Different legumes have been blended with wheat and other cereal flour to produce different kinds of bakery and pastry products. Notably include:
The storage modulus defines the elastic properties of a sample and the loss modulus defines the viscous properties of a sample
[50][51].
Gluten, the principal protein present in wheat dough exhibits viscoelastic properties where the gliadin portion represents viscous property and the glutenin components represent elastic behavior resulting from the variation in their molecular sizes. Increasing the protein in dough produces higher consistency and improving intermolecular cross-linkage lead to higher G′ and a reduced loss tangent in the dough. The relationships (which include physical and chemical attractions) among the protein molecules significantly contribute to the rheological characteristics of dough
[50]. The rheological property of wheat gluten is the basis of its functional properties and makes it different from all other commercially available plant proteins. These properties allow it to be used to produce bread, cakes, biscuits and noodles
[52]. Rheological characteristics of dough also have a profound impact on the quality of the product as well as process efficiency. These properties can be correlated to the mechanical properties and the specific volume of bakery products. The mechanical properties (e.g., compression, tension, shear) of bread crumbs are important for periodic quality assurance in the baking industry and to assess the impact of changes in dough ingredients and baking conditions. The compression test, which is a measure of bread firmness is used to evaluate the mechanical properties of bread crumbs and it relates to the subjective methods of touch or mouthfeel. This property has been demonstrated to have a positive correlation with the sensory attributes of the baked product. Tensile test on the other hand is hardly used to measure the mechanical properties of bread and other spongy foods because it is challenging to grip the food sample, inability to meet compliance at the grips and inability to obtain the size, shape and stiffness stipulated for the test in those food materials
[53]. It has been established that the texture and density of baked goods for instance bread and cakes are influenced by variations in their rheology and vapour content during baking
[54].
The dough rheology and quality of bread depend largely on the starch-protein complex, and most importantly, the presence of gluten. The addition of non-wheat flour for baked goods can have negative effects on the gluten network, leading to weakened bread dough and degradation in bread quality characteristics
[55]. The major problem with non-wheat grain flours is the result of their weak dough viscoelastic and gas-holding properties resulting from the lack of gluten
[56].
Water absorption capacity is an essential property that indicates a flour’s ability to absorb water and produce dough of excellent consistency. The impact of legumes/pulses addition on the water absorption capacity of dough has been extensively studied. The addition of chickpea, soybean, common bean, fava bean and lentil flours to wheat flour has been reported to increase the water absorption capacity of dough compared to wheat dough
[25][57][58][59]. This can be attributed to the water absorption capacity of the gluten, protein particle entrapment inside the gluten network structure and the likely relationship between the gluten and some of the legume proteins probably present on the outer surface of the hydrated particles
[25][57].
The addition of the enzyme transglutaminase has been reported to reinforce the protein network and induced a significant increase in the water absorption capacity of rice flour, soy flour and pea protein isolate blends, producing a synergetic effect and a reduction in the storage (G′) and viscous (G′′) moduli. The main function of the enzyme transglutaminase is to covalently crosslink proteins through the association between an ε-amino group on protein-bound lysine residues and a γ-carboxamide group on protein-bound glutamine residues.
[12]. Different processing methods like heat treatments and germination have been shown to positively influence the functional properties of both legumes and cereal seeds
[60][61]. The toasting of yellow peas flour resulted in improved dough water absorption capacity and enhanced stability of the dough, giving rise to bread with increased specific volume and loaf density comparable with 100% wheat flour control
[62].
The inclusion of wheat-lupin protein isolates has been reported to enhance the development time of dough, its strength and resistance to deformation and extensibility. This was a result of the lupin particle entrapped inside the gluten network structure, and a likely correlation between the gluten and some of the lupin proteins present in the outer part of the moistened particles
[63]. The inclusion of chickpea flour with wheat flour in the production of bread increased in development time of dough, while there was a reduction in the extensibility and the deformation resistance of dough. The topmost part of the wheat dough as well as the blend with 10% chickpea flour were categorized as “normal”, nevertheless, the blend containing 20 and 30% resulted in a “sticky” dough surface. The chickpea addition improved the dough development time and stability and the extensograph properties of the dough
[25]. Adding chickpea, lentil and bean flour to wheat flour leads to an improvement in the development time of the dough and a reduction in dough stability
[26][59]. Olapade and Oluwole (2013) reported a significant increase (
p < 0.05) in the functional characteristics, excluding the bulk density and swelling capacity of composite flour produced from wheat flour partially substituted with 10% acha flour and 0–15% cowpea flour compared with that produced from 100% wheat flour
[33].
According to Kahraman et al. (2018), raw, roasted and dehulled chickpea flours increased the viscous and elastic moduli of rice-based dough, leading to a good structuring of the dough. A reduced retrogradation tendency of the slurry comprising chickpea flours was also confirmed by the viscoamylographic test. This is a promising outcome for baking food applications
[64]. Baiano et al. (2011) reported that the substitution of semolina with toasted and partly defatted soy flour resulted in dough weakening and an increase in the tenacity-extensibility ratio. The authors reported that the struggle for water in soy proteins with starch and gluten positively influenced the spaghetti with respect to cooking and overcooking resistance, compensating for the deleterious impacts resulting from the partial decrease in the gluten network and the resulting dough weakening
[65].
Other processing techniques such as the usage of food hydrocolloids, enzymes, and sourdough fermentation have been demonstrated to improve the functionality of the dough and bread textural quality of pan-type bread produced from non–wheat flours
[56]. The inclusion of hydrocolloids with different chemical structures in the production of noodle-based goods has been proposed to enhance the textural properties of noodles in addition to compensating for the decreased quality of the final products as a result of the reduced gluten content
[66]. The addition of a low level of
Artemisia sphaerocephala Krasch gum (ASKG) (0.03–0.5%) caused a significant improvement in the viscoelastic characteristics of the composite dough system, followed by a reduced trend at a higher level of gum inclusion (0.8%). Addition of the gum at 0.03–0.5% increased dough G′/G″ values. The addition of 0.3% of the gum resulted in a relatively denser and more arranged network structure of the dough while 0.5% and 0.8% of the gum resulted in the disruption of the strong network with visible signs of starch deformation
[67]. Therefore, hydrocolloids are very useful for improving the quality of dough made from mixtures of wheat flour and non-wheat flour.
In addition, Wang et al. (2018) reported that the addition of microbial dextran (synthesized in situ from
W. confusa) to faba beans sourdough containing dextran improved the viscoelastic properties of the dough, improved the specific volume, and decreased crumb hardness of the bread produced as compared with the unblended sample
[68]. Marco & Rosell (2008) reported a decrease in the storage (G′) and viscous (G″) moduli when different structuring agents: hydroxypro- pylmethylcellulose and a processing aid; transglutaminase were used to modify the rheological properties of soybean-enriched rice doughs
[12]. Huang et al. (2019) also reported that rheological assessment showed that the inclusion of tempeh flour (TF) increased G′ and G″ moduli of dough. They concluded that the addition of tempeh flour increased the volume and viscoelastic characteristics of the dough. It also led to a reduction in moisture migration rate and water loss in bread crumbs
[69].
In addition, it has been shown that there is a need for the inclusion of different additives to the blends to obtain the desired gluten-like structure when non-wheat flour is used for bread making. The classes of additives used in breadmaking include oxidants/reductants (e.g., Azodicarbonamide, Ascorbic acid), emulsifiers (e.g., Mono- and diglycerides, Diacetyl tartaric acid esters of mono- and diglycerides, Lactylates: calcium stearoyl-lactylate and sodium stearoyl-lactylate) and hydrocolloids (e.g., Xanthan gum, Guar gum)
[70] For example, β-conglycinin concentrate, which is obtained after fractionation of soybean proteins was assessed in a lean system in which other additives were not used in the production of bread. The bread produced had greater 2D area, height, softness and cohesiveness in comparison with vital gluten bread
[70]. The addition of 10% β-conglycinin concentrate produced from defatted soybean flour to rice flour on bread quality characteristics was studied by Espinosa-Ramírez et al. (2018). They reported that the inclusion of 10% β-conglycinin concentrate in rice flour formulation for bread making led to bread comparable to vital gluten bread. From the micrograph analysis, they reported that the inclusion of β-conglycinin created a net-like structure comparable to the one created by gluten, affirming the capability of β-conglycinin of behaving as a structuring agent and an improver of protein quality in gluten-free bread preparations
[7].
Impacts of Protein Substitution on Baking Characteristics of Bread
Baking creates sequences of chemical, physical, and biochemical reactions, producing different changes in the end product characteristics such as volume enlargement, moisture evaporation, formation of porous structure, protein denaturation, starch gelatinization, formation of crust and browning reaction, protein cross-linking, melting of fat and crystals and their incorporation into the outer layers of air cells, gas cells rupture and fragmentation of cell walls
[71][72][73]. The combined processes of gas production, moisture evaporation and change in the rheological properties of the dough results in gas retention loss, transforming the dough’s foam structure into an open sponge structure of bread with interconnected cells. There is a continuous modification of the bread flour because of these activities until the structure of the final product is achieved. Factors affecting this stage include temperature, humidity and the duration of baking
[72]. Other changes that occur in bread during baking are changes in physical dimensions (i.e., volume, height, width and length of the bread loaf), texture modification and moisture changes, colour modification and flavour generation
[71]. It has been reported that excess of some ingredients, for example reducing sugars similar to amino acids improved the nonenzymatic Maillard browning reactions, leading to the formulation of crust and darkening.
In addition, functional characteristics of food proteins such as the ability to foam and water retention can be improved with heat treatment in the presence of sugars; complex carbohydrates by the process known as the Maillard reaction
[74][75]. The denatured whey protein has been demonstrated to enhance the baking performance and texture of wheat bread dough
[76].
Impacts of Protein Substitution on Bread Quality Characteristics
Quality is defined as the combination of distinguishing characteristics and properties of a food commodity that can determine its degree of acceptance by a user or consumer
[77]. Bread quality depends greatly on consumers’ perception, which is a function of different factors including the social, demographic and environment of an individual. Bread quality can be grouped into different subcategories: (i) instrumental attributes–features that can be objectively measured, (ii) sensory attributes–features that relate to consumers’ perceptions or judgement and (iii) nutritional attributes–those related to health-promoting effects and functionality of the bread
[71][78]. Sensory attributes are usually correlated and compared to objective physical measurements
[71].
Examples of different attributes of bread that can be objectively measured and have been quantified to determine the quality of bread include volume (using rapeseed dis-placement), specific weight, specific volume, moisture content, water activity, crust and crumb colour, crust crispiness, crumb hardness, cell distribution within the loaf slice using image analysis, and volatile composition. The attributes related to sensory sensations of bread include visual appearance, taste, odour and tactile and oral texture
[78]. The impacts of protein substitution on the quality characteristics of bread have been extensively studied. Partial substitution of wheat flour with legume-based proteins had effects on the nutritional/proximate, physical and sensory quality characteristics of bread.
2.2. Use of Other Cereals for Bread Making and Other Pastry Products
Cereals are grass crops grown for the edible components of their grains. They are regarded as staple foods and an essential source of micronutrients such as vitamins, minerals and macronutrients such as proteins, carbohydrates, fibre, crude fats, and essential fatty acids, which perform important functions in the health of humans. The extensively consumed grains are wheat, maize, rice, and barley while minimally consumed grains are rye, sorghum, quinoa, oat, and millet
[79][80]. Cereal flour is mostly utilized to produce baked products such as bread, cakes, pastries, and cookies also including additional food commodities such as spaghettis, noodles, confectionery products, and infant foods
[81].
Among the commonly studied cereal crops used to produce bread and other pastry products is sorghum. The addition of sorghum flour has been reported to result in a gradual decrease in composite bread
[82][83]. This is due to low down amounts of the dough’s gluten network, resulting in a reduction in the ability of the dough to rise; as a result of the weaker cell wall structure leading to bread having low specific volume when contrasted with wheat flour bread
[84]. Bread produced entirely from sorghum needed an alternative bread-production improvement and the addition of hydrocolloids
[85]. Jafari et al. (2018) produced dough and bread using sorghum-wheat composite flour and added xanthan gum at 0.5 and 1%. They reported that extruded sorghum-wheat dough had the highest heating rates (10.75 °C/min) and non-extruded sorghum-wheat dough comprising 0.5% xanthan gum produced the lowest (7.33 °C/min) heating rates
[86].
Quinoa is also a widely studied cereal crop in the production of pastry products. Bilgicli (2013) reported that the addition of pseudo-cereals, e.g., quinoa at 25% of a recipe in gluten-free noodles can enhance nutrient content, for instance, proteins and minerals (calcium, magnesium, zinc, and iron)
[87]. Giménez et al. (2016) reported that the substitution of maize flour with quinoa flour in the production of pasta-like products showed an additive effect, remarkably enhancing the dietary fibre contents, unsaturated fatty acids, iron, and zinc
[31]. Schoenlechner et al. (2010) reported that the inclusion of quinoa flour improved the cooking losses of gluten-free pasta
[88]. Tiga et al. (2021) reported that the addition of quinoa flour improved the water absorption, hardness, and redness (
*) values and reduced the cohesiveness and luminosity (
L*) values of instant noodles produced
[23]. Alvarez-Jubete et al. (2009) reported a significant increase in the bread volumes of buckwheat and quinoa bread in contrast with the control (rice flour and potato starch). Moreover, the pseudo-cereal-containing breads were characterized by a significantly softer crumb texture that was due to the presence of natural emulsifiers in the pseudo-cereal flours
[18]. Cárdenas-Hernández et al. (2016) reported that pasta with amaranth ingredients had reduced cooking time, improved cooking loss percentage, reduced luminosity values and increased nutrient content when contrasted with semolina control pasta
[89].
Another cereal crop which has been used in the production of pastry products is millet. Chaitra et al. (2020) produced Belgian waffles with wheat flour substituted with finger millet and pearl millet flours and reported that the control sample (100% wheat flour) had a harder texture with a shear force of 35.86 N compared with the blended samples with a shear force ranging from 19.68 N to 27.02 N. The result of the sensory analysis proved that the samples containing millet flour were more accepted, up to 50%
[90]. Ibidapo et al. (2020) reported a significant increase in the nutritional properties (dietary fibre, calcium, phosphorus and sodium) of bread produced from wheat flour (65.18%) mixed with malted millet flour (19.43%) and okra flour (15.39%)
[91]. Torbica et al. (2019) also reported that wheat flour substituted at 60% with barley flour led to an increase in insoluble fibre, soluble fibre, total phenolic compounds and antioxidant activity by 700%, 200%, 41.5 and 45%, respectively. They concluded that the inclusion of sesame seeds can increase the acceptability of barley-enriched bread by consumers in addition to the inherent health benefits
[92]. Al-Attabi et al. (2017) reported a corresponding decrease in protein and gluten contents when barley was added to wheat flour to produce bread while the ash content and enzyme activity increased
[93].
Lin et al. (2012) produced bread from wheat flour partially substituted with micro-fluidized corn bran at 18, 20, and 22% of flour. They reported that for the three kinds of bran substitution when the moisture content was improved from its standard values of 38.3, 38.6, 38.8% to 40.8, 41.9, and 44.0%, correspondingly, the loaves obtained showed comparable microstructure, specific loaf volume, and textural characteristics as the unblended bread
[94]. Jeong et al. (2017) produced dough with rice flour substituted with rice flour-zein in a hydrated viscoelastic state at 5 and 10% by weight to account for the functionality of wheat gluten in the gluten-free sheeted dough. There was an increase in the mixing stability and development time of the rice dough with progressive amounts of zein substitution
[95]. Storck et al. (2013) reported that protein-fortified, gluten-free baked foods with enhanced crumb texture and improved specific volume could be achieved with the addition of transglutaminase (1.35 U/g of protein), albumin (0.67/100 g) and casein (0.67/100 g)
[96].
Renoldi et al. (2021) reported that pasta produced from psyllium seed husk was firmer and sticker than 100% durum wheat semolina. The cooking loss was reported to have increased with increasing levels of psyllium seed husk substitution above 25 g/kg with values below the technologically acceptable limit of 80 g/kg. Replacement of semolina with 50–100 g/kg psyllium seed husk was potent in reducing the predictive glycemic response of supplemented pasta in comparison with the unfortified sample and this was attributed to the formation of fibre aggregates limiting starch swelling after the scanning electron microscopy and dough rheology
[97].
2.3. Use of Root and Tuber Crops in Bread Making and Other Pastry Products
Roots and tuber crops are an essential component of the human diet as they are the main source of energy in the form of carbohydrates for the body. There are enormous kinds of roots and tuber crops produced globally. Nevertheless, their extensive utilization in the food industry is limited to only a small number of common types such as potato, cassava, sweet potato, yams and taro
[98][99]. Orange-fleshed sweet potato is a biofortified variety of sweet potato that is high in β-carotene, a precursor of vitamin A and other health-promoting bioactive compounds like flavonoids, dietary fibre, vitamins and polyphenols
[8][100][101]. Chikpah et al. (2021) reported that partial replacement of wheat flour at 29.4 or 28.0% of peeled or unpeeled, orange-fleshed sweet potato flour, respectively and baking temperature of 180 °C for 15 min produced the best quality dough and bread quality features
[8]. Cui & Zhu (2022) reported the addition of purple-fleshed potato can result in Chinese steamed bread with improved nutritional quality and phenolic profiles
[24].
Idowu et al. (1996) reported a reduction in oven springs and specific volumes when cocoyam flour was blended with wheat flour to produce bread
[21]. Chisenga et al. (2020) reported that wheat can be substituted with cassava flour up to 10% in bread making without negatively impacting the overall bread quality
[102]. Jensen et al. (2015) reported that depending on the type of cassava flour, wheat flour can be replaced with cassava flour up to 30% with the addition of psyllium husk (7%) without any significant differences from 100% wheat flour bread
[22]. Shittu et al. (2009) reported that the inclusion of xanthan gum to a cassava-wheat flour blend had substantial effects on the dough firmness and extensibility and sensory satisfactoriness of bread and the storage stability of bread
[103].
Nyembwe et al. (2018) also reported that the defatted Marama flour mixed with cassava flour at a ratio of 33:67 can yield a dough of similar strength, but with reduced stability compared with wheat flour dough
[104]. Nindjin et al. (2011) reported that white wheat flour replacement with yam starch up to 30% or cassava starch up to 20% led to kinetics expansions of resulting doughs comparable with the unblended sample. The results of the sensory analysis suggested that 30% yam starch replacement and 20% cassava starch resulted in bread that met consumer satisfaction on all the quality characteristics of the unblended sample
[105].