomic Landscape and Evolution of Metastatic Chromophobe Renal Cell Carcinoma. JCI Insight 2017, 2, 92688.
  70. Adam, J.; Couturier, J.; Molinié, V.; Vieillefond, A.; Sibony, M. Clear-Cell Papillary Renal Cell Carcinoma: 24 Cases of a Distinct Low-Grade Renal Tumour and a Comparative Genomic Hybridization Array Study of Seven Cases. Histopathology 2011, 58, 1064–1071.
  71. Rohan, S.M.; Xiao, Y.; Liang, Y.; Dudas, M.E.; Al-Ahmadie, H.A.; Fine, S.W.; Gopalan, A.; Reuter, V.E.; Rosenblum, M.K.; Russo, P.; et al. Clear-Cell Papillary Renal Cell Carcinoma: Molecular and Immunohistochemical Analysis with Emphasis on the von Hippel-Lindau Gene and Hypoxia-Inducible Factor Pathway-Related Proteins. Mod. Pathol. 2011, 24, 1207–1220.
  72. Albadine, R.; Schultz, L.; Illei, P.; Ertoy, D.; Hicks, J.; Sharma, R.; Epstein, J.I.; Netto, G.J. PAX8(+)/P63(−) Immunostaining Pattern in Renal Collecting Duct Carcinoma (CDC): A Useful Immunoprofile in the Differential Diagnosis of CDC versus Urothelial Carcinoma of Upper Urinary Tract. Am. J. Surg. Pathol. 2010, 34, 965–969.
  73. Pal, S.K.; Choueiri, T.K.; Wang, K.; Khaira, D.; Karam, J.A.; Van Allen, E.; Palma, N.A.; Stein, M.N.; Johnson, A.; Squillace, R.; et al. Characterization of Clinical Cases of Collecting Duct Carcinoma of the Kidney Assessed by Comprehensive Genomic Profiling. Eur. Urol. 2016, 70, 516–521.
  74. Wang, J.; Papanicolau-Sengos, A.; Chintala, S.; Wei, L.; Liu, B.; Hu, Q.; Miles, K.M.; Conroy, J.M.; Glenn, S.T.; Costantini, M.; et al. Collecting Duct Carcinoma of the Kidney Is Associated with CDKN2A Deletion and SLC Family Gene Up-Regulation. Oncotarget 2016, 7, 29901–29915.
  75. Assad, L.; Resetkova, E.; Oliveira, V.L.; Sun, W.; Stewart, J.M.; Katz, R.L.; Caraway, N.P. Cytologic Features of Renal Medullary Carcinoma. Cancer 2005, 105, 28–34.
  76. Swartz, M.A.; Karth, J.; Schneider, D.T.; Rodriguez, R.; Beckwith, J.B.; Perlman, E.J. Renal Medullary Carcinoma: Clinical, Pathologic, Immunohistochemical, and Genetic Analysis with Pathogenetic Implications. Urology 2002, 60, 1083–1089.
  77. Rao, P.; Tannir, N.M.; Tamboli, P. Expression of OCT3/4 in Renal Medullary Carcinoma Represents a Potential Diagnostic Pitfall. Am. J. Surg. Pathol. 2012, 36, 583–588.
  78. Beckermann, K.E.; Sharma, D.; Chaturvedi, S.; Msaouel, P.; Abboud, M.R.; Allory, Y.; Bourdeaut, F.; Calderaro, J.; De Cubas, A.A.; Derebail, V.K.; et al. Renal Medullary Carcinoma: Establishing Standards in Practice. J. Oncol. Pract. 2017, 13, 414–421.
  79. Liu, Q.; Galli, S.; Srinivasan, R.; Linehan, W.M.; Tsokos, M.; Merino, M.J. Renal Medullary Carcinoma: Molecular, Immunohistochemistry, and Morphologic Correlation. Am. J. Surg. Pathol. 2013, 37, 368–374.
  80. Gatalica, Z.; Lilleberg, S.L.; Monzon, F.A.; Koul, M.S.; Bridge, J.A.; Knezetic, J.; Legendre, B.; Sharma, P.; McCue, P.A. Renal Medullary Carcinomas: Histopathologic Phenotype Associated with Diverse Genotypes. Hum. Pathol. 2011, 42, 1979–1988.
  81. Mariño-Enríquez, A.; Ou, W.-B.; Weldon, C.B.; Fletcher, J.A.; Pérez-Atayde, A.R. ALK Rearrangement in Sickle Cell Trait-Associated Renal Medullary Carcinoma. Genes Chromosom. Cancer 2011, 50, 146–153.
  82. Schaeffer, E.M.; Guzzo, T.J.; Furge, K.A.; Netto, G.; Westphal, M.; Dykema, K.; Yang, X.; Zhou, M.; Teh, B.T.; Pavlovich, C.P. Renal Medullary Carcinoma: Molecular, Pathological and Clinical Evidence for Treatment with Topoisomerase-Inhibiting Therapy. BJU Int. 2010, 106, 62–65.
  83. Smith, N.E.; Deyrup, A.T.; Mariño-Enriquez, A.; Fletcher, J.A.; Bridge, J.A.; Illei, P.B.; Netto, G.J.; Argani, P. VCL-ALK Renal Cell Carcinoma in Children with Sickle-Cell Trait: The Eighth Sickle-Cell Nephropathy? Am. J. Surg. Pathol. 2014, 38, 858–863.
  84. Williamson, S.R.; Eble, J.N.; Amin, M.B.; Gupta, N.S.; Smith, S.C.; Sholl, L.M.; Montironi, R.; Hirsch, M.S.; Hornick, J.L. Succinate Dehydrogenase-Deficient Renal Cell Carcinoma: Detailed Characterization of 11 Tumors Defining a Unique Subtype of Renal Cell Carcinoma. Mod. Pathol. 2015, 28, 80–94.
  85. Gill, A.J.; Hes, O.; Papathomas, T.; Šedivcová, M.; Tan, P.H.; Agaimy, A.; Andresen, P.A.; Kedziora, A.; Clarkson, A.; Toon, C.W.; et al. Succinate Dehydrogenase (SDH)-Deficient Renal Carcinoma: A Morphologically Distinct Entity: A Clinicopathologic Series of 36 Tumors from 27 Patients. Am. J. Surg. Pathol. 2014, 38, 1588–1602.
  86. Gill, A.J.; Pachter, N.S.; Clarkson, A.; Tucker, K.M.; Winship, I.M.; Benn, D.E.; Robinson, B.G.; Clifton-Bligh, R.J. Renal Tumors and Hereditary Pheochromocytoma-Paraganglioma Syndrome Type 4. N. Engl. J. Med. 2011, 364, 885–886.
  87. Cardaci, S.; Ciriolo, M.R. TCA Cycle Defects and Cancer: When Metabolism Tunes Redox State. Int. J. Cell Biol. 2012, 2012, e161837.
  88. Argani, P. MiT Family Translocation Renal Cell Carcinoma. Semin. Diagn. Pathol. 2015, 32, 103–113.
  89. Zhong, M.; De Angelo, P.; Osborne, L.; Paniz-Mondolfi, A.E.; Geller, M.; Yang, Y.; Linehan, W.M.; Merino, M.J.; Cordon-Cardo, C.; Cai, D. Translocation Renal Cell Carcinomas in Adults: A Single-Institution Experience. Am. J. Surg. Pathol. 2012, 36, 654–662.
  90. Argani, P.; Olgac, S.; Tickoo, S.K.; Goldfischer, M.; Moch, H.; Chan, D.Y.; Eble, J.N.; Bonsib, S.M.; Jimeno, M.; Lloreta, J.; et al. Xp11 Translocation Renal Cell Carcinoma in Adults: Expanded Clinical, Pathologic, and Genetic Spectrum. Am. J. Surg. Pathol. 2007, 31, 1149–1160.
  91. Cheng, L.; Williamson, S.R.; Zhang, S.; Maclennan, G.T.; Montironi, R.; Lopez-Beltran, A. Understanding the Molecular Genetics of Renal Cell Neoplasia: Implications for Diagnosis, Prognosis and Therapy. Expert. Rev. Anticancer 2010, 10, 843–864.
  92. Rao, Q.; Shen, Q.; Xia, Q.Y.; Wang, Z.Y.; Liu, B.; Shi, S.S.; Shi, Q.L.; Yin, H.L.; Wu, B.; Ye, S.B.; et al. PSF/SFPQ Is a Very Common Gene Fusion Partner in TFE3 Rearrangement-Associated Perivascular Epithelioid Cell Tumors (PEComas) and Melanotic Xp11 Translocation Renal Cancers: Clinicopathologic, Immunohistochemical, and Molecular Characteristics Suggesting Classification as a Distinct Entity. Am. J. Surg. Pathol. 2015, 39, 1181–1196.
  93. Rivera, M.; Tickoo, S.K.; Saqi, A.; Lin, O. Cytologic Findings of Acquired Cystic Disease-Associated Renal Cell Carcinoma: A Report of Two Cases. Diagn. Cytopathol. 2008, 36, 344–347.
  94. Sule, N.; Yakupoglu, U.; Shen, S.S.; Krishnan, B.; Yang, G.; Lerner, S.; Sheikh-Hamad, D.; Truong, L.D. Calcium Oxalate Deposition in Renal Cell Carcinoma Associated with Acquired Cystic Kidney Disease: A Comprehensive Study. Am. J. Surg. Pathol. 2005, 29, 443–451.
  95. Cossu-Rocca, P.; Eble, J.N.; Zhang, S.; Martignoni, G.; Brunelli, M.; Cheng, L. Acquired Cystic Disease-Associated Renal Tumors: An Immunohistochemical and Fluorescence in Situ Hybridization Study. Mod. Pathol. 2006, 19, 780–787.
  96. Williamson, S.R.; Halat, S.; Eble, J.N.; Grignon, D.J.; Lopez-Beltran, A.; Montironi, R.; Tan, P.-H.; Wang, M.; Zhang, S.; Maclennan, G.T.; et al. Multilocular Cystic Renal Cell Carcinoma: Similarities and Differences in Immunoprofile Compared with Clear Cell Renal Cell Carcinoma. Am. J. Surg. Pathol. 2012, 36, 1425–1433.
  97. von Teichman, A.; Compérat, E.; Behnke, S.; Storz, M.; Moch, H.; Schraml, P. VHL Mutations and Dysregulation of PVHL- and PTEN-Controlled Pathways in Multilocular Cystic Renal Cell Carcinoma. Mod. Pathol. 2011, 24, 571–578.
  98. Halat, S.; Eble, J.N.; Grignon, D.J.; Lopez-Beltran, A.; Montironi, R.; Tan, P.-H.; Wang, M.; Zhang, S.; MacLennan, G.T.; Cheng, L. Multilocular Cystic Renal Cell Carcinoma Is a Subtype of Clear Cell Renal Cell Carcinoma. Mod. Pathol. 2010, 23, 931–936.
  99. Lawrie, C.H.; Armesto, M.; Fernandez-Mercado, M.; Arestín, M.; Manterola, L.; Goicoechea, I.; Larrea, E.; Caffarel, M.M.; Araujo, A.M.; Sole, C.; et al. Noncoding RNA Expression and Targeted Next-Generation Sequencing Distinguish Tubulocystic Renal Cell Carcinoma (TC-RCC) from Other Renal Neoplasms. J. Mol. Diagn. 2018, 20, 34–45.
  100. Fine, S.W.; Argani, P.; DeMarzo, A.M.; Delahunt, B.; Sebo, T.J.; Reuter, V.E.; Epstein, J.I. Expanding the Histologic Spectrum of Mucinous Tubular and Spindle Cell Carcinoma of the Kidney. Am. J. Surg. Pathol. 2006, 30, 1554–1560.
  101. Shen, S.S.; Ro, J.Y.; Tamboli, P.; Truong, L.D.; Zhai, Q.; Jung, S.-J.; Tibbs, R.G.; Ordonez, N.G.; Ayala, A.G. Mucinous Tubular and Spindle Cell Carcinoma of Kidney Is Probably a Variant of Papillary Renal Cell Carcinoma with Spindle Cell Features. Ann. Diagn. Pathol. 2007, 11, 13–21.
  102. Jung, S.J.; Yoon, H.K.; Chung, J.I.; Ayala, A.G.; Ro, J.Y. Mucinous Tubular and Spindle Cell Carcinoma of the Kidney With Neuroendocrine Differentiation: Report of Two Cases. Am. J. Clin. Pathol. 2006, 125, 99–104.
  103. Owens, C.L.; Argani, P.; Ali, S.Z. Mucinous Tubular and Spindle Cell Carcinoma of the Kidney: Cytopathologic Findings. Diagn. Cytopathol. 2007, 35, 593–596.
  104. Marks-Jones, D.A.; Zynger, D.L.; Parwani, A.V.; Cai, G. Fine Needle Aspiration Biopsy of Renal Mucinous Tubular and Spindle Cell Carcinoma: Report of Two Cases. Diagn. Cytopathol. 2010, 38, 51–55.
  105. Molinié, V.; Balaton, A.; Rotman, S.; Mansouri, D.; De Pinieux, I.; Homsi, T.; Guillou, L. Alpha-Methyl CoA Racemase Expression in Renal Cell Carcinomas. Hum. Pathol. 2006, 37, 698–703.
  106. Zhao, M.; He, X.-L.; Teng, X.-D. Mucinous Tubular and Spindle Cell Renal Cell Carcinoma: A Review of Clinicopathologic Aspects. Diagn. Pathol. 2015, 10, 168.
  107. Kuroda, N.; Hes, O.; Miyazaki, E.; Shuin, T.; Enzan, H. Frequent Expression of Neuroendocrine Markers in Mucinous Tubular and Spindle Cell Carcinoma of the Kidney. Histol. Histopathol. 2006, 21, 7–10.
  108. Brandal, P.; Lie, A.K.; Bassarova, A.; Svindland, A.; Risberg, B.; Danielsen, H.; Heim, S. Genomic Aberrations in Mucinous Tubular and Spindle Cell Renal Cell Carcinomas. Mod. Pathol. 2006, 19, 186–194.
  109. Petersson, F.; Gatalica, Z.; Grossmann, P.; Perez Montiel, M.D.; Alvarado Cabrero, I.; Bulimbasic, S.; Swatek, A.; Straka, L.; Tichy, T.; Hora, M.; et al. Sporadic Hybrid Oncocytic/Chromophobe Tumor of the Kidney: A Clinicopathologic, Histomorphologic, Immunohistochemical, Ultrastructural, and Molecular Cytogenetic Study of 14 Cases. Virchows Arch. 2010, 456, 355–365.
  110. Poté, N.; Vieillefond, A.; Couturier, J.; Arrufat, S.; Metzger, I.; Delongchamps, N.B.; Camparo, P.; Mège-Lechevallier, F.; Molinié, V.; Sibony, M. Hybrid Oncocytic/Chromophobe Renal Cell Tumours Do Not Display Genomic Features of Chromophobe Renal Cell Carcinomas. Virchows Arch. 2013, 462, 633–638.
  111. Adley, B.P.; Schafernak, K.T.; Yeldandi, A.V.; Yang, X.J.; Nayar, R. Cytologic and Histologic Findings in Multiple Renal Hybrid Oncocytic Tumors in a Patient with Birt-Hogg-Dubé Syndrome: A Case Report. Acta Cytol. 2006, 50, 584–588.
  112. Hes, O.; Petersson, F.; Kuroda, N.; Hora, M.; Michal, M. Renal Hybrid Oncocytic/Chromophobe Tumors—A Review. Histol. Histopathol. 2013, 28, 1257–1264.
  113. Iribe, Y.; Kuroda, N.; Nagashima, Y.; Yao, M.; Tanaka, R.; Gotoda, H.; Kawakami, F.; Imamura, Y.; Nakamura, Y.; Ando, M.; et al. Immunohistochemical Characterization of Renal Tumors in Patients with Birt-Hogg-Dubé Syndrome. Pathol. Int. 2015, 65, 126–132.
  114. Caliò, A.; Segala, D.; Munari, E.; Brunelli, M.; Martignoni, G. MiT Family Translocation Renal Cell Carcinoma: From the Early Descriptions to the Current Knowledge. Cancers 2019, 11, 1110.
  115. Athanazio, D.A.; Amorim, L.S.; da Cunha, I.W.; Leite, K.R.; da Paz, A.R.; de Paula Xavier Gomes, R.; Tavora, F.R.; Faraj, S.F.; Cavalcanti, M.S.; Bezerra, S.M. Classification of Renal Cell Tumors—Current Concepts and Use of Ancillary Tests: Recommendations of the Brazilian Society of Pathology. Surg. Exp. Pathol. 2021, 4, 4.
  116. Available online: https://www.pathologyoutlines.com/kidneytumor.html (accessed on 18 September 2022).
  117. Moretti, L.; Medeiros, L.J.; Kunkalla, K.; Williams, M.D.; Singh, R.R.; Vega, F. N-Terminal PAX8 Polyclonal Antibody Shows Cross-Reactivity with N-Terminal Region of PAX5 and Is Responsible for Reports of PAX8 Positivity in Malignant Lymphomas. Mod. Pathol. 2012, 25, 231–236.
  118. Miettinen, M.; McCue, P.A.; Sarlomo-Rikala, M.; Rys, J.; Czapiewski, P.; Wazny, K.; Langfort, R.; Waloszczyk, P.; Biernat, W.; Lasota, J.; et al. GATA3: A Multispecific but Potentially Useful Marker in Surgical Pathology: A Systematic Analysis of 2500 Epithelial and Nonepithelial Tumors. Am. J. Surg. Pathol. 2014, 38, 13–22.
  119. Gonzalez-Roibon, N.; Faraj, S.F.; Munari, E.; Bezerra, S.M.; Albadine, R.; Sharma, R.; Argani, P.; Allaf, M.E.; Netto, G.J. Comprehensive Profile of GATA Binding Protein 3 Immunohistochemical Expression in Primary and Metastatic Renal Neoplasms. Hum. Pathol. 2014, 45, 244–248.
  120. Bakshi, N.; Kunju, L.P.; Giordano, T.; Shah, R.B. Expression of Renal Cell Carcinoma Antigen (RCC) in Renal Epithelial and Nonrenal Tumors: Diagnostic Implications. Appl. Immunohistochem. Mol. Morphol. 2007, 15, 310–315.
  121. McGregor, D.K.; Khurana, K.K.; Cao, C.; Tsao, C.C.; Ayala, G.; Krishnan, B.; Ro, J.Y.; Lechago, J.; Truong, L.D. Diagnosing Primary and Metastatic Renal Cell Carcinoma: The Use of the Monoclonal Antibody “Renal Cell Carcinoma Marker”. Am. J. Surg. Pathol. 2001, 25, 1485–1492.
  122. Clayton, E.F.; Ziober, A.; Yao, Y.; Bing, Z. Malignant Tumors with Clear Cell Morphology: A Comparative Immunohistochemical Study with Renal Cell Carcinoma Antibody, Pax8, Steroidogenic Factor 1, and Brachyury. Ann. Diagn. Pathol. 2013, 17, 192–197.
  123. Chu, P.; Arber, D.A. Paraffin-Section Detection of CD10 in 505 Nonhematopoietic Neoplasms. Frequent Expression in Renal Cell Carcinoma and Endometrial Stromal Sarcoma. Am. J. Clin. Pathol. 2000, 113, 374–382.
  124. Kuehn, A.; Paner, G.P.; Skinnider, B.F.; Cohen, C.; Datta, M.W.; Young, A.N.; Srigley, J.R.; Amin, M.B. Expression Analysis of Kidney-Specific Cadherin in a Wide Spectrum of Traditional and Newly Recognized Renal Epithelial Neoplasms: Diagnostic and Histogenetic Implications. Am. J. Surg. Pathol. 2007, 31, 1528–1533.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , , , , , ,
View Times: 570
Revisions: 2 times (View History)
Update Date: 29 Nov 2022
1000/1000
Video Production Service