Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 handwiki -- 1913 2022-11-01 01:43:16

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
HandWiki. List of Species Found in Antarctica. Encyclopedia. Available online: (accessed on 30 May 2024).
HandWiki. List of Species Found in Antarctica. Encyclopedia. Available at: Accessed May 30, 2024.
HandWiki. "List of Species Found in Antarctica" Encyclopedia, (accessed May 30, 2024).
HandWiki. (2022, November 01). List of Species Found in Antarctica. In Encyclopedia.
HandWiki. "List of Species Found in Antarctica." Encyclopedia. Web. 01 November, 2022.
List of Species Found in Antarctica

Antarctica is one of the most physically and chemically extreme terrestrial environments to be inhabited by lifeforms. The largest plants are mosses, and the largest animals that do not leave the continent are a few species of insects.

antarctica chemically plants

1. Climate and Habitat

Although most of the continent is covered by glacial ice sheets, ice-free areas comprising approximately 0.4% of the continental land mass are discontinuously distributed around the coastal margins.[1] The McMurdo Dry Valleys region of Antarctica is a polar desert characterized by extremely low annual precipitation (Template:Less than100 mm (3.9 in)) and an absence of vascular plants and vertebrates; microbial activity dominates biological functioning.[2] Mean summer high and winter low temperatures in the dry valleys are −5 °C (23 °F) and −30 °C (−22 °F).[2] Because precipitation is both infrequent and low, seasonal water availability in hydrologically connected soils make areas adjacent to water bodies more hospitable relative to dry upland soils.[2] Polar ecosystems are particularly sensitive to climate change, where small changes in temperature result in greater changes in local hydrology, dramatically affecting ecosystem processes.[3]

Soils in Antarctica are nearly two-dimensional habitats, with most biological activity limited to the top four or five inches by the permanently frozen ground below.[4] Environments can be limiting due to soil properties such as unfavorable mineralogy, texture, structure, salts, pH, or moisture relationships.[5] Visible sources of organic matter are absent for most of continental Antarctica.[3] Dry Valley soil ecosystems are characterized by large variations in temperature and light regimes, steep chemical gradients and a high incidence of solar radiation with an elevated ultraviolet B (UVB) light component.[1] Dry Valley soils originate from weathering of bedrock and glacial tills that consist of granites, sandstones, basalts and metamorphic rocks.[1] Space within these rocks provide protection for microorganisms against some (but not all) of these conditions: i.e., protection from wind scouring and surface mobility, a reduction in UV exposure, reduced desiccation and enhanced water availability, and thermal buffering.[6] Half of the soils in the Dry Valleys have subsurface ice, either as buried massive ice or as ice-cemented soil (permafrost).[1] The permafrost layer is typically within 30 cm (12 in) of the soil surface.[1]

2. Microorganisms Overview

The harsh environment and low availability of carbon and water support a simplified community of mosses, lichens, and mats of green algae and red, orange, and black cyanobacteria near lakes and ephemeral streams.[4] Living among the mats are bacteria, yeasts, molds, and an array of microscopic invertebrates that feed on microbes, algae, and detritus: nematodes, protozoa, rotifers, tardigrades, and occasionally, mites and springtails.[4] Even simpler communities exist in the arid soils that occupy the majority of the landscape.[3]

Microbes in Antarctica adapt to aridity the same way microbes in hot deserts do: when water becomes scarce, the organisms simply dry up, shut down metabolic activity, and wait in a cryptobiotic state until water again becomes available.[4] Microbes can also go dorminant in a cryptobiotic state known as anhydrobiosis when they become dehydrated due to low water availability.[4] A more extreme survival method would be long term natural cryopreservation. Samples of permafrost sediments aged 5–10 thousand to 2-3 million years old have been found to contain viable micromycete and bacterial cells.[7]

3. Algae

Algae is present in almost all ice-free areas and occurs in soils, as epiphytes on mosses, in cyanobacterial mats and in plankton of lakes and ponds.[8] It is also possible to find algae associated with rocks or living in the thin film of melted water in the snow patches.[8] Presently there are over 300 algal taxa identified on Antarctica, with Bacillariophyceae (Diatoms) and Chlorophyta (Green algae) being the most widespread on Antarctica.[8] Diatoms are abundant in aquatic environments decreasing in number in terrestrial habitats.[8] Chlorophyta are also important in mats in lakes and ponds but tend to increase their relative importance in terrestrial environments and especially in soils, where they are the densest algal group.[8] Xanthophyceae (Yellow-green algae) are an important component of the flora in soils of Antarctica.[8] Other algal groups (Dinophyta, Cryptophyta, and Euglenophyta) are mainly limited to freshwater communities of the Dry Valleys.[8]

Algae species identified in recent research:[8][9]

  • Hantzschia amphioxys
  • Heterococcus moniliformis
  • Kentrosphaera facciolae
  • Luticola desmetii
  • Luticola doliiformis
  • Luticola evkae
  • Luticola muticopsis
  • Luticola permuticopsis
  • Luticola tomsui
  • Monodus coccomyxa
  • Pinnularia borealis
  • Prasiola crispa
  • Xanthonema bristolianum
  • Xanthonema exile

4. Animals

4.1. Arthropods

Distribution of arthropods is limited to areas of high soil moisture and/or access to water, such as streams, or snow meltwater.[8] The springtail Gomphiocephalus hodgsoni is endemic and restricted to southern Victoria Land between Mt. George Murray (75°55′S) and Minna Bluff (78°28′S) and to the adjacent nearshore islands.[10]

Insects endemic to Antarctica include:

  • Belgica albipes, a midge
  • Belgica antarctica, a midge
  • Siphlopteryx antarctica, a fly

Springtail species identified in recent research:[8]

  • Antarcticinella monoculata
  • Cryptopygus antarcticus
  • Desoria klovstadi
  • Friesea grisea
  • Gomphiocephalus hodgsoni
  • Gressittacantha terranova
  • Neocryptopygus nivicolus

Mite species identified in recent research:[8]

  • Coccorhagidia keithi
  • Nanorchestes antarcticus
  • Stereotydeus mollis
  • Tydeus setsukoae

4.2. Nematodes

Carbon appears to be more important than moisture in defining good habitats for nematodes in the Dry Valleys of Antarctica.[4] Scottnema lindsayae, a microbial feeder and the most abundant and widely distributed metazoan invertebrate, often occurs as the sole metazoan species in the McMurdo Dry Valleys.[3] It makes its living eating bacteria and yeast out in the dry, salty soils that dominate the valleys.[4] All other invertebrate species are more abundant in moist or saturated soils where algae and moss are more abundant.[3] Distribution of most nematode species is correlated negatively with elevation (due to temperature and precipitation) and salinity, and positively with soil moisture, soil organic matter, and nutrient availability.[3] Eudorylaimus spp. is the second most abundant nematode, followed by Plectus murrayi who are the least abundant nematodes.[3] Plectus antarcticus eats bacteria and prefers living in ephemeral streams.[4] An average 2-pound bag of dry valley soils contains approximately 700 nematodes, while the more fertile soil found at higher latitudes on the continent may contain approximately 4,000 nematodes.[4]

Nematode species identified in recent research:[3][4][8]

  • Amblydorylaimus isokaryon
  • Antarctenchus hooperi
  • Aphelenchoides hagueri
  • Aphelenchoides helicosoma
  • Aphelenchoides vaughani
  • Calcaridorylaimus signatus
  • Ceratoplectus armatus
  • Chiloplacoides antarcticus
  • Chiloplectus masleni
  • Coomansus gerlachei
  • Cuticularia firmata
  • Ditylenchus spp.
    • Ditylenchus parcevivens
  • Enchodelus signyensis
  • Eudorylaimus spp.
    • Eudorylaimus antarcticus
    • Eudorylaimus coniceps
    • Eudorylaimus glacialis
    • Eudorylaimus nudicaudatus
    • Eudorylaimus pseudocarteri
    • Eudorylaimus shirasei
    • Eudorylaimus spaulli
    • Eudorylaimus verrucosus
  • Eumonhystera vulgaris
  • Eutobrilus antarcticus
  • Geomonhystera antarcticola
  • Geomonhystera villosa
  • Mesodorylaimus spp.
    • Mesodorylaimus imperator
    • Mesodorylaimus signatus
  • Monhystera spp.
  • Panagrolaimus spp.
    • Panagrolaimus davidi
    • Panagrolaimus magnivulvatus
  • Paramphidelus spp.
    • Paramphidelus antarcticus
  • Plectus spp.
    • Plectus accuminatus
    • Plectus antarcticus
    • Plectus belgicae
    • Plectus frigophilus
    • Plectus insolens
    • Plectus meridianus
    • Plectus murrayi
    • Plectus tolerans
  • Rhabdblaimus spp.
  • Rhabditis krylovi
  • Rhyssocolpus paradoxus
  • Rotylenchus capensis
  • Scottnema lindsayae
  • Teratocephalus pseudolirellus
  • Teratocephalus rugosus
  • Teratocephalus tilbrooki
  • Tylenchus spp.

4.3. Rotifers

The three species listed below were found in moss-dominated moist soils.[8]

Rotifer species identified in recent research:[8]

  • Epiphanes spp.
  • Habrotrocha spp.
  • Philodina spp.

4.4. Tardigrades

Tardigrade species identified in recent research:[8]

  • Acutuncus antarcticus
  • Diphascon spp. (form. Adropoion spp.)
    • Diphascon alpinum
    • Diphascon dastychi
    • Diphascon polare
    • Diphascon tricuspidatum (form. Adropion tricuspidatum)
    • Diphascon victoriae
  • Hypsibius spp. (form. Diphascon spp.)
    • Hypsibius alpinus
    • Hypsibius arcticus
    • Hypsibius cfr mertoni simoizumii
    • Hypsibius convergens
    • Hypsibius oberhaeseri
    • Hypsibius scoticus (form. Diphascon scoticus)
  • Macrobiotus arcticus
  • Macrobiotus cfr polaris
  • Macrobiotus mottai
  • Macrobiotus oberhauseri
  • Macrobiotus polaris
  • Minibiotus furcatus
  • Ramajendas frigidus
  • Ramazzottius spp.
    • Ramazzottius oberhauseri

5. Bacteria

Typically, the highest numbers of cultured bacteria are from relatively moist coastal soils, compared with the small bacteria communities of dry inland soils.[8] Cyanobacteria are found in all types of aquatic habitats and often dominate the microbial biomass of streams and lake sediments.[8] Leptolyngbya frigida is dominant in benthic mats, and is frequently found in soils and as an epiphyte on mosses.[8] Nostoc commune can develop to sizes visible to the naked eye if supplied with a thin water film.[8] The genus Gloeocapsa is one of the few cryptoendolithic taxa with a high adaptation to extreme environmental conditions in rocks of the Dry Valleys.[8] Actinobacteria such as Arthrobacter spp., Brevibacterium spp., and Corynebacterium spp. are prominent in the Dry Valleys.[1] Thermophilic bacteria have been isolated from thermally heated soils near Mt. Melbourne and Mt. Rittman in northern Victoria Land.[8] Bacteria genera found in both air samples and the Antarctic include Staphylococcus, Bacillus, Corynebacterium, Micrococcus, Streptococcus, Neisseria, and Pseudomonas.[7] Bacteria were also found living in the cold and dark in a lake buried a half-mile deep (0.80 km) under the ice in Antarctica.[11][12][13]

Bacteria species identified in recent research:[8]

  • Acinetobacter spp.
  • Alicyclobacillus acidocaldarius
  • Aquaspirillum spp.
  • Arthrobacter spp.
  • Azospirillum spp.
  • Bacillus spp.
    • Bacillus fumarioli
    • Bacillus thermoantarcticus
  • Bizionia argentinensis[14]
  • Brevibacterium spp.
    • Brevibacterium antarcticum
  • Brevundimonas spp.
  • Chryseobacterium spp.
  • Corynebacterium spp.
  • Flavobacterium spp.
  • Gloeocapsa spp.
  • Hymenobacter roseosalivarius
  • Leptolyngbya frigida
  • Massila spp.
  • Micrococcus spp.
  • Modestobacter multiseptatus
  • Neisseria spp.
  • Nocardia spp.
  • Nostoc commune
  • Paenibacillus spp.
  • Planococcus spp.
  • Pseudonocardia antarctica
  • Pseudomonas spp.
  • Psychrobacter spp.
  • Sphingobacterium spp.
  • Staphylococcus spp.
  • Stenotrophomonas spp.
  • Streptococcus spp.
  • Streptomyces spp.

6. Fungi

Chaetomium gracile is frequently isolated from geothermally heated soil on Mt. Melbourne in northern Victoria Land.[8] Fungi genera found in both air samples and the Antarctic include Penicillium, Aspergillus, Cladosporium, Alternaria, Aureobasidium, Botryotrichum, Botrytis, Geotrichum, Staphylotrichum, Paecilomyces, and Rhizopus.[7]

Fungi species identified in recent research:[8][15]

  • Alternaria spp.
  • Antarctomyces psychotrophicus
  • Arthrobotrys ferox
  • Aspergillus spp.
    • Aspergillus ustus
  • Aureobasidium spp.
  • Botryotrichum spp.
  • Botrytis spp.
  • Chaetomium gracile
  • Cadophora ssp.
    • Cadophora malorum
  • Cerrena unicolor
  • Cladosporium spp.
    • Cladosporium cladosporioides
    • Cladosporium herbarum
  • Cochliobolus heliconiae
  • Coniochaeta ligniaria
  • Curvularia inaequalis
  • Debaryomyces ssp.
    • Debaryomyces hansenii
  • Geomyces spp.
    • Geomyces pannorum (form. Chrysosporium pannorum)
  • Geotrichum spp.
  • Hohenbuehelia spp.
  • Holwaya mucida
  • Mortierella antarctica
  • Mucor hiemalis
  • Paecilomyces spp.
  • Penicillium spp.
    • Penicillium jensenii
    • Penicillium swiecickii
  • Phaeosphaeria spp.
  • Phialophora spp.
    • Phialophora fastigiata (form. Cadophora fastigiata)
  • Phoma spp.
    • Phoma herbarum
  • Rhizopus spp.
  • Rhizoscyphus ericae
  • Staphylotrichum spp.
  • Stereum hirsutum
  • Stictis radiata
  • Thelebolus microsporus
  • Trichophyton eboreum

6.1. Lichens

Macrolichens (e.g., Usnea sphacelata, U. antarctica, Umbilicaria decussate, and U. aprina) and communities of weakly or non-nitrophilous lichens (e.g., Pseudephebe minuscula, Rhizocarpon superficial, and R. geographicum, and several species of Acarospora and Buellia) are relatively widespread in coastal ice-free areas.[8] Sites with substrates influenced by seabirds are colonized by well-developed communities of nitrophilous lichen species such as Caloplaca athallina, C. citrina, Candelariella flava, Lecanora expectans, Physcia caesia, Rhizoplaca melanophthalma, Xanthoria elegans, and X. mawsonii.[8] In the Dry Valleys the normally epilithic lichen species (Acarospora gwynnii, Buellia frigida, B. grisea, B. pallida, Carbonea vorticosa, Lecanora fuscobrunnea, L. cancriformis, and Lecidella siplei) are found primarily in protected niches beneath the rock surface occupying a cryptoendolithic ecological niche.[8] Lichen species identified in recent research:[8]

  • Acarospora spp.
    • Acarospora gwynnii
  • Buellia spp.
    • Buellia frigida
    • Buellia grisea
    • Buellia pallida
  • Caloplaca athallina
  • Caloplaca citrina
  • Candelariella flava
  • Carbonea vorticosa (form. Carbonea capsulata)
  • Lecanora cancriformis
  • Lecanora expectans
  • Lecanora fuscobrunnea
  • Lecidella siplei (form. Lecidea siplei)
  • Physcia caesia
  • Pseudephebe minuscula
  • Rhizocarpon geographicum
  • Rhizocarpon superficial
  • Rhizoplaca melanophthalma
  • Umbilicaria aprina
  • Umbilicaria decussate
  • Usnea antarctica
  • Usnea sphacelata
  • Xanthoria elegans
  • Xanthoria mawsonii

6.2. Yeast

Yeast species identified in recent research:[8]

  • Aureobasidium pullulans
  • Candida spp.
    • Candida psychrophilia
  • Cryptococcus spp.
    • Cryptococcus albidus
    • Cryptococcus foliicola
    • Cryptococcus victoriae
    • Cryptococcus vishniacii
  • Debaryomyces hansenii
  • Leucosporidium antarcticum
  • Leucosporidium scottii
  • Rhodotorula spp.
    • Rhodotorula laryngis
    • Rhodotorula minuta
    • Rhodotorula rubra
    • Rhodotorula slooffiae
  • Trichosporon spp.
    • Trichosporon beigelii
    • Trichosporon cutaneum

7. Mosses

The moss species Campylopus pyriformis is restricted to geothermal sites.[8]

Moss species identified in recent research:[8]

  • Anomobryum subrotundifolium
  • Bryoerythrophyllum recurvirostre
  • Bryum anomobryum
  • Bryum pseudotriquetrum
  • Campylopus pryiformis
  • Cephaloziella varians
  • Ceratodon purpureus
  • Didymodon brachyphyllus
  • Grimmia plagiopodia
  • Hennediella heimii
  • Pohlia nutans
  • Sarconeurum glaciale
  • Schistidium antarctici (form. Grimmia antarctici)
  • Syntrichia princeps

8. Protozoa

The small amoebae are of two types. The most abundant are Acanthamoeba and Echinamoeba.[8] The second group consists of monopodal, worm-like amoebae, the subcylindrical Hartmannella and Saccamoeba, and the lingulate Platyamoeba stenopodia Page.[8]

Amoebae species identified in recent research:[8]

  • Acanthamoeba spp.
  • Echinamoeba spp.
  • Hartmannella spp.
  • Platyamoeba stenopodia
  • Saccamoeba spp.

Flagellate species identified in recent research:[8]

  • Bodo edax
  • Bodo mutabilis
  • Bodo saltans
  • Heteromita globosa
  • Oikomonas termo


  1. Cary, S.C. (2010). "On the rocks: the microbiology of Antarctic Dry Valley soils". Nature Reviews Microbiology 8 (2): 129–138. doi:10.1038/nrmicro2281. PMID 20075927.
  2. Zeglin, L.H. (2009). "Landscape distribution of microbial activity in the McMurdo Dry Valleys: linked biotic processes, hydrology, and geochemistry in a cold desert ecosystem". Ecosystems 12 (4): 562–573. doi:10.1007/s10021-009-9242-8.
  3. Simmons, B.L. (2009). "Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica". Soil Biology & Biochemistry 41 (10): 2052–2060. doi:10.1016/j.soilbio.2009.07.009.
  4. Baskin, Yvonne. Under Ground: How Creatures of Mud and Dirt Shape Our World. Washington, DC: Island Press, 2005. 14-37.
  5. Cameron, R.E. "Cold desert characteristics and problems relevant to other arid lands." Arid Lands In Perspective (1969): 169-205.
  6. Cowan, D.A. (2009). "Cryptic microbial communities in Antarctic deserts". Proceedings of the National Academy of Sciences of the United States of America 106 (47): 19749–19750. doi:10.1073/pnas.0911628106. PMID 19923427. Bibcode: 2009PNAS..10619749C.
  7. Pearce, D.A. (2009). "Microorganims in the atmosphere over Antarctica". FEMS Microbiology Ecology 69 (2): 143–157. doi:10.1111/j.1574-6941.2009.00706.x. PMID 19527292.
  8. Adams, B.J. (2006). "Diversity and distribution of Victoria Land biota". Soil Biology & Biochemistry 38 (10): 3003–3018. doi:10.1016/j.soilbio.2006.04.030.
  9. Kopalová, Kateřina; Nedbalová, Linda; de Haan, Myriam; van de Vijver, Bart (19 August 2011). "Description of five new species of the diatom genus Luticola (Bacillariophyta, Diadesmidaceae) found in lakes of James Ross Island (Maritime Antarctic Region)" (in English). Phytotaxa (Auckland, New Zealand: Magnolia Press) 27 (1): 44–60. doi:10.11646/phytotaxa.27.1.5. ISSN 1179-3163. OCLC 5966462982. Retrieved 13 November 2018. 
  10. Stevens, M.I.; Hogg, I.D. (2003). "Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail Gomphiocephalus hodgsoni from Victoria Land, Antarctica". Molecular Ecology 12 (9): 2357–2369. doi:10.1046/j.1365-294x.2003.01907.x. PMID 12919474.
  11. Gorman, James (February 6, 2013). "Bacteria Found Deep Under Antarctic Ice, Scientists Say". The New York Times. Retrieved February 6, 2013. 
  12. Fox, Douglas (August 20, 2014). "Lakes under the ice: Antarctica's secret garden". Nature 512 (7514): 244–246. doi:10.1038/512244a. PMID 25143097. Bibcode: 2014Natur.512..244F. Retrieved August 21, 2014. 
  13. Mack, Eric (August 20, 2014). "Life Confirmed Under Antarctic Ice; Is Space Next?". Forbes. Retrieved August 21, 2014. 
  14. Bercovich, Andrés; Vazquez, Susana C.; Yankilevich, Patricio; Coria, Silvia H.; Foti, Marcelo; Hernández, Edgardo; Vidal, Alejandro; Ruberto, Lucas et al. (2008). "Bizionia argentinensis sp. nov., isolated from surface marine water in Antarctica". International Journal of Systematic and Evolutionary Microbiology 58 (10): 2363–2367. doi:10.1099/ijs.0.65599-0. PMID 18842857.
  15. Arenz, B. E.; B. W. Held; J. A. Jurgens; R. A. Blanchette (2011). "Fungal colonization of exotic substrates in Antarctica". Fungal Diversity 49: 13–22. doi:10.1007/s13225-010-0079-4. 
Subjects: Biology
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to :
View Times: 347
Entry Collection: HandWiki
Revision: 1 time (View History)
Update Date: 01 Nov 2022
Video Production Service