Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 handwiki -- 1156 2022-10-17 01:38:04 |
2 format Meta information modification 1156 2022-10-17 12:01:03 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
HandWiki. Dirac Equation in the Algebra of Physical Space. Encyclopedia. Available online: https://encyclopedia.pub/entry/29692 (accessed on 18 May 2024).
HandWiki. Dirac Equation in the Algebra of Physical Space. Encyclopedia. Available at: https://encyclopedia.pub/entry/29692. Accessed May 18, 2024.
HandWiki. "Dirac Equation in the Algebra of Physical Space" Encyclopedia, https://encyclopedia.pub/entry/29692 (accessed May 18, 2024).
HandWiki. (2022, October 17). Dirac Equation in the Algebra of Physical Space. In Encyclopedia. https://encyclopedia.pub/entry/29692
HandWiki. "Dirac Equation in the Algebra of Physical Space." Encyclopedia. Web. 17 October, 2022.
Dirac Equation in the Algebra of Physical Space
Edit

The Dirac equation, as the relativistic equation that describes spin 1/2 particles in quantum mechanics, can be written in terms of the Algebra of physical space (APS), which is a case of a Clifford algebra or geometric algebra that is based on the use of paravectors. The Dirac equation in APS, including the electromagnetic interaction, reads Another form of the Dirac equation in terms of the Space time algebra was given earlier by David Hestenes. In general, the Dirac equation in the formalism of geometric algebra has the advantage of providing a direct geometric interpretation.

physical space geometric algebra paravectors

1. Relation with the Standard Form

The spinor can be written in a null basis as

[math]\displaystyle{ \Psi = \psi_{11} P_3 - \psi_{12} P_3 \mathbf{e}_1 + \psi_{21} \mathbf{e}_1 P_3 + \psi_{22} \bar{P}_3, }[/math]

such that the representation of the spinor in terms of the Pauli matrices is

[math]\displaystyle{ \Psi \rightarrow \begin{pmatrix} \psi_{11} & \psi_{12} \\ \psi_{21} & \psi_{22} \end{pmatrix} }[/math]
[math]\displaystyle{ \bar{\Psi}^\dagger \rightarrow \begin{pmatrix} \psi_{22}^* & -\psi_{21}^* \\ -\psi_{12}^* & \psi_{11}^* \end{pmatrix} }[/math]

The standard form of the Dirac equation can be recovered by decomposing the spinor in its right and left-handed spinor components, which are extracted with the help of the projector

[math]\displaystyle{ P_3 = \frac{1}{2}( 1 + \mathbf{e}_3), }[/math]

such that

[math]\displaystyle{ \Psi_L = \bar{\Psi}^\dagger P_3 }[/math]
[math]\displaystyle{ \Psi_R = \Psi P_3^{ } }[/math]

with the following matrix representation

[math]\displaystyle{ \Psi_L \rightarrow \begin{pmatrix} \psi_{22}^* & 0 \\ -\psi_{12}^* & 0 \end{pmatrix} }[/math]
[math]\displaystyle{ \Psi_R \rightarrow \begin{pmatrix} \psi_{11} & 0 \\ \psi_{21} & 0 \end{pmatrix} }[/math]

The Dirac equation can be also written as

[math]\displaystyle{ i \partial \bar{\Psi}^\dagger \mathbf{e}_3 + e A \bar{\Psi}^\dagger = m \Psi }[/math]

Without electromagnetic interaction, the following equation is obtained from the two equivalent forms of the Dirac equation

[math]\displaystyle{ \begin{pmatrix} 0 & i \bar{\partial}\\ i \partial & 0 \end{pmatrix} \begin{pmatrix} \bar{\Psi}^\dagger P_3 \\ \Psi P_3 \end{pmatrix} = m \begin{pmatrix} \bar{\Psi}^\dagger P_3 \\ \Psi P_3 \end{pmatrix} }[/math]

so that

[math]\displaystyle{ \begin{pmatrix} 0 & i \partial_0 + i\nabla \\ i \partial_0 - i \nabla & 0 \end{pmatrix} \begin{pmatrix} \Psi_L \\ \Psi_R \end{pmatrix} = m \begin{pmatrix} \Psi_L \\ \Psi_R \end{pmatrix} }[/math]

or in matrix representation

[math]\displaystyle{ i \left( \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \partial_0 + \begin{pmatrix} 0 & \sigma \\ -\sigma & 0 \end{pmatrix} \cdot \nabla \right) \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} = m \begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix}, }[/math]

where the second column of the right and left spinors can be dropped by defining the single column chiral spinors as

[math]\displaystyle{ \psi_L \rightarrow \begin{pmatrix} \psi_{22}^* \\ -\psi_{12}^* \end{pmatrix} }[/math]
[math]\displaystyle{ \psi_R \rightarrow \begin{pmatrix} \psi_{11} \\ \psi_{21} \end{pmatrix} }[/math]

The standard relativistic covariant form of the Dirac equation in the Weyl representation can be easily identified [math]\displaystyle{ i \gamma^{\mu} \partial_{\mu} \psi = m \psi, }[/math] such that

[math]\displaystyle{ \psi_= \begin{pmatrix} \psi_{22}^* \\ -\psi_{12}^* \\ \psi_{11} \\ \psi_{21} \end{pmatrix} }[/math]

Given two spinors [math]\displaystyle{ \Psi }[/math] and [math]\displaystyle{ \Phi }[/math] in APS and their respective spinors in the standard form as [math]\displaystyle{ \psi }[/math] and [math]\displaystyle{ \phi }[/math], one can verify the following identity

[math]\displaystyle{ \phi^\dagger \gamma^0 \psi = \langle \bar{\Phi}\Psi + (\bar{\Psi}\Phi)^\dagger \rangle_S }[/math],

such that

[math]\displaystyle{ \psi^\dagger \gamma^0 \psi = 2 \langle \bar{\Psi}\Psi \rangle_{S R} }[/math]

2. Electromagnetic Gauge

The Dirac equation is invariant under a global right rotation applied on the spinor of the type

[math]\displaystyle{ \Psi \rightarrow \Psi^\prime = \Psi R_0 }[/math]

so that the kinetic term of the Dirac equation transforms as

[math]\displaystyle{ i\bar{\partial} \Psi \mathbf{e}_3 \rightarrow i\bar{\partial} \Psi R_0 \mathbf{e}_3 R_0^\dagger R_0 = ( i\bar{\partial} \Psi \mathbf{e}_3^\prime ) R_0, }[/math]

where we identify the following rotation

[math]\displaystyle{ \mathbf{e}_3 \rightarrow \mathbf{e}_3^\prime = R_0 \mathbf{e}_3 R_0^\dagger }[/math]

The mass term transforms as

[math]\displaystyle{ m \overline{\Psi^\dagger} \rightarrow m \overline{(\Psi R_0)^\dagger} = m \overline{ \Psi^\dagger }R_0, }[/math]

so that we can verify the invariance of the form of the Dirac equation. A more demanding requirement is that the Dirac equation should be invariant under a local gauge transformation of the type [math]\displaystyle{ R=\exp(-i e \chi \mathbf{e}_3) }[/math]

In this case, the kinetic term transforms as

[math]\displaystyle{ i\bar{\partial} \Psi \mathbf{e}_3 \rightarrow (i \bar{\partial} \Psi) R \mathbf{e}_3 + (e\bar{\partial}\chi) \Psi R }[/math],

so that the left side of the Dirac equation transforms covariantly as

[math]\displaystyle{ i\bar{\partial} \Psi \mathbf{e}_3 -e \bar{A}\Psi \rightarrow (i\bar{\partial} \Psi R \mathbf{e}_3 R^\dagger -e \overline{(A + \partial \chi)}\Psi)R, }[/math]

where we identify the need to perform an electromagnetic gauge transformation. The mass term transforms as in the case with global rotation, so, the form of the Dirac equation remains invariant.

3. Current

The current is defined as

[math]\displaystyle{ J = \Psi\Psi^\dagger, }[/math]

which satisfies the continuity equation

[math]\displaystyle{ \left\langle \bar{\partial} J \right\rangle_{S}=0 }[/math]

4. Second Order Dirac Equation

An application of the Dirac equation on itself leads to the second order Dirac equation

[math]\displaystyle{ (-\partial \bar{\partial} + A \bar{A}) \Psi - i( 2e\left\langle A \bar{\partial} \right\rangle_S + eF) \Psi \mathbf{e}_3 = m^2 \Psi }[/math]

5. Free Particle Solutions

5.1. Positive Energy Solutions

A solution for the free particle with momentum [math]\displaystyle{ p = p^0 + \mathbf{p} }[/math] and positive energy [math]\displaystyle{ p^0\gt 0 }[/math] is

[math]\displaystyle{ \Psi = \sqrt{\frac{p}{m}} R(0) \exp(-i\left\langle p \bar{x}\right\rangle_S \mathbf{e}_3). }[/math]

This solution is unimodular

[math]\displaystyle{ \Psi \bar{\Psi} = 1 }[/math]

and the current resembles the classical proper velocity

[math]\displaystyle{ u = \frac{p}{m} }[/math]
[math]\displaystyle{ J = \Psi {\Psi}^\dagger = \frac{p}{m} }[/math]

5.2 Negative Energy Solutions

A solution for the free particle with negative energy and momentum [math]\displaystyle{ p = -|p^0| - \mathbf{p} = - p^\prime }[/math] is

[math]\displaystyle{ \Psi = i\sqrt{\frac{p^\prime}{m}} R(0) \exp(i\left\langle p^\prime \bar{x}\right\rangle_S \mathbf{e}_3) , }[/math]

This solution is anti-unimodular

[math]\displaystyle{ \Psi \bar{\Psi} = -1 }[/math]

and the current resembles the classical proper velocity [math]\displaystyle{ u = \frac{p}{m} }[/math]

[math]\displaystyle{ J = \Psi {\Psi}^\dagger = -\frac{p}{m}, }[/math]

but with a remarkable feature: "the time runs backwards"

[math]\displaystyle{ \frac{d t}{d \tau} = \left\langle \frac{p}{m} \right\rangle_S \lt 0 }[/math]

6. Dirac Lagrangian

The Dirac Lagrangian is

[math]\displaystyle{ L = \langle i \partial \bar{\Psi}^\dagger \mathbf{e}_3 \bar{\Psi} - e A \bar{\Psi}^\dagger \bar{\Psi} -m \Psi \bar{\Psi} \rangle_S }[/math]
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 225
Entry Collection: HandWiki
Revisions: 2 times (View History)
Update Date: 17 Oct 2022
1000/1000