You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Submitted Successfully!
Thank you for your contribution! You can also upload a video entry or images related to this topic. For video creation, please contact our Academic Video Service.
Version Summary Created by Modification Content Size Created at Operation
1 Peramaiyan Rajendran -- 1818 2022-10-17 09:47:32 |
2 layout Camila Xu Meta information modification 1818 2022-10-17 09:56:48 |

Video Upload Options

We provide professional Academic Video Service to translate complex research into visually appealing presentations. Would you like to try it?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Rajendran, P.;  Abdelsalam, S.A.;  Renu, K.;  Veeraraghavan, V.;  Ammar, R.B.;  Ahmed, E.A. Polyphenols for Cancer. Encyclopedia. Available online: https://encyclopedia.pub/entry/29627 (accessed on 15 December 2025).
Rajendran P,  Abdelsalam SA,  Renu K,  Veeraraghavan V,  Ammar RB,  Ahmed EA. Polyphenols for Cancer. Encyclopedia. Available at: https://encyclopedia.pub/entry/29627. Accessed December 15, 2025.
Rajendran, Peramaiyan, Salaheldin Abdelraouf Abdelsalam, Kaviyarasi Renu, Vishnupriya Veeraraghavan, Rebai Ben Ammar, Emad A. Ahmed. "Polyphenols for Cancer" Encyclopedia, https://encyclopedia.pub/entry/29627 (accessed December 15, 2025).
Rajendran, P.,  Abdelsalam, S.A.,  Renu, K.,  Veeraraghavan, V.,  Ammar, R.B., & Ahmed, E.A. (2022, October 17). Polyphenols for Cancer. In Encyclopedia. https://encyclopedia.pub/entry/29627
Rajendran, Peramaiyan, et al. "Polyphenols for Cancer." Encyclopedia. Web. 17 October, 2022.
Polyphenols for Cancer
Edit

Polyphenols play a major role in mammalian epigenome regulation through mechanisms and proteins that remodel chromatin. In fruits, seeds, and vegetables, as well as food supplements, polyphenols are found. Compounds such as these ones are powerful anticancer agents and antioxidants.

cancer polyphenol epigenetics

1. Introduction

Epigenetics is the study of how genes and their products affect an organism’s phenotype [1]. Since the discovery of DNA, epigenetics has not received much attention. In the 1980s, however, studies of chromatin structure made epigenetics respectable after being shrouded in the shadows [2]. In 1987, Robin Holliday redefined epigenetics as nuclear inheritance without DNA sequence differences [3]. It offers possible explanations for cellular differentiation and parental imprinting in mammals, and it enables genetics and developmental embryology to be integrated [4]. Furthermore, epigenetic modifications play a crucial role in developmental patterning, biological processes, and pathology [5][6][7]. In mammalian cells, DNA methylation and histone modifications induce chromatin remodeling, leading to cellular phenotype changes [8][9][10][11]. Diverse epigenetic changes occur in cancer cells in the early stages of tumor development [12]. These epigenetic modifications of chromatin are inherited and reversible, so they could be used to develop drugs targeting the epigenome which could help treat cancer [13][14][15]. The use of new therapeutic drugs and personalized treatment leads to improved patient survival. Dietary supplements have been combined with some of these treatments [16][17][18]. Diets high in vegetables and fruits have been proven to reduce the risk of cancer. This is because they regulate the expression of oncogenes and tumor suppressor genes [19]. Dietary supplements might be an alternative cancer treatment.

2. Oxidative DNA Damage and Polyphenols

Polyphenols have antioxidant properties which as a therapeutic action against cancer. It is found that polyphenol has a dominant antioxidant that mitigates oxidative stress from pathological conditions such as cancer. Polyphenol can scavenge ROS and act on free radicals. This is due to the presence of aromatic rings, the presence of hydroxyl groups in a different region, and has more conjugated system [20]. Polyphenol scavenges Reactive Oxygen Species (ROS) and mitigates the biomolecule oxidative damage [21][22]. Polyphenols with antioxidant capacity suppress the signaling pathways involved in oxidative stress generation at a molecular level. Consumption of a polyphenol diet increases the activity of the antioxidant and inhibits the peroxidation of lipids and cyclooxygenase (COX) pathways [23]. Increased levels of free radical production such as ROS and LPO with oxidative stress cause damage to the tissues inclusive of DNA and increases the possibility of cancer occurrence. Increased ROS level is due to exogenous, antioxidant defense, and endogenous sources. The exogenous sources include X-rays, UV light irradiation, the action of metals, toxins, and γ rays, drugs, and solvents; endogenous sources include peroxisomes, metabolism of cytochrome P450; reactions in mitochondria; and activation of inflammation. This exogenous and endogenous source of ROS is important for oxidative stress-mediated ROS production causes damage to the cell, and alters the signaling pathway, which further causes cancer [24]. Damages to the DNA can cause errors in the replication, arresting transcriptional activities, instability of the DNA damage, and further causes cancer [25][26]. Different studies show a reduction in endogenous DNA damage and protection from ex vivo DNA damage [27]. A diet such as vegetables and fruits has a high content of polyphenols which includes quercetin, ellagic acid, catechins, naringenin, and resveratrol. This polyphenol can decrease the risk of cancer. Polyphenols have a chemopreventive action which includes the involvement of antiestrogenic, arresting cell cycle, proliferation against cancer cells, resistance to the oxidative stress, induction of apoptosis, detoxification enzyme activation, regulation of the host immune system, and cellular signaling improvement in the cancer condition [28]. Polyphenols show protection from cancer when combined with DNA-damaging agents. Polyphenols impair the metabolism of pro-carcinogen by altering the level of enzyme cytochrome P450 which plays an important role in the stimulation of cancer [29]. Polyphenol and quercetin have properties of anti-cancer action by reducing free radical-ROS scavenging activity [30]. The polyphenols present in black tea such as theaflavins, EGCG, and thearubigins have effective properties of anti-cancer [31][32][33]. The catechins present in the tea can prevent cancer by impairing intraepithelial prostate lesions converting them into cancer and decreasing the cancer cell apoptosis, thereby it inhibits carcinogenesis [34]. The flavonoids like catechins, anthocyanins, flavanols, flavanones, flavones, and isoflavones, have a capacity for free radicals neutralization via scavenging ROS and impairs the risk of cancer by cellular growth arrest in cancer cells [35]. There are different types of cancer such as prostate, endometrial, epithelial, breast cancer and colon cancer are mitigated by polyphenols [36]. Resveratrol has an anti-cancer property via an antioxidant defense mechanism which impairs the hydroperoxidase level, matrix metalloproteinase level (MMP-9), Akt signaling pathway, NF-KB pathway, cycloxygenase pathway, protein kinase C, Bcl-2 level and focal adhesion kinase [37].

3. Human Cancer and DNA Methylation

In cancer, epigenetic changes include genome-scale methylation changes, hypermethylation in specific loci, and dysfunction of histone-modifying enzymes. Changes in DNA methylation are good biomarkers since they can be detected and quantified [23][38][39]. Many studies have found DNA methylation patterns specific to liver cancers, including genome-wide studies [40][41][42][43][44][45]. According to DNA methylation and transcriptome mapping in human tumors, a lot of genes are hypomethylated and expressed more, and a lot of genes are hypermethylated and underexpressed. The genes induced by epigenetics were found to be involved in cellular transformation and differentiation, tumor growth, and metastasis. Apoptosis, cell adhesion, and cell cycle progression genes are repressed [46][47][48]. Even though genome-wide DNA methylation studies are a hot topic, there are a few caveats that urge caution about the clinical and biological significance of the data [49]. Most importantly, tumors have a lot of cellular heterogeneity, so observed differences in DNA methylation patterns might just be due to differences in tumor cell numbers, rather than being an epigenetic signature. The DNA methylation profiling needs to be performed on small numbers of histologically verified tumor cells sorted by high-speed cell sorting or laser dissection microscopy. Another caveat is that researchers shouldn’t assume a simple relationship between DNA methylation and gene expression, even if transcriptome data indicates that. In vivo experiments would need to manipulate DNA methylation site-directedly and demonstrate transcription rate changes (Table 1).
Table 1. Polyphenols on DNA methylation and histone modification.

4. Cancer and Histones

DNA is packed into chromatin around an octamer of histones in a chromosome. A nucleosome is a repeating unit of chromatin that is made up of 150 base pairs of DNA and an octamer of histones, H2A, H2B, H3, and H4 [49][50][51][52]. Histone tails are targets for post-translational modifications, including acetylation, methylation, phosphorylation, and ubiquitination [53][54]. DNA modifications can turn the transcription of genes on or off, which affects the accessibility of transcription factors by adjusting how tightly DNA is bound to histones. HATs, which “write” the acetyl mark on histones, are responsible for histone acetylation. By counteracting the positive charge of histones, it loosens the connection between histones and DNA. In contrast, histone deacetylases (HDACs) “erase” those acetyl groups, resulting in tight DNA coiling around the histones, making chromatin transcriptionally inactive. Histone methylation is associated with either transcriptionally active or closed chromatin depending on where the lysine is methylated [55]. The trimethylation of histone 3 lysine 27 (H3K27me3), for example, is associated with transcriptional repression, whereas trimethylation of histone 3 lysine 4 is associated with gene activation [56][57]. Cancer patients with high levels of trimethylated histone H3 lysine 4 (H3K4me3) have a poor prognosis. H3K27me3 levels were linked to poor prognosis and tumor aggressive features including vascular invasion, large tumor sizes, multiple tumors, and poor differentiation in another study [56][58][59]. To fully understand the role of these specific DNA-protein modifications in cancer, further studies using more precise detection methods, such as ChIP-sequencing, will be needed.

5. Inhibitors of DNA Methylation

The epigenome is reprogrammed as soon as embryogenesis begins because DNA methylation decreases. Methylation of DNA requires methylating enzymes, so cellular replication without these enzymes leads to significant demethylation of daughter cells and gene reactivation. This approach has a therapeutic ratio when applied to cancer cells; normal cells usually survive hypomethylation, whereas cancer cells usually die when it occurs, perhaps because they are dependent on gene silencing.
DNA hypomethylation only happens with cytosine analogs with 5’ modifications of the ring. Nucleoside and cytosine analogs do not directly affect DNA methylation. It was determined that the ability of these two main analogs to target DNA methyltransferases (DNMTs) for degradation was attributed to their ability to trap DNA methyltransferases (Table 1). In the absence of these enzymes, DNA synthesis results in hypomethylation in daughter cells, which in turn leads to the reactivation of silenced genes. Some other 5’ modified nucleoside analogs have been described in preclinical or early clinical studies [60]. Inhibiting DNA methylation in cancers works, at least in part, by inhibiting DNA methylation.

6. Inhibitors of Histone Modification

Inhibitors of histone deacetylase (HDACi) decrease HDAC activity, block acetylated histone aggregation, and promote autosomal acetylation. HDACi promotes cancer cell differentiation, induces apoptosis, and inhibits angiogenesis through many mechanisms, including cell cycle arrest, apoptosis, autophagy, and differentiation. HDACi are classified into four classes based on their chemical. In addition to in vitro and in vivo studies, hydroxamates and aliphatic acids have also been tested in clinical trials as a new treatment strategy for hepatobiliary cancer [61][62][63][64]. Panobinostat, trichostatin A, vorinostat, and belinostat are hydroxamates that block HDAC activity by binding to Zn2+ at the HDAC binding site. Besides aliphatic acids, sodium butyrate and valproic acid (VPA) inhibit class I HDACs as well [65][66]. For example, this occurs with VPA, sodium butyrate, and TSA. By downregulating cyclins A and D1 and upregulating P21, VPA could induce cell cycle arrest [67]. Additionally, sodium butyrate upregulated p21 and p27 protein expression [68][69][70]. Furthermore, TSA causes G2/M-phase arrest and G0/G1 arrest in hepatoma cells [71][72]. The fact that apoptosis plays an important role in tumor development makes it an obvious target for cancer therapy. HDACi promotes apoptosis in cancer cells. In addition, HDACi promotes apoptosis by different mechanisms; for example, VPA activates TRAIL-associated cell death and intrinsic apoptosis by upregulating cleaved caspases 3 and 9 [73]. Specifically, TSA upregulates bax and cleaved caspase 3 and downregulates BCL-2 in cancer cells [74][75]. Further, it has been found that HDACi can induce autophagy-mediated cell death, and cancer cell lines showed autophagosome formation, maturation, and aggregation when exposed to panobinostat. Several inhibitors of angiogenesis have been found to interact with HDACi in a synergistic way to inhibit hepatobiliary cancers [76][77]. Some clinical trials have tested HDACi’s anticancer effects, especially when combined with sorafenib.

References

  1. Vandegehuchte, M.B.; Janssen, C.R. Epigenetics and its implications for ecotoxicology. Ecotoxicology 2011, 20, 607–624.
  2. Foolchand, A. Methyl Picolinic Acid Plays a Role in Epigenetic Modifications in Human HepG2 Liver Cells. Ph.D. Dissertation, University of Kwazulu-Natal, Berea, South Africa, 2019.
  3. Jablonka, E.; Lamb, M.J. The expanded evolutionary synthesis—A response to Godfrey-Smith, Haig, and West-Eberhard. Biol. Philos. 2007, 22, 453–472.
  4. Deans, C.; Maggert, K.A. What do you mean, “epigenetic”? Genetics 2015, 199, 887–896.
  5. Maccani, M.A.; Marsit, C.J. Epigenetics in the placenta. Am. J. Reprod. Immunol. 2009, 62, 78–89.
  6. Wiesel-Motiuk, N.; Assaraf, Y.G. The key roles of the lysine acetyltransferases KAT6A and KAT6B in physiology and pathology. Drug Resist. Updat. 2020, 53, 100729.
  7. Tost, J. DNA methylation: An introduction to the biology and the disease-associated changes of a promising biomarker. Mol. Biotechnol. 2010, 44, 71–81.
  8. Kim, S.; Kaang, B.-K. Epigenetic regulation and chromatin remodeling in learning and memory. Exp. Mol. Med. 2017, 49, e281.
  9. Pastar, I.; Marjanovic, J.; Stone, R.C.; Chen, V.; Burgess, J.L.; Mervis, J.S.; Tomic-Canic, M. Epigenetic regulation of cellular functions in wound healing. Exp. Dermatol. 2021, 30, 1073–1089.
  10. Kumar, H.; Chaudhary, A.; Singh, A.; Sukhija, N.; Panwar, A.; Saravanan, K.; Bhaladhare, A.; Kaisa, K.; Panigrahi, M. A review on epigenetics: Manifestations, modifications, methods & challenges. J. Entomol. Zool. Stud. 2020, 8, 1–6.
  11. Andersen, G.B.; Tost, J. A summary of the biological processes, disease-associated changes, and clinical applications of DNA methylation. DNA Methylation Protoc. 2018, 1708, 3–30.
  12. Castilho, R.M.; Squarize, C.H.; Almeida, L.O. Epigenetic modifications and head and neck cancer: Implications for tumor progression and resistance to therapy. Int. J. Mol. Sci. 2017, 18, 1506.
  13. Biswas, S.; Rao, C.M. Epigenetics in cancer: Fundamentals and beyond. Pharmacol. Ther. 2017, 173, 118–134.
  14. Johnson, C.; Warmoes, M.O.; Shen, X.; Locasale, J.W. Epigenetics and cancer metabolism. Cancer Lett. 2015, 356, 309–314.
  15. Kinnaird, A.; Zhao, S.; Wellen, K.E.; Michelakis, E.D. Metabolic control of epigenetics in cancer. Nat. Rev. Cancer 2016, 16, 694–707.
  16. Shankar, E.; Kanwal, R.; Candamo, M.; Gupta, S. Dietary phytochemicals as epigenetic modifiers in cancer: Promise and challenges. In Proceedings of the Seminars in Cancer Biology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 82–99.
  17. Sapienza, C.; Issa, J.-P. Diet, nutrition, and cancer epigenetics. Annu. Rev. Nutr. 2016, 36, 665–681.
  18. Carlos-Reyes, Á.; López-González, J.S.; Meneses-Flores, M.; Gallardo-Rincón, D.; Ruíz-García, E.; Marchat, L.A.; Astudillo-De La Vega, H.; Hernández de la Cruz, O.N.; López-Camarillo, C. Dietary compounds as epigenetic modulating agents in cancer. Front. Genet. 2019, 10, 79.
  19. Lévesque, S.; Pol, J.G.; Ferrere, G.; Galluzzi, L.; Zitvogel, L.; Kroemer, G. Trial watch: Dietary interventions for cancer therapy. Oncoimmunology 2019, 8, e1591878.
  20. Salisbury, D.; Bronas, U. Reactive Oxygen and Nitrogen Species: Impact on Endothelial Dysfunction. Nurs. Res. 2015, 64, 53–66.
  21. Zhang, H.; Tsao, R. Dietary Polyphenols, Oxidative Stress and Antioxidant and Anti-inflammatory Effects. Curr. Opin. Food Sci. 2016, 8, 33–42.
  22. Reis, J.F.; Monteiro, V.V.S.; De Souza Gomes, R.; Do Carmo, M.M.; Da Costa, G.V.; Ribera, P.C.; Monteiro, M.C. Action Mechanism and Cardiovascular Effect of Anthocyanins: A Systematic Review of Animal and Human Studies. J. Transl. Med. 2016, 14, 315.
  23. Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights into Protective Effects, Antioxidant Potentials and Mechanism (s) of Action. Front. Pharmacol. 2022, 13, 806470.
  24. Federico, A.; Morgillo, F.; Tuccillo, C.; Ciardiello, F.; Loguercio, C. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer 2007, 121, 2381–2386.
  25. Khansari, N.; Shakiba, Y.; Mahmoudi, M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 73–80.
  26. Azqueta, A.; Collins, A. Polyphenols and DNA Damage: A Mixed Blessing. Nutrients 2016, 8, 785.
  27. Papiez, M.A. The influence of curcumin and (−)-epicatechin on the genotoxicity and myelosuppression induced by etoposide in bone marrow cells of male rats. Drug Chem. Toxicol. 2013, 36, 93–101.
  28. García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res. 2009, 58, 537–552.
  29. Hazel, T.G.; Nathans, D.; Lau, L.F. A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proc. Natl. Acad. Sci. USA 1988, 85, 8444–8448.
  30. Kamaraj, S.; Vinodhkumar, R.; Anandakumar, P.; Jagan, S.; Ramakrishnan, G.; Devaki, T. The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo (a) pyrene. Biol. Pharm. Bull. 2007, 30, 2268–2273.
  31. Shankar, S.; Ganapathy, S.; Hingorani, S.R.; Srivastava, R.K. EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front.Biosci. J. Virtual Libr. 2008, 13, 440–452.
  32. Sharma, V.; Rao, L.J.M. A thought on the biological activities of black tea. Crit. Rev. Food Sci. Nutr. 2009, 49, 379–404.
  33. Kim, S.Y.; Park, C.; Jang, H.-J.; Kim, B.-O.; Bae, H.-W.; Chung, I.-Y.; Kim, E.S.; Cho, Y.-H. Antibacterial strategies inspired by the oxidative stress and response networks. J. Microbiol. 2019, 57, 203–212.
  34. Wang, S.; Moustaid-Moussa, N.; Chen, L.; Mo, H.; Shastri, A.; Su, R.; Bapat, P.; Kwun, I.; Shen, C.-L. Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem. 2014, 25, 1–18.
  35. Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr. 2018, 5, 87.
  36. Holásková, I.; Elliott, M.; Hanson, M.L.; Schafer, R.; Barnett, J.B. Prenatal cadmium exposure produces persistent changes to thymus and spleen cell phenotypic repertoire as well as the acquired immune response. Toxicol. Appl. Pharmacol. 2012, 265, 181–189.
  37. Lewinska, A.; Wnuk, M.; Grabowska, W.; Zabek, T.; Semik, E.; Sikora, E.; Bielak-Zmijewska, A. Curcumin induces oxidation-dependent cell cycle arrest mediated by sirt7 inhibition of rdna transcription in human aortic smooth muscle cells. Toxicol. Lett. 2015, 233, 227–238.
  38. Majidinia, M.; Bishayee, A.; Yousefi, B. Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair 2019, 82, 102679.
  39. Rajendran, P.; Alzahrani, A.M.; Rengarajan, T.; Kaushik, R.; Arulselvan, P.; Umamaheswari, A. Polyphenols and Cancer. In Frontiers in Anti-Cancer Drug Discovery; Bentham Science Publishers: Singapore, 2019; Volume 10, p. 62.
  40. Locke, W.J.; Guanzon, D.; Ma, C.; Liew, Y.J.; Duesing, K.R.; Fung, K.Y.; Ross, J.P. DNA methylation cancer biomarkers: Translation to the clinic. Front. Genet. 2019, 10, 1150.
  41. Koch, A.; Joosten, S.C.; Feng, Z.; de Ruijter, T.C.; Draht, M.X.; Melotte, V.; Smits, K.M.; Veeck, J.; Herman, J.G.; Van Neste, L. Analysis of DNA methylation in cancer: Location revisited. Nat. Rev. Clin. Oncol. 2018, 15, 459–466.
  42. Paska, A.V.; Hudler, P. Aberrant methylation patterns in cancer: A clinical view. Biochem. Med. 2015, 25, 161–176.
  43. Udali, S.; Guarini, P.; Ruzzenente, A.; Ferrarini, A.; Guglielmi, A.; Lotto, V.; Tononi, P.; Pattini, P.; Moruzzi, S.; Campagnaro, T. DNA methylation and gene expression profiles show novel regulatory pathways in hepatocellular carcinoma. Clin. Epigenetics 2015, 7, 1–13.
  44. Xu, R.-h.; Wei, W.; Krawczyk, M.; Wang, W.; Luo, H.; Flagg, K.; Yi, S.; Shi, W.; Quan, Q.; Li, K. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat. Mater. 2017, 16, 1155–1161.
  45. Zhang, Y.; Petropoulos, S.; Liu, J.; Cheishvili, D.; Zhou, R.; Dymov, S.; Li, K.; Li, N.; Szyf, M. The signature of liver cancer in immune cells DNA methylation. Clin. Epigenetics 2018, 10, 1–17.
  46. Hao, X.; Luo, H.; Krawczyk, M.; Wei, W.; Wang, W.; Wang, J.; Flagg, K.; Hou, J.; Zhang, H.; Yi, S. DNA methylation markers for diagnosis and prognosis of common cancers. Proc. Natl. Acad. Sci. USA 2017, 114, 7414–7419.
  47. Villanueva, A.; Portela, A.; Sayols, S.; Battiston, C.; Hoshida, Y.; Méndez-González, J.; Imbeaud, S.; Letouzé, E.; Hernandez-Gea, V.; Cornella, H. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology 2015, 61, 1945–1956.
  48. Li, L.; Li, W. Epithelial–mesenchymal transition in human cancer: Comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol. Ther. 2015, 150, 33–46.
  49. Feinberg, A.P.; Koldobskiy, M.A.; Göndör, A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 2016, 17, 284–299.
  50. Qian, Z.; Shen, Q.; Yang, X.; Qiu, Y.; Zhang, W. The role of extracellular vesicles: An epigenetic view of the cancer microenvironment. BioMed Res. Int. 2015, 2015, 649161.
  51. Ilyas, M. Next-generation sequencing in diagnostic pathology. Pathobiology 2017, 84, 292–305.
  52. Kurumizaka, H.; Kujirai, T.; Takizawa, Y. Contributions of histone variants in nucleosome structure and function. J. Mol. Biol. 2021, 433, 166678.
  53. Bilokapic, S.; Strauss, M.; Halic, M. Histone octamer rearranges to adapt to DNA unwrapping. Nat. Struct. Mol. Biol. 2018, 25, 101–108.
  54. Zou, T.; Hashiya, F.; Wei, Y.; Yu, Z.; Pandian, G.N.; Sugiyama, H. Direct observation of H3–H4 octasome by high-speed AFM. Chem. A Eur. J. 2018, 24, 15998–16002.
  55. Ramazi, S.; Allahverdi, A.; Zahiri, J. Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders. J. Biosci. 2020, 45, 1–29.
  56. Millán-Zambrano, G.; Burton, A.; Bannister, A.J.; Schneider, R. Histone post-translational modifications—Cause and consequence of genome function. Nat. Rev. Genet. 2022, 23, 1–18.
  57. van Wijnen, A.J.; Westendorf, J.J. Epigenetics as a new frontier in orthopedic regenerative medicine and oncology. J. Orthop. Res. 2019, 37, 1465–1474.
  58. Borkiewicz, L. Histone 3 Lysine 27 Trimethylation Signature in Breast Cancer. Int. J. Mol. Sci. 2021, 22, 12853.
  59. Shimizu, J.; Kawano, F. Exercise-induced histone H3 trimethylation at lysine 27 facilitates the adaptation of skeletal muscle to exercise in mice. J. Physiol. 2022, 600, 3331–3353.
  60. Lu, K.; Tao, H.; Si, X.; Chen, Q. The histone H3 lysine 4 presenter WDR5 as an oncogenic protein and novel epigenetic target in cancer. Front. Oncol. 2018, 8, 502.
  61. Tsai, C.-C.; Chien, M.-N.; Chang, Y.-C.; Lee, J.-J.; Dai, S.-H.; Cheng, S.-P. Overexpression of histone H3 lysine 27 trimethylation is associated with aggressiveness and dedifferentiation of thyroid cancer. Endocr. Pathol. 2019, 30, 305–311.
  62. Blecua, P.; Martinez-Verbo, L.; Esteller, M. The DNA methylation landscape of hematological malignancies: An update. Mol. Oncol. 2020, 14, 1616–1639.
  63. Zhou, M.; Yuan, M.; Zhang, M.; Lei, C.; Aras, O.; Zhang, X.; An, F. Combining histone deacetylase inhibitors (HDACis) with other therapies for cancer therapy. Eur. J. Med. Chem. 2021, 226, 113825.
  64. Banik, D.; Moufarrij, S.; Villagra, A. Immunoepigenetics combination therapies: An overview of the role of HDACs in cancer immunotherapy. Int. J. Mol. Sci. 2019, 20, 2241.
  65. Roca, M.S.; Di Gennaro, E.; Budillon, A. Implication for cancer stem cells in solid cancer chemo-resistance: Promising therapeutic strategies based on the use of HDAC inhibitors. J. Clin. Med. 2019, 8, 912.
  66. Movafagh, S.; Munson, A. Histone deacetylase inhibitors in cancer prevention and therapy. In Epigenetics of Cancer Prevention; Elsevier: Amsterdam, The Netherlands, 2019; pp. 75–105.
  67. Rojas-Espinosa, O.; Moreno-García, S.; Arce-Paredes, P.; Becerril-Villanueva, E.; Juárez-Ortega, M. Effect of dialyzable leukocyte extract, sodium butyrate, and valproic acid in the development of anergy in murine leprosy. Int. J. Mycobacteriology 2020, 9, 268.
  68. Perona, M.; Thomasz, L.; Rossich, L.; Rodriguez, C.; Pisarev, M.A.; Rosemblit, C.; Cremaschi, G.A.; Dagrosa, M.A.; Juvenal, G.J. Radiosensitivity enhancement of human thyroid carcinoma cells by the inhibitors of histone deacetylase sodium butyrate and valproic acid. Mol. Cell. Endocrinol. 2018, 478, 141–150.
  69. Sanaei, M.; Kavoosi, F. Effect of Valproic Acid on the Class I Histone Deacetylase 1, 2 and 3, Tumor Suppressor Genes p21WAF1/CIP1 and p53, and Intrinsic Mitochondrial Apoptotic Pathway, Pro-(Bax, Bak, and Bim) and anti-(Bcl-2, Bcl-xL, and Mcl-1) Apoptotic Genes Expression, Cell Viability, and Apoptosis Induction in Hepatocellular Carcinoma HepG2 Cell Line. Asian Pac. J. Cancer Prev. 2021, 22, 89–95.
  70. Elnozahi, N.A.; Abd ELAziz, E.A.; Helmy, M.W.; Bistawroos, A.E. Modulatory Effect of Sodium Butyrate on Anticancer Activity of Abemaciclib in MDA-MB-231 Human Breast Cancer Cells; Research Square: Durham, NC, USA, 2022.
  71. Sanaei, M.; Kavoosi, F.; Moezzi, M.A. Effect of 5′-fluoro-2′-deoxycytidine and sodium butyrate on the genes of the intrinsic apoptotic pathway, p21, p53, cell viability, and apoptosis in human hepatocellular carcinoma cell lines. Iran. J. Pediatr. Hematol. Oncol. 2021, 11, 216–230.
  72. Psilopatis, I.; Pergaris, A.; Giaginis, C.; Theocharis, S. Histone Deacetylase Inhibitors: A Promising Therapeutic Alternative for Endometrial Carcinoma. Dis. Markers 2021, 2021, 1–9.
  73. Garmpis, N.; Damaskos, C.; Garmpi, A.; Georgakopoulou, V.E.; Sarantis, P.; Antoniou, E.A.; Karamouzis, M.V.; Nonni, A.; Schizas, D.; Diamantis, E. Histone deacetylase inhibitors in the treatment of hepatocellular carcinoma: Current evidence and future opportunities. J. Pers. Med. 2021, 11, 223.
  74. Tsilimigras, D.I.; Ntanasis-Stathopoulos, I.; Moris, D.; Spartalis, E.; Pawlik, T.M. Histone deacetylase inhibitors in hepatocellular carcinoma: A therapeutic perspective. Surg. Oncol. 2018, 27, 611–618.
  75. Zhang, H.; Zhao, X.; Liu, H.; Jin, H.; Ji, Y. Trichostatin A inhibits proliferation of PC3 prostate cancer cells by disrupting the EGFR pathway. Oncol. Lett. 2019, 18, 687–693.
  76. Jang, Y.G.; Hwang, K.A.; Choi, K.C. Rosmarinic Acid, a Component of Rosemary Tea, Induced the Cell Cycle Arrest and Apoptosis through Modulation of HDAC2 Expression in Prostate Cancer Cell Lines. Nutrients 2018, 10, 1784.
  77. Hontecillas-Prieto, L.; Flores-Campos, R.; Silver, A.; de Álava, E.; Hajji, N.; García-Domínguez, D.J. Synergistic Enhancement of Cancer Therapy Using HDAC Inhibitors: Opportunity for Clinical Trials. Front. Genet. 2020, 11, 578011.
More
Upload a video for this entry
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : Peramaiyan Rajendran , Salaheldin Abdelraouf Abdelsalam , Kaviyarasi Renu , Vishnupriya Veeraraghavan , Rebai Ben Ammar , Emad A. Ahmed
View Times: 902
Revisions: 2 times (View History)
Update Date: 17 Oct 2022
Notice
You are not a member of the advisory board for this topic. If you want to update advisory board member profile, please contact office@encyclopedia.pub.
OK
Confirm
Only members of the Encyclopedia advisory board for this topic are allowed to note entries. Would you like to become an advisory board member of the Encyclopedia?
Yes
No
${ textCharacter }/${ maxCharacter }
Submit
Cancel
There is no comment~
${ textCharacter }/${ maxCharacter }
Submit
Cancel
${ selectedItem.replyTextCharacter }/${ selectedItem.replyMaxCharacter }
Submit
Cancel
Confirm
Are you sure to Delete?
Yes No
Academic Video Service