Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 handwiki -- 1181 2022-11-02 01:49:55

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
HandWiki. Free Entropy. Encyclopedia. Available online: https://encyclopedia.pub/entry/32898 (accessed on 03 November 2024).
HandWiki. Free Entropy. Encyclopedia. Available at: https://encyclopedia.pub/entry/32898. Accessed November 03, 2024.
HandWiki. "Free Entropy" Encyclopedia, https://encyclopedia.pub/entry/32898 (accessed November 03, 2024).
HandWiki. (2022, November 04). Free Entropy. In Encyclopedia. https://encyclopedia.pub/entry/32898
HandWiki. "Free Entropy." Encyclopedia. Web. 04 November, 2022.
Free Entropy
Edit

A thermodynamic free entropy is an entropic thermodynamic potential analogous to the free energy. Also known as a Massieu, Planck, or Massieu–Planck potentials (or functions), or (rarely) free information. In statistical mechanics, free entropies frequently appear as the logarithm of a partition function. The Onsager reciprocal relations in particular, are developed in terms of entropic potentials. In mathematics, free entropy means something quite different: it is a generalization of entropy defined in the subject of free probability. A free entropy is generated by a Legendre transformation of the entropy. The different potentials correspond to different constraints to which the system may be subjected.

free entropy potential entropy

1. Examples

The most common examples are:

Name Function Alt. function Natural variables
Entropy [math]\displaystyle{ S = \frac {1}{T} U + \frac {P}{T} V - \sum_{i=1}^s \frac {\mu_i}{T} N_i \, }[/math]   [math]\displaystyle{ ~~~~~U,V,\{N_i\}\, }[/math]
Massieu potential \ Helmholtz free entropy [math]\displaystyle{ \Phi =S-\frac{1}{T} U }[/math] [math]\displaystyle{ = - \frac {A}{T} }[/math] [math]\displaystyle{ ~~~~~\frac {1}{T},V,\{N_i\}\, }[/math]
Planck potential \ Gibbs free entropy [math]\displaystyle{ \Xi=\Phi -\frac{P}{T} V }[/math] [math]\displaystyle{ = - \frac{G}{T} }[/math] [math]\displaystyle{ ~~~~~\frac{1}{T},\frac{P}{T},\{N_i\}\, }[/math]

where

Note that the use of the terms "Massieu" and "Planck" for explicit Massieu-Planck potentials are somewhat obscure and ambiguous. In particular "Planck potential" has alternative meanings. The most standard notation for an entropic potential is [math]\displaystyle{ \psi }[/math], used by both Planck and Schrödinger. (Note that Gibbs used [math]\displaystyle{ \psi }[/math] to denote the free energy.) Free entropies where invented by French engineer François Massieu in 1869, and actually predate Gibbs's free energy (1875).

2. Dependence of the Potentials on the Natural Variables

2.1. Entropy

[math]\displaystyle{ S = S(U,V,\{N_i\}) }[/math]

By the definition of a total differential,

[math]\displaystyle{ d S = \frac {\partial S} {\partial U} d U + \frac {\partial S} {\partial V} d V + \sum_{i=1}^s \frac {\partial S} {\partial N_i} d N_i. }[/math]

From the equations of state,

[math]\displaystyle{ d S = \frac{1}{T}dU+\frac{P}{T}dV + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i . }[/math]

The differentials in the above equation are all of extensive variables, so they may be integrated to yield

[math]\displaystyle{ S = \frac{U}{T}+\frac{P V}{T} + \sum_{i=1}^s \left(- \frac{\mu_i N}{T}\right). }[/math]

2.2. Massieu Potential / Helmholtz Free Entropy

[math]\displaystyle{ \Phi = S - \frac {U}{T} }[/math]
[math]\displaystyle{ \Phi = \frac{U}{T}+\frac{P V}{T} + \sum_{i=1}^s \left(- \frac{\mu_i N}{T}\right) - \frac {U}{T} }[/math]
[math]\displaystyle{ \Phi = \frac{P V}{T} + \sum_{i=1}^s \left(- \frac{\mu_i N}{T}\right) }[/math]

Starting over at the definition of [math]\displaystyle{ \Phi }[/math] and taking the total differential, we have via a Legendre transform (and the chain rule)

[math]\displaystyle{ d \Phi = d S - \frac {1} {T} dU - U d \frac {1} {T} , }[/math]
[math]\displaystyle{ d \Phi = \frac{1}{T}dU + \frac{P}{T}dV + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i - \frac {1} {T} dU - U d \frac {1} {T}, }[/math]
[math]\displaystyle{ d \Phi = - U d \frac {1} {T}+\frac{P}{T}dV + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i. }[/math]

The above differentials are not all of extensive variables, so the equation may not be directly integrated. From [math]\displaystyle{ d \Phi }[/math] we see that

[math]\displaystyle{ \Phi = \Phi(\frac {1}{T},V, \{N_i\}) . }[/math]

If reciprocal variables are not desired,[3]:222

[math]\displaystyle{ d \Phi = d S - \frac {T d U - U d T} {T^2} , }[/math]
[math]\displaystyle{ d \Phi = d S - \frac {1} {T} d U + \frac {U} {T^2} d T , }[/math]
[math]\displaystyle{ d \Phi = \frac{1}{T}dU + \frac{P}{T}dV + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i - \frac {1} {T} d U + \frac {U} {T^2} d T, }[/math]
[math]\displaystyle{ d \Phi = \frac {U} {T^2} d T + \frac{P}{T}dV + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i , }[/math]
[math]\displaystyle{ \Phi = \Phi(T,V,\{N_i\}) . }[/math]

2.3. Planck Potential / Gibbs Free Entropy

[math]\displaystyle{ \Xi = \Phi -\frac{P V}{T} }[/math]
[math]\displaystyle{ \Xi = \frac{P V}{T} + \sum_{i=1}^s \left(- \frac{\mu_i N}{T}\right) -\frac{P V}{T} }[/math]
[math]\displaystyle{ \Xi = \sum_{i=1}^s \left(- \frac{\mu_i N}{T}\right) }[/math]

Starting over at the definition of [math]\displaystyle{ \Xi }[/math] and taking the total differential, we have via a Legendre transform (and the chain rule)

[math]\displaystyle{ d \Xi = d \Phi - \frac{P}{T} d V - V d \frac{P}{T} }[/math]
[math]\displaystyle{ d \Xi = - U d \frac {2} {T} + \frac{P}{T}dV + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i - \frac{P}{T} d V - V d \frac{P}{T} }[/math]
[math]\displaystyle{ d \Xi = - U d \frac {1} {T} - V d \frac{P}{T} + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i. }[/math]

The above differentials are not all of extensive variables, so the equation may not be directly integrated. From [math]\displaystyle{ d \Xi }[/math] we see that

[math]\displaystyle{ \Xi = \Xi \left(\frac {1}{T}, \frac {P}{T}, \{N_i\} \right) . }[/math]

If reciprocal variables are not desired,[3]:222

[math]\displaystyle{ d \Xi = d \Phi - \frac{T (P d V + V d P) - P V d T}{T^2} , }[/math]
[math]\displaystyle{ d \Xi = d \Phi - \frac{P}{T} d V - \frac {V}{T} d P + \frac {P V}{T^2} d T , }[/math]
[math]\displaystyle{ d \Xi = \frac {U} {T^2} d T + \frac{P}{T}dV + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i - \frac{P}{T} d V - \frac {V}{T} d P + \frac {P V}{T^2} d T , }[/math]
[math]\displaystyle{ d \Xi = \frac {U + P V} {T^2} d T - \frac {V}{T} d P + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i , }[/math]
[math]\displaystyle{ \Xi = \Xi(T,P,\{N_i\}) . }[/math]

References

  1. Antoni Planes; Eduard Vives (2000-10-24). "Entropic variables and Massieu-Planck functions". Entropic Formulation of Statistical Mechanics. Universitat de Barcelona. http://www.ecm.ub.es/condensed/eduard/papers/massieu/node2.html. 
  2. T. Wada; A.M. Scarfone (December 2004). "Connections between Tsallis' formalisms employing the standard linear average energy and ones employing the normalized q-average energy". Physics Letters A 335 (5–6): 351–362. doi:10.1016/j.physleta.2004.12.054. Bibcode: 2005PhLA..335..351W.  https://dx.doi.org/10.1016%2Fj.physleta.2004.12.054
  3. The Collected Papers of Peter J. W. Debye. New York, New York: Interscience Publishers, Inc.. 1954. 
More
Information
Subjects: Thermodynamics
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 562
Entry Collection: HandWiki
Revision: 1 time (View History)
Update Date: 04 Nov 2022
1000/1000
ScholarVision Creations