1000/1000

Hot
Most Recent

Submitted Successfully!

To reward your contribution, here is a gift for you: A free trial for our video production service.

Thank you for your contribution! You can also upload a video entry or images related to this topic.

Do you have a full video?

Are you sure to Delete?

Cite

If you have any further questions, please contact Encyclopedia Editorial Office.

HandWiki. Matrix Function. Encyclopedia. Available online: https://encyclopedia.pub/entry/30928 (accessed on 18 June 2024).

HandWiki. Matrix Function. Encyclopedia. Available at: https://encyclopedia.pub/entry/30928. Accessed June 18, 2024.

HandWiki. "Matrix Function" *Encyclopedia*, https://encyclopedia.pub/entry/30928 (accessed June 18, 2024).

HandWiki. (2022, October 24). Matrix Function. In *Encyclopedia*. https://encyclopedia.pub/entry/30928

HandWiki. "Matrix Function." *Encyclopedia*. Web. 24 October, 2022.

Copy Citation

In mathematics, a matrix function is a function which maps a matrix to another matrix.

matrix function

There are several techniques for lifting a real function to a square matrix function such that interesting properties are maintained. All of the following techniques yield the same matrix function, but the domains on which the function is defined may differ.

If the real function f has the Taylor expansion

- [math]\displaystyle{ f(x) = f(0) + f'(0)\cdot x + f''(0)\cdot \frac{x^2}{2!} + \cdots }[/math]

then a matrix function can be defined by substituting x by a matrix: the powers become matrix powers, the additions become matrix sums and the multiplications become scaling operations. If the real series converges for [math]\displaystyle{ |x| \lt r }[/math], then the corresponding matrix series will converge for matrix argument A if [math]\displaystyle{ \|A\| \lt r }[/math] for some matrix norm [math]\displaystyle{ \|\cdot\| }[/math] which satisfies [math]\displaystyle{ \|AB\|\leq \|A\|\cdot\|B\| }[/math].

If the matrix A is diagonalizable, the problem may be reduced to an array of the function on each eigenvalue. This is to say we can find a matrix P and a diagonal matrix D such that [math]\displaystyle{ A = P~ D~ P^{-1} }[/math]. Applying the power series definition to this decomposition, we find that *f*(*A*) is defined by

- [math]\displaystyle{ f(A) = P \begin{bmatrix} f(d_1) & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & f(d_n) \end{bmatrix} P^{-1} ~, }[/math]

where [math]\displaystyle{ d_1, \dots, d_n }[/math] denote the diagonal entries of *D*.

For example, suppose one is seeking A! = Γ(A+1) for

- [math]\displaystyle{ A= \begin{bmatrix} 1&3\\ 2&1 \end{bmatrix} ~. }[/math]

One has

- [math]\displaystyle{ A = P \begin{bmatrix} 1-\sqrt{6}& 0 \\ 0 & 1+ \sqrt{6} \end{bmatrix} P^{-1}~, }[/math]

for

- [math]\displaystyle{ P= \begin{bmatrix} 1/2 & 1/2 \\ -\frac{1}{\sqrt{6}} &\frac{1}{\sqrt{6}} \end{bmatrix} ~. }[/math]

Application of the formula then simply yields

- [math]\displaystyle{ A! = \begin{bmatrix} 1/2 & 1/2 \\ -\frac{1}{\sqrt{6} } & \frac{1}{\sqrt{6} } \end{bmatrix} \cdot \begin{bmatrix} \Gamma(2-\sqrt{6}) & 0\\ 0&\Gamma(2+\sqrt{6}) \end{bmatrix} \cdot \begin{bmatrix} 1 & -\sqrt{6}/2 \\ 1 & \sqrt{6}/2 \end{bmatrix} \approx \begin{bmatrix} 3.6274 & 8.8423\\ 5.8949 & 3.6274 \end{bmatrix} ~. }[/math]

Likewise,

- [math]\displaystyle{ A^4 = \begin{bmatrix} 1/2 & 1/2 \\ -\frac{1}{\sqrt{6} } & \frac{1}{\sqrt{6} } \end{bmatrix} \cdot \begin{bmatrix} (1-\sqrt{6})^4 & 0\\ 0&(1+\sqrt{6})^4 \end{bmatrix} \cdot \begin{bmatrix} 1 & -\sqrt{6}/2 \\ 1 & \sqrt{6}/2 \end{bmatrix} = \begin{bmatrix} 73 & 84\\ 56 & 73 \end{bmatrix} ~. }[/math]

All complex matrices, whether they are diagonalizable or not, have a Jordan normal form [math]\displaystyle{ A = P\,J\,P^{-1} }[/math], where the matrix *J* consists of Jordan blocks. Consider these blocks separately and apply the power series to a Jordan block:

- [math]\displaystyle{ f \left( \begin{bmatrix} \lambda & 1 & 0 & \ldots & 0 \\ 0 & \lambda & 1 & \vdots & \vdots \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \ldots & \ddots & \lambda & 1 \\ 0 & \ldots & \ldots & 0 & \lambda \end{bmatrix} \right) = \begin{bmatrix} \frac{f(\lambda)}{0!} & \frac{f'(\lambda)}{1!} & \frac{f''(\lambda)}{2!} & \ldots & \frac{f^{(n)}(\lambda)}{n!} \\ 0 & \frac{f(\lambda)}{0!} & \frac{f'(\lambda)}{1!} & \vdots & \frac{f^{(n-1)}(\lambda)}{(n-1)!} \\ 0 & 0 & \ddots & \ddots & \vdots \\ \vdots & \ldots & \ddots & \frac{f(\lambda)}{0!} & \frac{f'(\lambda)}{1!} \\ 0 & \ldots & \ldots & 0 & \frac{f(\lambda)}{0!} \end{bmatrix}. }[/math]

This definition can be used to extend the domain of the matrix function beyond the set of matrices with spectral radius smaller than the radius of convergence of the power series. Note that there is also a connection to divided differences.

A related notion is the Jordan–Chevalley decomposition which expresses a matrix as a sum of a diagonalizable and a nilpotent part.

A Hermitian matrix has all real eigenvalues and can always be diagonalized by a unitary matrix P, according to the spectral theorem. In this case, the Jordan definition is natural. Moreover, this definition allows one to extend standard inequalities for real functions:

If [math]\displaystyle{ f(a) \leq g(a) }[/math] for all eigenvalues of [math]\displaystyle{ A }[/math], then [math]\displaystyle{ f(A) \preceq g(A) }[/math]. (As a convention, [math]\displaystyle{ X \preceq Y \Leftrightarrow Y - X }[/math] is a positive-semidefinite matrix.) The proof follows directly from the definition.

Cauchy's integral formula from complex analysis can also be used to generalize scalar functions to matrix functions. Cauchy's integral formula states that for any analytic function f defined on a set *D* ⊂ ℂ, one has

- [math]\displaystyle{ f(x) = \frac{1}{2\pi i} \oint_{\!\!\!\!\!C}\! {\frac{f(z)}{z-x}}\, \mathrm{d}z ~, }[/math]

where C is a closed simple curve inside the domain D enclosing x.

Now, replace x by a matrix A and consider a path C inside D that encloses all eigenvalues of A. One possibility to achieve this is to let C be a circle around the origin with radius larger than ‖A‖ for an arbitrary matrix norm ‖•‖. Then, *f*(*A*) is definable by

- [math]\displaystyle{ f(A) = \frac{1}{2\pi i} \oint_{\!\!\!\!\!C}\! {f(z)(zI-A)^{-1}}\, \mathrm{d}z~. }[/math]

This integral can readily be evaluated numerically using the trapezium rule, which converges exponentially in this case. That means that the precision of the result doubles when the number of nodes is doubled. In routine cases, this is bypassed by Sylvester's formula.

This idea applied to bounded linear operators on a Banach space, which can be seen as infinite matrices, leads to the holomorphic functional calculus.

The above Taylor power series allows the scalar [math]\displaystyle{ x }[/math] to be replaced by the matrix. This is not true in general when expanding in terms of [math]\displaystyle{ A(\eta) = A+\eta B }[/math] about [math]\displaystyle{ \eta = 0 }[/math] unless [math]\displaystyle{ [A,B]=0 }[/math]. A counterexample is [math]\displaystyle{ f(x) = x^{3} }[/math], which has a finite length Taylor series. We compute this in two ways,

- Distributive law:

- [math]\displaystyle{ f(A+\eta B) = (A+\eta B)^{3} = A^{3} + \eta(A^{2}B + ABA + BA^{2}) + \eta^{2}(AB^{2} + BAB + B^{2}A) + \eta^{3}B^{3} }[/math]

- Using scalar Taylor expansion for [math]\displaystyle{ f(a+\eta b) }[/math] and replacing scalars with matrices at the end :

- [math]\displaystyle{ \begin{array}{rcl} f(a+\eta b) &=& f(a) + f'(a)\frac{\eta b}{1!} + f''(a)\frac{(\eta b)^{2}}{2!} + f'''(a)\frac{(\eta b)^{3}}{3!} \\[.5em] &=& a^{3} + 3a^{2}(\eta b) + 3a(\eta b)^{2} + (\eta b)^{3} \\[.5em] &\to & A^{3} + 3A^{2}(\eta B) + 3A(\eta B)^{2} + (\eta B)^{3} \end{array} }[/math]

The scalar expression assumes commutativity while the matrix expression does not, and thus they cannot be equated directly unless [math]\displaystyle{ [A,B]=0 }[/math]. For some *f*(*x*) this can be dealt with using the same method as scalar Taylor series. For example, [math]\displaystyle{ f(x) = \frac{1}{x} }[/math]. If [math]\displaystyle{ A^{-1} }[/math] exists then [math]\displaystyle{ f(A+\eta B) = f(\mathbb{I} + \eta A^{-1}B)f(A) }[/math]. The expansion of the first term then follows the power series given above,

- [math]\displaystyle{ f(\mathbb{I} + \eta A^{-1}B) = \mathbb{I} - \eta A^{-1}B + (-\eta A^{-1}B)^{2} + \ldots = \sum_{n=0}^{\infty} (-\eta A^{-1}B)^{n} }[/math]

The convergence criteria of the power series then apply, requiring [math]\displaystyle{ \Vert \eta A^{-1}B \Vert }[/math] to be sufficiently small under the appropriate matrix norm. For more general problems, which cannot be rewritten in such a way that the two matrices commute, the ordering of matrix products produced by repeated application of the Leibniz rule must be tracked.

An arbitrary function *f(A)* of a 2×2 matrix A has its Sylvester's formula simplify to

- [math]\displaystyle{ f(A) = \frac{f(\lambda_+) + f(\lambda_-)}{2} I + \frac{A - \left (\frac{tr(A)}{2}\right )I}{\sqrt{\left (\frac{tr(A)}{2}\right )^2 - |A|}} \frac{f(\lambda_+) - f(\lambda_-)}{2} ~, }[/math]

where [math]\displaystyle{ \lambda_\pm }[/math] are the eigenvalues of its characteristic equation, |A-λI|=0, and are given by

- [math]\displaystyle{ \lambda_\pm = \frac{tr(A)}{2} \pm \sqrt{\left (\frac{tr(A)}{2}\right )^2 - |A|} . }[/math]

- Algebraic Riccati equation
- Matrix polynomial
- Matrix root
- Matrix logarithm
- Matrix exponential

Using the semidefinite ordering ([math]\displaystyle{ X \preceq Y \Leftrightarrow Y - X }[/math] is positive-semidefinite and [math]\displaystyle{ X \prec Y \Leftrightarrow Y - X }[/math] is positive definite), some of the classes of scalar functions can be extended to matrix functions of Hermitian matrices.^{[1]}

A function [math]\displaystyle{ f }[/math] is called operator monotone if and only if [math]\displaystyle{ 0 \prec A \preceq H \Rightarrow f(A) \preceq f(H) }[/math] for all self-adjoint matrices [math]\displaystyle{ A,H }[/math] with spectra in the domain of f. This is analogous to monotone function in the scalar case.

A function [math]\displaystyle{ f }[/math] is called operator concave if and only if

- [math]\displaystyle{ \tau f(A) + (1-\tau) f(H) \preceq f \left ( \tau A + (1-\tau)H \right ) }[/math]

for all self-adjoint matrices [math]\displaystyle{ A,H }[/math] with spectra in the domain of f and [math]\displaystyle{ \tau \in [0,1] }[/math]. This definition is analogous to a concave scalar function. An operator convex function can be defined be switching [math]\displaystyle{ \preceq }[/math] to [math]\displaystyle{ \succeq }[/math] in the definition above.

The matrix log is both operator monotone and operator concave. The matrix square is operator convex. The matrix exponential is none of these. **Loewner's Theorem** states that a function on an *open* interval is operator monotone if and only if it has an analytic extension to the upper and lower complex half planes so that the upper half plane is mapped to itself.^{[1]}

- Bhatia, R. (1997). Matrix Analysis. Graduate Texts in Mathematics. 169. Springer.

More

Information

Subjects:
Mathematics

Contributor
MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register
:

View Times:
308

Entry Collection:
HandWiki

Update Date:
24 Oct 2022