Submitted Successfully!
Thank you for your contribution! You can also upload a video entry related to this topic through the link below: https://encyclopedia.pub/user/video_add?id=32898
Check Note
2000/2000
Ver. Summary Created by Modification Content Size Created at Operation
1 handwiki -- 1181 2022-11-02 01:49:55
Free Entropy
Edit
Upload a video

A thermodynamic free entropy is an entropic thermodynamic potential analogous to the free energy. Also known as a Massieu, Planck, or Massieu–Planck potentials (or functions), or (rarely) free information. In statistical mechanics, free entropies frequently appear as the logarithm of a partition function. The Onsager reciprocal relations in particular, are developed in terms of entropic potentials. In mathematics, free entropy means something quite different: it is a generalization of entropy defined in the subject of free probability. A free entropy is generated by a Legendre transformation of the entropy. The different potentials correspond to different constraints to which the system may be subjected.

free entropy potential entropy
Information
Subjects: Thermodynamics
Contributor :
View Times: 18
Entry Collection: HandWiki
Revision: 1 time (View History)
Update Time: 04 Nov 2022
Table of Contents

    1. Examples

    The most common examples are:

    Name Function Alt. function Natural variables
    Entropy [math]\displaystyle{ S = \frac {1}{T} U + \frac {P}{T} V - \sum_{i=1}^s \frac {\mu_i}{T} N_i \, }[/math]   [math]\displaystyle{ ~~~~~U,V,\{N_i\}\, }[/math]
    Massieu potential \ Helmholtz free entropy [math]\displaystyle{ \Phi =S-\frac{1}{T} U }[/math] [math]\displaystyle{ = - \frac {A}{T} }[/math] [math]\displaystyle{ ~~~~~\frac {1}{T},V,\{N_i\}\, }[/math]
    Planck potential \ Gibbs free entropy [math]\displaystyle{ \Xi=\Phi -\frac{P}{T} V }[/math] [math]\displaystyle{ = - \frac{G}{T} }[/math] [math]\displaystyle{ ~~~~~\frac{1}{T},\frac{P}{T},\{N_i\}\, }[/math]

    where

    Note that the use of the terms "Massieu" and "Planck" for explicit Massieu-Planck potentials are somewhat obscure and ambiguous. In particular "Planck potential" has alternative meanings. The most standard notation for an entropic potential is [math]\displaystyle{ \psi }[/math], used by both Planck and Schrödinger. (Note that Gibbs used [math]\displaystyle{ \psi }[/math] to denote the free energy.) Free entropies where invented by French engineer François Massieu in 1869, and actually predate Gibbs's free energy (1875).

    2. Dependence of the Potentials on the Natural Variables

    2.1. Entropy

    [math]\displaystyle{ S = S(U,V,\{N_i\}) }[/math]

    By the definition of a total differential,

    [math]\displaystyle{ d S = \frac {\partial S} {\partial U} d U + \frac {\partial S} {\partial V} d V + \sum_{i=1}^s \frac {\partial S} {\partial N_i} d N_i. }[/math]

    From the equations of state,

    [math]\displaystyle{ d S = \frac{1}{T}dU+\frac{P}{T}dV + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i . }[/math]

    The differentials in the above equation are all of extensive variables, so they may be integrated to yield

    [math]\displaystyle{ S = \frac{U}{T}+\frac{P V}{T} + \sum_{i=1}^s \left(- \frac{\mu_i N}{T}\right). }[/math]

    2.2. Massieu Potential / Helmholtz Free Entropy

    [math]\displaystyle{ \Phi = S - \frac {U}{T} }[/math]
    [math]\displaystyle{ \Phi = \frac{U}{T}+\frac{P V}{T} + \sum_{i=1}^s \left(- \frac{\mu_i N}{T}\right) - \frac {U}{T} }[/math]
    [math]\displaystyle{ \Phi = \frac{P V}{T} + \sum_{i=1}^s \left(- \frac{\mu_i N}{T}\right) }[/math]

    Starting over at the definition of [math]\displaystyle{ \Phi }[/math] and taking the total differential, we have via a Legendre transform (and the chain rule)

    [math]\displaystyle{ d \Phi = d S - \frac {1} {T} dU - U d \frac {1} {T} , }[/math]
    [math]\displaystyle{ d \Phi = \frac{1}{T}dU + \frac{P}{T}dV + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i - \frac {1} {T} dU - U d \frac {1} {T}, }[/math]
    [math]\displaystyle{ d \Phi = - U d \frac {1} {T}+\frac{P}{T}dV + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i. }[/math]

    The above differentials are not all of extensive variables, so the equation may not be directly integrated. From [math]\displaystyle{ d \Phi }[/math] we see that

    [math]\displaystyle{ \Phi = \Phi(\frac {1}{T},V, \{N_i\}) . }[/math]

    If reciprocal variables are not desired,[3]:222

    [math]\displaystyle{ d \Phi = d S - \frac {T d U - U d T} {T^2} , }[/math]
    [math]\displaystyle{ d \Phi = d S - \frac {1} {T} d U + \frac {U} {T^2} d T , }[/math]
    [math]\displaystyle{ d \Phi = \frac{1}{T}dU + \frac{P}{T}dV + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i - \frac {1} {T} d U + \frac {U} {T^2} d T, }[/math]
    [math]\displaystyle{ d \Phi = \frac {U} {T^2} d T + \frac{P}{T}dV + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i , }[/math]
    [math]\displaystyle{ \Phi = \Phi(T,V,\{N_i\}) . }[/math]

    2.3. Planck Potential / Gibbs Free Entropy

    [math]\displaystyle{ \Xi = \Phi -\frac{P V}{T} }[/math]
    [math]\displaystyle{ \Xi = \frac{P V}{T} + \sum_{i=1}^s \left(- \frac{\mu_i N}{T}\right) -\frac{P V}{T} }[/math]
    [math]\displaystyle{ \Xi = \sum_{i=1}^s \left(- \frac{\mu_i N}{T}\right) }[/math]

    Starting over at the definition of [math]\displaystyle{ \Xi }[/math] and taking the total differential, we have via a Legendre transform (and the chain rule)

    [math]\displaystyle{ d \Xi = d \Phi - \frac{P}{T} d V - V d \frac{P}{T} }[/math]
    [math]\displaystyle{ d \Xi = - U d \frac {2} {T} + \frac{P}{T}dV + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i - \frac{P}{T} d V - V d \frac{P}{T} }[/math]
    [math]\displaystyle{ d \Xi = - U d \frac {1} {T} - V d \frac{P}{T} + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i. }[/math]

    The above differentials are not all of extensive variables, so the equation may not be directly integrated. From [math]\displaystyle{ d \Xi }[/math] we see that

    [math]\displaystyle{ \Xi = \Xi \left(\frac {1}{T}, \frac {P}{T}, \{N_i\} \right) . }[/math]

    If reciprocal variables are not desired,[3]:222

    [math]\displaystyle{ d \Xi = d \Phi - \frac{T (P d V + V d P) - P V d T}{T^2} , }[/math]
    [math]\displaystyle{ d \Xi = d \Phi - \frac{P}{T} d V - \frac {V}{T} d P + \frac {P V}{T^2} d T , }[/math]
    [math]\displaystyle{ d \Xi = \frac {U} {T^2} d T + \frac{P}{T}dV + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i - \frac{P}{T} d V - \frac {V}{T} d P + \frac {P V}{T^2} d T , }[/math]
    [math]\displaystyle{ d \Xi = \frac {U + P V} {T^2} d T - \frac {V}{T} d P + \sum_{i=1}^s \left(- \frac{\mu_i}{T}\right) d N_i , }[/math]
    [math]\displaystyle{ \Xi = \Xi(T,P,\{N_i\}) . }[/math]

    References

    1. Antoni Planes; Eduard Vives (2000-10-24). "Entropic variables and Massieu-Planck functions". Entropic Formulation of Statistical Mechanics. Universitat de Barcelona. http://www.ecm.ub.es/condensed/eduard/papers/massieu/node2.html. 
    2. T. Wada; A.M. Scarfone (December 2004). "Connections between Tsallis' formalisms employing the standard linear average energy and ones employing the normalized q-average energy". Physics Letters A 335 (5–6): 351–362. doi:10.1016/j.physleta.2004.12.054. Bibcode: 2005PhLA..335..351W.  https://dx.doi.org/10.1016%2Fj.physleta.2004.12.054
    3. The Collected Papers of Peter J. W. Debye. New York, New York: Interscience Publishers, Inc.. 1954. 
    More
    Information
    Subjects: Thermodynamics
    Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
    View Times: 18
    Entry Collection: HandWiki
    Revision: 1 time (View History)
    Update Time: 04 Nov 2022
    Table of Contents
      1000/1000

      Confirm

      Are you sure to Delete?

      Video Upload Options

      Do you have a full video?
      Cite
      If you have any further questions, please contact Encyclopedia Editorial Office.
      Handwiki,  Free Entropy. Encyclopedia. Available online: https://encyclopedia.pub/entry/32898 (accessed on 04 December 2022).
      Handwiki . Free Entropy. Encyclopedia. Available at: https://encyclopedia.pub/entry/32898. Accessed December 04, 2022.
      Handwiki, . "Free Entropy," Encyclopedia, https://encyclopedia.pub/entry/32898 (accessed December 04, 2022).
      Handwiki,  (2022, November 04). Free Entropy. In Encyclopedia. https://encyclopedia.pub/entry/32898
      Handwiki, . ''Free Entropy.'' Encyclopedia. Web. 04 November, 2022.
      Top
      Feedback