You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Converse (Logic)
Edit

In logic and mathematics, the converse of a categorical or implicational statement is the result of reversing its two constituent statements. For the implication P → Q, the converse is Q → P. For the categorical proposition All S are P, the converse is All P are S. Either way, the truth of the converse is generally independent from that of the original statement.

implicational logic mathematics

1. Implicational Converse

Venn diagram of AB
(the white area shows where the statement is false)

Let S be a statement of the form P implies Q (PQ). Then the converse of S is the statement Q implies P (QP). In general, the truth of S says nothing about the truth of its converse,[1] unless the antecedent P and the consequent Q are logically equivalent.

For example, consider the true statement "If I am a human, then I am mortal." The converse of that statement is "If I am mortal, then I am a human," which is not necessarily true.

On the other hand, the converse of a statement with mutually inclusive terms remains true, given the truth of the original proposition. This is equivalent to saying that the converse of a definition is true. Thus, the statement "If I am a triangle, then I am a three-sided polygon" is logically equivalent to "If I am a three-sided polygon, then I am a triangle", because the definition of "triangle" is "three-sided polygon".

A truth table makes it clear that S and the converse of S are not logically equivalent, unless both terms imply each other:

P Q PQ PQ (converse)
True True True True
True False False True
False True True False
False False True True

Going from a statement to its converse is the fallacy of affirming the consequent. However, if the statement S and its converse are equivalent (i.e., P is true if and only if Q is also true), then affirming the consequent will be valid.

Converse implication is logically equivalent to the disjunction of P and ¬Q

In natural language, this could be rendered "not Q without P".

1.1. Converse of a Theorem

In mathematics, the converse of a theorem of the form PQ will be QP. The converse may or may not be true, and even if true, the proof may be difficult. For example, the Four-vertex theorem was proved in 1912, but its converse was proved only in 1997.[2]

In practice, when determining the converse of a mathematical theorem, aspects of the antecedent may be taken as establishing context. That is, the converse of "Given P, if Q then R" will be "Given P, if R then Q". For example, the Pythagorean theorem can be stated as:

Given a triangle with sides of length a, b, and c, if the angle opposite the side of length c is a right angle, then a2+b2=c2.

The converse, which also appears in Euclid's Elements (Book I, Proposition 48), can be stated as:

Given a triangle with sides of length a, b, and c, if a2+b2=c2, then the angle opposite the side of length c is a right angle.

1.2. Converse of a Relation

Converse a simple mathematical relation. https://handwiki.org/wiki/index.php?curid=1643707

If R is a binary relation with RA×B, then the converse relation RT={(b,a):(a,b)R} is also called the transpose.[3]

2. Notation

The converse of the implication PQ may be written QP, PQ, but may also be notated PQ, or "Bpq" (in Bocheński notation).

3. Categorical Converse

In traditional logic, the process of switching the subject term with the predicate term is called conversion. For example going from "No S are P" to its converse "No P are S". In the words of Asa Mahan:

"The original proposition is called the exposita; when converted, it is denominated the converse. Conversion is valid when, and only when, nothing is asserted in the converse which is not affirmed or implied in the exposita."[4]

The "exposita" is more usually called the "convertend." In its simple form, conversion is valid only for E and I propositions:[5]

Type Convertend Simple converse Converse per accidens (valid if P exists)
A All S are P not valid Some P is S
E No S is P No P is S Some P is not S
I Some S is P Some P is S
O Some S is not P not valid

The validity of simple conversion only for E and I propositions can be expressed by the restriction that "No term must be distributed in the converse which is not distributed in the convertend."[6] For E propositions, both subject and predicate are distributed, while for I propositions, neither is.

For A propositions, the subject is distributed while the predicate is not, and so the inference from an A statement to its converse is not valid. As an example, for the A proposition "All cats are mammals", the converse "All mammals are cats" is obviously false. However, the weaker statement "Some mammals are cats" is true. Logicians define conversion per accidens to be the process of producing this weaker statement. Inference from a statement to its converse per accidens is generally valid. However, as with syllogisms, this switch from the universal to the particular causes problems with empty categories: "All unicorns are mammals" is often taken as true, while the converse per accidens "Some mammals are unicorns" is clearly false.

In first-order predicate calculus, All S are P can be represented as x.S(x)P(x).[7] It is therefore clear that the categorical converse is closely related to the implicational converse, and that S and P cannot be swapped in All S are P.

References

  1. Taylor, Courtney. "What Are the Converse, Contrapositive, and Inverse?" (in en). https://www.thoughtco.com/converse-contrapositive-and-inverse-3126458. ;
  2. Shonkwiler, Clay (October 6, 2006). "The Four Vertex Theorem and its Converse". https://www.math.colostate.edu/~clayton/research/talks/FourVertexPrint.pdf. 
  3. Gunther Schmidt & Thomas Ströhlein (1993) Relations and Graphs, page 9, Springer books
  4. Asa Mahan (1857) The Science of Logic: or, An Analysis of the Laws of Thought, p. 82. https://books.google.com/books?id=J_wtAAAAMAAJ&;pg=PA82
  5. William Thomas Parry and Edward A. Hacker (1991), Aristotelian Logic, SUNY Press, p. 207. https://books.google.com/books?id=3Sg84H6B-m4C&;pg=PA207
  6. James H. Hyslop (1892), The Elements of Logic, C. Scribner's sons, p. 156.
  7. Gordon Hunnings (1988), The World and Language in Wittgenstein's Philosophy, SUNY Press, p. 42. https://books.google.com/books?id=5XXz7B2PLRsC&;pg=PA42
More
Related Content
The logarithmic derivative has been shown to be a useful tool for data analysis in applied sciences because of either simplifying mathematical procedures or enabling an improved understanding and visualization of structural relationships and dynamic processes. In particular, spatial and temporal variations in signal amplitudes can be described independently of their sign by one and the same compact quantity, the inverse logarithmic derivative. In the special case of a single exponential decay function, this quantity becomes directly identical to the decay time constant. When generalized, the logarithmic derivative enables local gradients of system parameters to be flexibly described by using exponential behavior as a meaningful reference. It can be applied to complex maps of data containing multiple superimposed and alternating ramping or decay functions. Selected examples of experimental and simulated data from time-resolved plasma spectroscopy, multiphoton excitation, and spectroscopy are analyzed in detail, together with reminiscences of early activities in the field. The results demonstrate the capability of the approach to extract specific information on physical processes. Further emerging applications are addressed.
Keywords: spectroscopy; data analysis; logarithmic derivative; temporal decay; nonlinear optics; nonlinear order; multiphoton processes; pulsed lasers; signal processing; overlapping spectral lines
The Likert-type scale is a widely used psychometric instrument for measuring attitudes, opinions, or perceptions in research contexts. It presents respondents with a series of statements accompanied by symmetrical response options, typically structured on a five-point scale ranging from “Strongly Disagree” to “Strongly Agree”. Each point on the scale represents a gradation of agreement or sentiment, allowing researchers to transform subjective responses into quantifiable data for statistical analysis and interpretation.
Keywords: Likert scale; measurement; psychometrics; scale development; questionnaire design; survey design
The synergy between Newcomb-Benford and Bayes' laws provides a universal framework for comprehending information, probability, conformality, and computational intelligence.
Keywords: Newcomb-Benford Law; harmt (harmonic unit of information); likelihood; Canonical PMF; Global-local duality; Bayesian Law; Secretary problem; Cross-ratio; Coding source; Conformability
An article about the term "synchronicity" defined as the occurrence of meaningful coincidences that seem to have no cause.
Keywords: synchronicity; coincidences; Carl Jung
This—is the most influential thesis of the 20th century. But did you know? Its author was just 21 years old! Today, he’s known as the "Father of Information Theory." Meet Claude Shannon. Shannon revolutionized computing by applying Boolean algebra to electrical circuits, enabling them to process information using binary digits—1s and 0s. His groundbreaking 1937 thesis laid the foundation for digital computing and earned him lasting acclaim. During World War II, Shannon contributed to cryptography for the U.S. government, shaping the future of digital security. In 1943, he met Alan Turing at Bell Labs, sparking a legendary exchange of ideas. In 1948, Shannon published A Mathematical Theory of Communication, introducing the concept of information and the "bit"—the basic unit of data. His work transformed telecommunications, computing, and encryption, laying the groundwork for the digital age. From the internet to smartphones, today’s technology owes much to Shannon's visionary ideas.
Keywords: Claude Shannon; binary digits; A Mathematical Theory of Communication; bit
Upload a video for this entry
Information
Subjects: Others
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 1.3K
Entry Collection: HandWiki
Revisions: 3 times (View History)
Update Date: 27 Oct 2022
Academic Video Service