1000/1000
Hot
Most Recent
Digital geologic mapping is the process by which geological features are observed, analyzed, and recorded in the field and displayed in real-time on a computer or personal digital assistant (PDA). The primary function of this emerging technology is to produce spatially referenced geologic maps that can be utilized and updated while conducting field work.
Geologic mapping is an interpretive process involving multiple types of information, from analytical data to personal observation, all synthesized and recorded by the geologist. Geologic observations have traditionally been recorded on paper, whether on standardized note cards, in a notebook, or on a map.[1]
In the 21st century, computer technology and software are becoming portable and powerful enough to take on some of the more mundane tasks a geologist must perform in the field, such as precisely locating oneself with a GPS unit, displaying multiple images (maps, satellite images, aerial photography, etc.), plotting strike and dip symbols, and color-coding different physical characteristics of a lithology or contact type (e.g., unconformity) between rock strata. Additionally, computers can now perform some tasks that were difficult to accomplish in the field, for example, handwriting or voice recognition and annotating photographs on the spot.[2]
Digital mapping has positive and negative effects on the mapping process;[3] only an assessment of its impact on a geological mapping project as a whole shows whether it provides a net benefit. With the use of computers in the field, the recording of observations and basic data management changes dramatically. The use of digital mapping also affects when data analysis occurs in the mapping process, but does not greatly affect the process itself.[4]
Some universities and secondary educators are integrating digital geologic mapping into class work.[6] For example, The GeoPad project [1] describes the combination of technology, teaching field geology, and geologic mapping in programs such as Bowling Green State University’s geology field camp.[2] At Urbino University (Italy) :it:Università di Urbino, Field Digital Mapping Techniques are integrated in Earth and Environmental Sciences courses since 2006 [3] [4]. The MapTeach program is designed to provide hands-on digital mapping for middle and high school students.[5] The SPLINT [6] project in the UK is using the BGS field mapping system as part of their teaching curriculum
Digital mapping technology can be applied to traditional geologic mapping, reconnaissance mapping, and surveying of geologic features. At international digital field data capture (DFDC) meetings, major geological surveys (e.g., British Geological Survey and Geological Survey of Canada) discuss how to harness and develop the technology.[7] Many other geological surveys and private companies are also designing systems to conduct scientific and applied geological mapping of, for example, geothermal springs[7] and mine sites.[8]
The initial cost of digital geologic computing and supporting equipment may be significant. In addition, equipment and software must be replaced occasionally due to damage, loss, and obsolescence. Products moving through the market are quickly discontinued as technology and consumer interests evolve. A product that works well for digital mapping may not be available for purchase the following year; however, testing multiple brands and generations of equipment and software is prohibitively expensive.[4]
Some features of digital mapping equipment are common to both survey or reconnaissance mapping and “traditional” comprehensive mapping. The capture of less data-intensive reconnaissance mapping or survey data in the field can be accomplished by less robust databases and GIS programs, and hardware with a smaller screen size.[9] [10]
Hardware and software only recently (in 2000) became available that can satisfy most of the criteria necessary for digitally capturing "traditional" mapping data.
Year(s) available | Field system name | Base software | Hardware used | Reference |
---|---|---|---|---|
1989–1992 | MERLIN | BGS Custom | EPSON EHT400E Handheld computer | |
1991-1999? | FIELDLOG | AutoCAD, Fieldworker | Apple Newton PDA | [11]
[12] |
1998–2000 | G-Map | Esri Arc-View | PC & Web Based | Eni-Temars |
2000–Present | GeoEditor | Esri Arc-View | PC | [13] |
2001?–2002? | GeoLink | Geolink | unknown | [10] |
2002–2010 | MIDAS | ESRI's ArcPAD and BGS bespoke database | iPAQ PDAs | [14] |
2002–Present | Geopad | ESRI's ArcGIS, Microsoft OneNote, etc. | Rugged Tablet PCs and Tablet PCs | [15] |
2004–Present | Geomapper | ESRI's ArcGIS | Rugged Tablet PCs and Tablet PCs | [13] |
2004–2008 | Map IT (not longer available) | Map IT | Ruggedized Tablet PC | [16]
[17] [8] [18] |
2006–2008 | Geologic Data Assistant (GDA) | customized ArcPad 6.0.3 (ESRI) | Ruggedized PDA | [19] |
2001–2010 | ArcPad | ESRI's ArcPad | Ruggedized PDA or Tablet PC | [10] |
2002?–2010 | GeoMapper | PenMap [9] | Ruggedized PDA or Tablet PC |
[20] [21] |
2006?–2010 | SAIC GeoRover | Extension for ESRI's ArcGIS | Ruggedized PDA or Tablet PC | [10] |
2003–2010 | GAFAG GeoRover (name protected in Europe) | Mobile geological information system | Ruggedized PDA, Tablet PC, Desktop PC, Laptop | [11] |
2000?–2010 | BGS-SIGMAmobile [12] | Customized ArcGIS, MS Access, InfiNotes | Ruggedized Tablet PC | [13]
[22] |
2008–Present | BeeGIS | Built on top of uDig [14] | Tablet PC (ruggized or not), Desktop PC, Laptop (Win, Mac or Linux Systems) | [15]
[23] |
2011–Present | FieldMove [16] | Midland Valley's Move | Tablet PC (ruggized or not), Desktop PC, Laptop (Windows XP or later) |
[24] |
Since every geologic mapping project covers an area with unique lithologies and complexities, and every geologist has a unique style of mapping, no software is perfect for digital geologic mapping out of the box. The geologist can choose to either modify their mapping style to the available software, or modify the software to their mapping style, which may require extensive programming. (As of 2009), available geologic mapping software requires some degree of customization for a given geologic mapping project. Some digital-mapping geologists/programmers have chosen to highly customize or extend ESRI's ArcGIS instead. At digital field data capture meetings such as at the British Geological Survey in 2002 [17] some organisations agreed to share development experiences, and some software systems are now available to download for free.