1000/1000

Hot
Most Recent

Submitted Successfully!

To reward your contribution, here is a gift for you: A free trial for our video production service.

Thank you for your contribution! You can also upload a video entry or images related to this topic.

Do you have a full video?

Are you sure to Delete?

Cite

If you have any further questions, please contact Encyclopedia Editorial Office.

HandWiki. Differential Geometry of Curves. Encyclopedia. Available online: https://encyclopedia.pub/entry/34951 (accessed on 18 June 2024).

HandWiki. Differential Geometry of Curves. Encyclopedia. Available at: https://encyclopedia.pub/entry/34951. Accessed June 18, 2024.

HandWiki. "Differential Geometry of Curves" *Encyclopedia*, https://encyclopedia.pub/entry/34951 (accessed June 18, 2024).

HandWiki. (2022, November 17). Differential Geometry of Curves. In *Encyclopedia*. https://encyclopedia.pub/entry/34951

HandWiki. "Differential Geometry of Curves." *Encyclopedia*. Web. 17 November, 2022.

Copy Citation

Differential geometry of curves is the branch of geometry that deals with smooth curves in the plane and in the Euclidean space by methods of differential and integral calculus. Starting in antiquity, many specific curves have been thoroughly investigated using the synthetic approach. Differential geometry takes another path: curves are represented in a parametrized form, and their geometric properties and various quantities associated with them, such as the curvature and the arc length, are expressed via derivatives and integrals using vector calculus. One of the most important tools used to analyze a curve is the Frenet frame, a moving frame that provides a coordinate system at each point of the curve that is "best adapted" to the curve near that point. The theory of curves is much simpler and narrower in scope than the theory of surfaces and its higher-dimensional generalizations, because a regular curve in a Euclidean space has no intrinsic geometry. Any regular curve may be parametrized by the arc length (the natural parametrization) and from the point of view of a theoretical point particle on the curve that does not know anything about the ambient space, all curves would appear the same. Different space curves are only distinguished by the way in which they bend and twist. Quantitatively, this is measured by the differential-geometric invariants called the curvature and the torsion of a curve. The fundamental theorem of curves asserts that the knowledge of these invariants completely determines the curve.

regular curve
space curves
fundamental theorem

Let (i) [math]\displaystyle{ n \in \mathbb{N} }[/math], (ii) [math]\displaystyle{ r \in \{ \mathbb{N} \cup \infty \} }[/math], and (iii) [math]\displaystyle{ I }[/math] be a non-empty interval of real numbers. Then a vector-valued function

- [math]\displaystyle{ \gamma: I \to \mathbb{R}^{n} }[/math]

of class [math]\displaystyle{ C^{r} }[/math] (i.e., the component-functions of [math]\displaystyle{ \gamma }[/math] are [math]\displaystyle{ r }[/math]-times continuously differentiable) is called a **parametric [math]\displaystyle{ C^{r} }[/math]-curve** or a **[math]\displaystyle{ C^{r} }[/math]-parametrization**. Note that [math]\displaystyle{ \gamma[I] \subseteq \mathbb{R}^{n} }[/math] is called the **image** of the parametric curve. It is important to distinguish between a parametric curve [math]\displaystyle{ \gamma }[/math] and its image [math]\displaystyle{ \gamma[I] }[/math], because a given subset of [math]\displaystyle{ \mathbb{R}^{n} }[/math] can be the image of several distinct parametric curves.

One may think of the parameter [math]\displaystyle{ t }[/math] in [math]\displaystyle{ \gamma(t) }[/math] as representing time, and [math]\displaystyle{ \gamma }[/math] as representing the trajectory of a moving particle in space.

If [math]\displaystyle{ I }[/math] is a closed interval [math]\displaystyle{ [a,b] }[/math], then we call [math]\displaystyle{ \gamma(a) }[/math] the **starting point** and [math]\displaystyle{ \gamma(b) }[/math] the **endpoint** of [math]\displaystyle{ \gamma }[/math]. If [math]\displaystyle{ \gamma(a) = \gamma(b) }[/math] (i.e., the starting point and endpoint of [math]\displaystyle{ \gamma }[/math] coincide), then we say that [math]\displaystyle{ \gamma }[/math] is **closed** or is a **loop**. Furthermore, we call [math]\displaystyle{ \gamma }[/math] a **closed parametric [math]\displaystyle{ C^{r} }[/math]-curve** if and only if [math]\displaystyle{ {\gamma^{(k)}}(a) = {\gamma^{(k)}}(b) }[/math] for all [math]\displaystyle{ k \in \mathbb{N}_{\leq r} }[/math].

If [math]\displaystyle{ \gamma|_{(a,b)}: (a,b) \to \mathbb{R}^{n} }[/math] is injective, then we say that [math]\displaystyle{ \gamma }[/math] is **simple**.

If each component function of [math]\displaystyle{ \gamma: I \to \mathbb{R}^n }[/math] can be expressed as a power series, then we say that [math]\displaystyle{ \gamma }[/math] is **analytic** (i.e. being of class [math]\displaystyle{ C^{\omega} }[/math]).

We write [math]\displaystyle{ - \gamma }[/math] for the parametric curve that is traversed in the direction opposite to that of [math]\displaystyle{ \gamma }[/math].

We say that [math]\displaystyle{ \gamma }[/math] is **regular of order [math]\displaystyle{ m }[/math]** (where [math]\displaystyle{ m \leq r }[/math]) if and only if for any [math]\displaystyle{ t \in I }[/math],

- [math]\displaystyle{ \left\{ \gamma'(t),\gamma''(t),\ldots,{\gamma^{(m)}}(t) \right\} }[/math]

is a linearly independent subset of [math]\displaystyle{ \mathbb{R}^{n} }[/math].

In particular, a parametric [math]\displaystyle{ C^{1} }[/math]-curve [math]\displaystyle{ \gamma }[/math] is **regular** if and only if [math]\displaystyle{ \gamma'(t) \neq \mathbf{0} }[/math] for any [math]\displaystyle{ t \in I }[/math].

Given the image of a parametric curve, one can define several different parametrizations of the parametric curve. Differential geometry aims to describe the properties of parametric curves that are invariant under certain re-parametrizations. We thus have to define a suitable equivalence relation on the set of all parametric curves. The differential-geometric properties of a parametric curve (e.g., its length, its Frenet frame and its generalized curvature) are invariant under re-parametrization and therefore properties of the equivalence class itself. The equivalence classes are called **[math]\displaystyle{ C^{r} }[/math]-curves** and are central objects studied in the differential geometry of curves.

Two parametric [math]\displaystyle{ C^{r} }[/math]-curves, [math]\displaystyle{ \gamma_{1}: I_{1} \to \mathbb{R}^{n} }[/math] and [math]\displaystyle{ \gamma_{2}: I_{2} \to \mathbb{R}^{n} }[/math], are said to be **equivalent** if and only if there exists a bijective [math]\displaystyle{ C^{r} }[/math]-map [math]\displaystyle{ \phi: I_{1} \to I_{2} }[/math] such that

- [math]\displaystyle{ \forall t \in I_{1}: \quad \phi'(t) \neq 0 }[/math]

and

- [math]\displaystyle{ \forall t \in I_{1}: \quad {\gamma_{2}}(\phi(t)) = {\gamma_{1}}(t). }[/math]

[math]\displaystyle{ \gamma_{2} }[/math] is then said to be a **re-parametrization** of [math]\displaystyle{ \gamma_{1} }[/math].

Re-parametrization defines an equivalence relation on the set of all parametric [math]\displaystyle{ C^{r} }[/math]-curves of class [math]\displaystyle{ C^{r} }[/math]. We call an equivalence class of this relation simply a **[math]\displaystyle{ C^{r} }[/math]-curve**.

We can define an even *finer* equivalence relation of **oriented parametric [math]\displaystyle{ C^{r} }[/math]-curves** by requiring [math]\displaystyle{ \phi }[/math] to satisfy [math]\displaystyle{ \phi'(t) \gt 0 }[/math].

Equivalent parametric [math]\displaystyle{ C^{r} }[/math]-curves have the same image, and equivalent oriented parametric [math]\displaystyle{ C^{r} }[/math]-curves even traverse the image in the same direction.

The length [math]\displaystyle{ l }[/math] of a parametric [math]\displaystyle{ C^{1} }[/math]-curve [math]\displaystyle{ \gamma: [a,b] \to \mathbb{R}^{n} }[/math] is defined as

- [math]\displaystyle{ l ~ \stackrel{\text{df}}{=} ~ \int_{a}^{b} \left\| \gamma'(t) \right\| ~ \mathrm{d}{t}. }[/math]

The length of a parametric curve is invariant under re-parametrization and is therefore a differential-geometric property of the parametric curve.

For each regular parametric [math]\displaystyle{ C^{r} }[/math]-curve [math]\displaystyle{ \gamma: [a,b] \to \mathbb{R}^{n} }[/math], where [math]\displaystyle{ r \geq 1 }[/math], we can define a function

- [math]\displaystyle{ \forall t \in [a,b]: \quad s(t) ~ \stackrel{\text{df}}{=} ~ \int_{a}^{t} \left\| \gamma'(x) \right\| ~ \mathrm{d}{x}. }[/math]

Writing [math]\displaystyle{ \bar{\gamma}(s) = \gamma(t(s)) }[/math], where [math]\displaystyle{ t(s) }[/math] is the inverse function of [math]\displaystyle{ s(t) }[/math], we get a re-parametrization [math]\displaystyle{ \bar{\gamma} }[/math] of [math]\displaystyle{ \gamma }[/math] that is called a **natural**, **arc-length** or **unit-speed** parametrization. The parameter [math]\displaystyle{ s(t) }[/math] is called the **natural parameter** of [math]\displaystyle{ \gamma }[/math].

This parametrization is preferred because the natural parameter [math]\displaystyle{ s(t) }[/math] traverses the image of [math]\displaystyle{ \gamma }[/math] at unit speed, so that

- [math]\displaystyle{ \forall t \in I: \quad \left\| \bar{\gamma}'(s(t)) \right\| = 1. }[/math]

In practice, it is often very difficult to calculate the natural parametrization of a parametric curve, but it is useful for theoretical arguments.

For a given parametric curve [math]\displaystyle{ \gamma }[/math], the natural parametrization is unique up to a shift of parameter.

The quantity

- [math]\displaystyle{ E(\gamma) ~ \stackrel{\text{df}}{=} ~ \frac{1}{2} \int_{a}^{b} \left\| \gamma'(t) \right\|^{2} ~ \mathrm{d}{t} }[/math]

is sometimes called the **energy** or action of the curve; this name is justified because the geodesic equations are the Euler–Lagrange equations of motion for this action.

A **Frenet frame** is a moving reference frame of *n* orthonormal vectors *e*_{i}(*t*) which are used to describe a curve locally at each point *γ*(*t*). It is the main tool in the differential geometric treatment of curves as it is far easier and more natural to describe local properties (e.g. curvature, torsion) in terms of a local reference system than using a global one like the Euclidean coordinates.

Given a *C*^{n + 1}-curve *γ* in **R**^{n} which is regular of order *n* the **Frenet frame** for the curve is the set of orthonormal vectors

- [math]\displaystyle{ \mathbf{e}_1(t), \ldots, \mathbf{e}_n(t) }[/math]

called **Frenet vectors**. They are constructed from the derivatives of *γ*(*t*) using the Gram–Schmidt orthogonalization algorithm with

- [math]\displaystyle{ \mathbf{e}_1(t) = \frac{\mathbf{\gamma}'(t)}{\| \mathbf{\gamma}'(t) \|} }[/math]

- [math]\displaystyle{ \mathbf{e}_{j}(t) = \frac{\overline{\mathbf{e}_{j}}(t)}{\|\overline{\mathbf{e}_{j}}(t) \|} \mbox{, } \overline{\mathbf{e}_{j}}(t) = \mathbf{\gamma}^{(j)}(t) - \sum _{i=1}^{j-1} \langle \mathbf{\gamma}^{(j)}(t), \mathbf{e}_i(t) \rangle \, \mathbf{e}_i(t) }[/math]

The real-valued functions *χ*_{i}(*t*) are called **generalized curvatures** and are defined as

- [math]\displaystyle{ \chi_i(t) = \frac{\langle \mathbf{e}_i'(t), \mathbf{e}_{i+1}(t) \rangle}{\| \mathbf{\gamma}^'(t) \|} }[/math]

The Frenet frame and the generalized curvatures are invariant under reparametrization and are therefore differential geometric properties of the curve.

A **Bertrand curve** is a Frenet curve in [math]\displaystyle{ \mathbb{R}^3 }[/math] with the additional property that there is a second curve in [math]\displaystyle{ \mathbb{R}^3 }[/math] such that the principal normal vectors to these two curves are identical at each corresponding point. In other words, if [math]\displaystyle{ \vec r_1(t) }[/math] and [math]\displaystyle{ \vec r_2(t) }[/math] are two curves in [math]\displaystyle{ \mathbb{R}^3 }[/math] such that for any [math]\displaystyle{ t }[/math], [math]\displaystyle{ \vec N_1=\vec N_2 }[/math], then [math]\displaystyle{ \vec r_1 }[/math] and [math]\displaystyle{ \vec r_2 }[/math] are Bertrand curves. For this reason it is common to speak of a **Bertrand pair of curves** (like [math]\displaystyle{ \vec r_1 }[/math] and [math]\displaystyle{ \vec r_2 }[/math] in the previous example). According to problem 25 in Kühnel's "Differential Geometry Curves - Surfaces - Manifolds", it is also true that two Bertrand curves that do not lie in the same 2-dimensional plane are characterized by the existence of a linear relation [math]\displaystyle{ a\kappa+b\tau=1 }[/math] where [math]\displaystyle{ a,b }[/math] are real constants and [math]\displaystyle{ a\neq0 }[/math].^{[1]} Furthermore, the product of torsions of Bertrand pairs of curves are constant.^{[2]}

The first three Frenet vectors and generalized curvatures can be visualized in three-dimensional space. They have additional names and more semantic information attached to them.

If a curve *γ* represents the path of a particle, then the instantaneous velocity of the particle at a given point *P* is expressed by a vector, called the **tangent vector** to the curve at *P*. Mathematically, given a parametrized *C*^{1} curve *γ* = *γ*(*t*), for every value *t* = *t*_{0} of the parameter, the vector

- [math]\displaystyle{ \gamma'(t_0) = \frac{d}{d\,t}\mathbf{\gamma}(t) }[/math] at [math]\displaystyle{ {t=t_0} }[/math]

is the tangent vector at the point *P* = *γ*(*t*_{0}). Generally speaking, the tangent vector may be zero. The magnitude of the tangent vector,

- [math]\displaystyle{ \|\mathbf{\gamma}'(t_0)\|, }[/math]

is the speed at the time *t*_{0}.

The first Frenet vector *e*_{1}(*t*) is the **unit tangent vector** in the same direction, defined at each regular point of *γ*:

- [math]\displaystyle{ \mathbf{e}_{1}(t) = \frac{ \mathbf{\gamma}'(t) }{ \| \mathbf{\gamma}'(t) \|}. }[/math]

If *t* = *s* is the natural parameter then the tangent vector has unit length, so that the formula simplifies:

- [math]\displaystyle{ \mathbf{e}_{1}(s) = \mathbf{\gamma}'(s). }[/math]

The unit tangent vector determines the **orientation** of the curve, or the forward direction, corresponding to the increasing values of the parameter. The unit tangent vector taken as a curve traces the spherical image of the original curve.

The **normal vector**, sometimes called the **curvature vector**, indicates the deviance of the curve from being a straight line.

It is defined as

- [math]\displaystyle{ \overline{\mathbf{e}_2}(t) = \mathbf{\gamma}''(t) - \langle \mathbf{\gamma}''(t), \mathbf{e}_1(t) \rangle \, \mathbf{e}_1(t). }[/math]

Its normalized form, the **unit normal vector**, is the second Frenet vector *e*_{2}(*t*) and defined as

- [math]\displaystyle{ \mathbf{e}_2(t) = \frac{\overline{\mathbf{e}_2}(t)} {\| \overline{\mathbf{e}_2}(t) \|}. }[/math]

The tangent and the normal vector at point *t* define the osculating plane at point *t*.

The first generalized curvature *χ*_{1}(*t*) is called **curvature** and measures the deviance of *γ* from being a straight line relative to the osculating plane. It is defined as

- [math]\displaystyle{ \kappa(t) = \chi_1(t) = \frac{\langle \mathbf{e}_1'(t), \mathbf{e}_2(t) \rangle}{\| \mathbf{\gamma}'(t) \|} }[/math]

and is called the curvature of *γ* at point *t*.

The reciprocal of the curvature

- [math]\displaystyle{ \frac{1}{\kappa(t)} }[/math]

is called the **radius of curvature**.

A circle with radius *r* has a constant curvature of

- [math]\displaystyle{ \kappa(t) = \frac{1}{r} }[/math]

whereas a line has a curvature of 0.

The **unit binormal vector** is the third Frenet vector *e*_{3}(*t*). It is always orthogonal to the **unit** tangent and normal vectors at *t*, and is defined as

- [math]\displaystyle{ \mathbf{e}_3(t) = \frac{\overline{\mathbf{e}_3}(t)} {\| \overline{\mathbf{e}_3}(t) \|} \mbox{, } \overline{\mathbf{e}_3}(t) = \mathbf{\gamma}'''(t) - \langle \mathbf{\gamma}'''(t), \mathbf{e}_1(t) \rangle \, \mathbf{e}_1(t) - \langle \mathbf{\gamma}'''(t), \mathbf{e}_2(t) \rangle \,\mathbf{e}_2(t) }[/math]

In 3-dimensional space the equation simplifies to

- [math]\displaystyle{ \mathbf{e}_3(t) = \mathbf{e}_1(t) \times \mathbf{e}_2(t) }[/math]

or to

- [math]\displaystyle{ \mathbf{e}_3(t) = -\mathbf{e}_1(t) \times \mathbf{e}_2(t) }[/math]

That either sign may occur is illustrated by the examples of a right-handed helix and a left-handed helix.

The second generalized curvature *χ*_{2}(*t*) is called **torsion** and measures the deviance of *γ* from being a plane curve. Or, in other words, if the torsion is zero, the curve lies completely in the same osculating plane (there is only one osculating plane for every point *t*). It is defined as

- [math]\displaystyle{ \tau(t) = \chi_2(t) = \frac{\langle \mathbf{e}_2'(t), \mathbf{e}_3(t) \rangle}{\| \mathbf{\gamma}'(t) \|} }[/math]

and is called the torsion of *γ* at point *t*.

Given *n* − 1 functions:

- [math]\displaystyle{ \chi_i \in C^{n-i}([a,b],\mathbb{R}^n) \mbox{, } \chi_i(t) \gt 0 \mbox{, } 1 \leq i \leq n-1 }[/math]

then there exists a **unique** (up to transformations using the Euclidean group) *C*^{n + 1}-curve *γ* which is regular of order *n* and has the following properties

- [math]\displaystyle{ \|\gamma'(t)\| = 1 \mbox{ } (t \in [a,b]) }[/math]
- [math]\displaystyle{ \chi_i(t) = \frac{ \langle \mathbf{e}_i'(t), \mathbf{e}_{i+1}(t) \rangle}{\| \mathbf{\gamma}'(t) \|} }[/math]

where the set

- [math]\displaystyle{ \mathbf{e}_1(t), \ldots, \mathbf{e}_n(t) }[/math]

is the Frenet frame for the curve.

By additionally providing a start *t*_{0} in *I*, a starting point *p*_{0} in **R**^{n} and an initial positive orthonormal Frenet frame {*e*_{1}, …, *e*_{n − 1}} with

- [math]\displaystyle{ \mathbf{\gamma}(t_0) = \mathbf{p}_0 }[/math]
- [math]\displaystyle{ \mathbf{e}_i(t_0) = \mathbf{e}_i \mbox{, } 1 \leq i \leq n-1 }[/math]

we can eliminate the Euclidean transformations and get unique curve *γ*.

The Frenet–Serret formulas are a set of ordinary differential equations of first order. The solution is the set of Frenet vectors describing the curve specified by the generalized curvature functions *χ*_{i}.

- [math]\displaystyle{ \begin{bmatrix} \mathbf{e}_1'(t) \\ \mathbf{e}_2'(t) \\ \end{bmatrix} = \left\Vert \gamma'\left(t\right) \right\Vert \begin{bmatrix} 0 & \kappa(t) \\ -\kappa(t) & 0 \\ \end{bmatrix} \begin{bmatrix} \mathbf{e}_1(t) \\ \mathbf{e}_2(t) \\ \end{bmatrix} }[/math]

- [math]\displaystyle{ \begin{bmatrix} \mathbf{e}_1'(t) \\ \mathbf{e}_2'(t) \\ \mathbf{e}_3'(t) \\ \end{bmatrix} = \left\Vert \gamma'\left(t\right) \right\Vert \begin{bmatrix} 0 & \kappa(t) & 0 \\ -\kappa(t) & 0 & \tau(t) \\ 0 & -\tau(t) & 0 \\ \end{bmatrix} \begin{bmatrix} \mathbf{e}_1(t) \\ \mathbf{e}_2(t) \\ \mathbf{e}_3(t) \\ \end{bmatrix} }[/math]

- [math]\displaystyle{ \begin{bmatrix} \mathbf{e}_1'(t) \\ \mathbf{e}_2'(t) \\ \vdots \\ \mathbf{e}_{n-1}'(t) \\ \mathbf{e}_n'(t) \\ \end{bmatrix} = \left\Vert \gamma'\left(t\right) \right\Vert \begin{bmatrix} 0 & \chi_1(t) & \cdots & 0 & 0 \\ -\chi_1(t) & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \chi_{n-1}(t) \\ 0 & 0 & \cdots & -\chi_{n-1}(t) & 0 \\ \end{bmatrix} \begin{bmatrix} \mathbf{e}_1(t) \\ \mathbf{e}_2(t) \\ \vdots \\ \mathbf{e}_{n-1}(t) \\ \mathbf{e}_n(t) \\ \end{bmatrix} }[/math]

- Kühnel, Wolfgang (2005). Differential Geometry: Curves, Surfaces, Manifolds. Providence: AMS. p. 53. ISBN 0-8218-3988-8.
- http://mathworld.wolfram.com/BertrandCurves.html

More

Information

Subjects:
Others

Contributor
MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register
:

View Times:
1.5K

Entry Collection:
HandWiki

Update Date:
17 Nov 2022