Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1379 2022-08-20 00:25:12 |
2 format corrected. -22 word(s) 1357 2022-08-20 09:47:17 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Suzuki, H.;  Tahara, S.;  Mitsuda, M.;  Izumi, H.;  Ikeda, S.;  Seki, K.;  Nishida, N.;  Funaba, M.;  Imajo, Y.;  Yukata, K.; et al. Quantitative Sensory Testing and Pressure Pain Threshold. Encyclopedia. Available online: https://encyclopedia.pub/entry/26328 (accessed on 26 December 2024).
Suzuki H,  Tahara S,  Mitsuda M,  Izumi H,  Ikeda S,  Seki K, et al. Quantitative Sensory Testing and Pressure Pain Threshold. Encyclopedia. Available at: https://encyclopedia.pub/entry/26328. Accessed December 26, 2024.
Suzuki, Hidenori, Shu Tahara, Mao Mitsuda, Hironori Izumi, Satoshi Ikeda, Kazushige Seki, Norihiro Nishida, Masahiro Funaba, Yasuaki Imajo, Kiminori Yukata, et al. "Quantitative Sensory Testing and Pressure Pain Threshold" Encyclopedia, https://encyclopedia.pub/entry/26328 (accessed December 26, 2024).
Suzuki, H.,  Tahara, S.,  Mitsuda, M.,  Izumi, H.,  Ikeda, S.,  Seki, K.,  Nishida, N.,  Funaba, M.,  Imajo, Y.,  Yukata, K., & Sakai, T. (2022, August 19). Quantitative Sensory Testing and Pressure Pain Threshold. In Encyclopedia. https://encyclopedia.pub/entry/26328
Suzuki, Hidenori, et al. "Quantitative Sensory Testing and Pressure Pain Threshold." Encyclopedia. Web. 19 August, 2022.
Quantitative Sensory Testing and Pressure Pain Threshold
Edit

Several published articles have shown that quantitative sensory testing (QST) and pressure pain threshold (PPT) are useful in the analysis of neck/shoulder and low back pain. A valid reference for normal PPT values might be helpful for the clinical diagnosis of abnormal tenderness or muscle pain. However, there have been no reliable references for PPT values of neck/shoulder and back pain because the data vary depending on the devices used, the measurement units, and the area examined. 

quantitative sensory testing pressure pain threshold musculoskeletal pain reference value low back pain neck/shoulder pain

1. Introduction

Musculoskeletal disease is a worldwide problem for which healthcare assistance is frequently sought. Low back pain (LBP) and neck/shoulder pain are the most common musculoskeletal conditions that evolve into chronic problems [1][2]. Musculoskeletal pathology may initiate chronic pain, but the pain is often also modulated by sensory inputs from the peripheral and central nervous systems [3]. Central sensitization is involved in the chronification of pain, which manifests as hypersensitivity to pain and is spread beyond the areas immediately affected by musculoskeletal pathology [4]. It continues to be challenging to detect and measure hypersensitivity in clinical practice, and no consensus has been reached on which tools are best for assessing musculoskeletal pain [2].
Quantitative sensory testing (QST) combines simple tools that can assess the ability to perceive touch, vibration, proprioception, and sensitivity to pinpricks or blunt pressure and to cold or heat stimuli [2]. QST and the assessment of the pressure pain threshold (PPT) have become commonplace in clinical neurophysiology units [5][6][7][8]. QST/PPT uses psychophysical tests defined as stimuli with predetermined physical properties based on specific measurement protocols for the analysis of somatosensory aberrations. QST/PPT measures sensory stimuli and can be used to assess somatosensory system functions, the measurement of altered peripheral and/or central pain sensitivity, and descending pain modulation [8].
PPT is the QST parameter most frequently used to investigate local and widespread hyperalgesia. PPT reflects sensitivity to pain and can be measured by either electronic or mechanical pressure algometry. In this test, subjects report when gradually applied pressure changes from a feeling of pressure to that of pressure combined with pain [8]. The advantages of PPT include its simplicity and rapid measurement time compared to other QST protocols in which measurement time is longer and requires more effort [5][9][10].
Several articles published over recent years have shown the usefulness of PPT in analyzing neck/shoulder and back pain [11][12][13][14][15][16][17]. Evidence from these studies indicates that PPT would appear to be a useful tool for analyzing the pathogenesis, classification, differential diagnosis, and prognosis of neck/shoulder and back pain [11]. However, the assessment of neck/shoulder and back pain with PPT has one main problem. Standardized normative values for neck/shoulder and back pain conditions are lacking and need to be developed. Although valid reference values indicative of a normal PPT would aid in the clinical diagnosis of muscle pain or abnormal tenderness, no such reliable values currently exist for neck/shoulder and back pain [17].

2. Quantitative Sensory Testing

QST collectively refers to a group of procedures that assess the perceptual response to systematically applied and quantitative sensory stimuli to characterize somatosensory function or dysfunction [8][18]. QST involves procedures that test perception, pain threshold, and pain tolerance thresholds for different stimuli based on the application of standardized pressure, vibration, thermal, or electrical impulses. QST measures the response to sensory stimuli and can be used to assess somatosensory system function, the measurement of altered peripheral and/or central pain sensitivity, and descending pain modulation [8][19].
By selecting various QST modalities, different fibers can be tested. The function of Aδ fibers is represented by the cold detection threshold, that of C fibers by the heat detection threshold, that of nociceptive C fibers mainly by the heat pain threshold, and that of Aβ fibers by mechanical detection and vibration [11][18][20]. The thermal, mechanical, and electrical tests commonly applied in QST are listed in Table 1 [20][21][22].
Table 1. Type of assessment of stimulus modalities by quantitative sensory testing (QST).

3. Pressure Pain Threshold

Among the QST parameters, PPT is the most frequently assessed. PPT is determined by applying a mechanical stimulus to determine the moment that the stimulus-induced sensation of pressure first changes to that of pain [23]. This allows the quantification of the PPTs of skin and muscle. An algometer is often used to apply pressure to sites both close and far from the location of the subject’s pain. Factors such as sex, the investigator, and the apparatus used may affect the measurement of PPT by pressure algometry. The reliability of PPT based on raters or measurement frequencies is reported to be relatively high [23][24].

3.1. Perceptions of Peripheral and Central Sensitization Can Be Quantified by PPT

PPT can be used to evaluate peripheral and central sensitization. Tenderness experienced with blunt pressure may be caused by the peripheral sensitization of primary afferents or central sensitization [25]. Because PPT preferentially activates deep afferents, it is a good clinical device for measuring peripheral sensitization. Hyperalgesia of the affected area to blunt mechanical stimuli is thought to reflect the peripheral sensitization of Aδ and C fibers. Unlike cutaneous nociceptors, which are particularly sensitive to thermal stimuli, nociceptors in deep somatic tissue, such as joints and muscles, exhibit a pronounced sensitivity to mechanical stimuli [25][26].
PPT can also assess central sensitization, which can cause mechanical receptive fields to expand. Although this might account for some local spreading of tenderness, the alteration of pathways descending from the brainstem is more likely to result in widespread or generalized tenderness. A widespread lowering of PPT may reflect the dysfunction of the endogenous pain inhibitory mechanism [25][26][27].

3.2. PPT Analysis in Neck/Shoulder and Low Back Pain

PPT is also effective in disorders involving musculoskeletal pain. Pressure stimuli generated by an algometer can target muscles or fascia, thus indicating that the application of such stimuli would be suitable for patients with muscle or joint pain [28]. The reliability of algometer use in patients with musculoskeletal pain has been established. In addition, in a reliability study using several PPTs, algometers were reported to have the least variability and highest reliability in assessing musculoskeletal pain [26][28]. Distinguishing between alterations in peripheral and central pain processing in patients with musculoskeletal pain is important, as central sensitization is considered a potential influence in the development and maintenance of chronic pain. There are many reports on the use of PPT in patients with neck/shoulder, low back, and other musculoskeletal pain [28]. Furthermore, PPT might be valuable in predicting postoperative pain after surgery on musculoskeletal structures [2][6][9]. PPT can be used to evaluate the pathophysiology of peripheral and central sensitization in patients with neck/shoulder and LBP and is useful when analyzing the pathogenesis of chronic pain as well as its classification, differential diagnosis, and prediction [12].
They are meaningful evaluation techniques for patients with chronic pain because it is generally very difficult to objectively score how much pain the patients feel in the neck/shoulder and back area, including central sensitizations. PPT examination is one of the solutions to examining patients with chronic pain for digitalization [12]. However, no reviews of previous articles on PPT analysis for chronic neck/shoulder and LBP have been published, nor have standardized methods of assessing PPT for musculoskeletal pain been reported. Moreover, the results are different in the articles showing standardized, normative, and abnormal PPT values of neck/shoulder and LBP in volunteers/patients with and without chronic pain [12].
For these reasons, PPT is not a popular tool in the evaluation of patients with chronic pain even now in general clinics [11]. It is necessary to review all articles on PPT related to neck/shoulder and LBP in volunteers/patients with and without chronic pain in order to achieve the wide and general use of PPT examination.

References

  1. Bergman, S. Management of musculoskeletal pain. Best Pract. Res. Clin. Rheumatol. 2007, 21, 153–166.
  2. Georgopoulos, V.; Akin-Akinyosoye, K.; Zhang, W.; McWilliams, D.F.; Hendrick, P.; Walsh, D.A. Quantitative sensory testing and predicting outcomes for musculoskeletal pain, disability, and negative affect: A systematic review and meta-analysis. Pain 2019, 160, 1920–1932.
  3. Banic, B.; Petersen-Felix, S.; Andersen, O.K.; Radanov, B.P.; Villiger, P.M.; Arendt-Nielsen, L.; Curatolo, M. Evidence for spinal cord hypersensitivity in chronic pain after whiplash injury and in fibromyalgia. Pain 2004, 107, 7–15.
  4. Price, D.D.; Staud, R.; Robinson, M.E.; Mauderli, A.P.; Cannon, R.; Vierck, C.J. Enhanced temporal summation of second pain and its central modulation in fibromyalgia patients. Pain 2002, 99, 49–59.
  5. Rolke, R.; Baron, R.; Maier, C.; Tölle, T.R.; Treede, R.D.; Beyer, A.; Binder, A.; Birbaumer, N.; Birklein, F.; Bötefür, I.C.; et al. Quantitative Sensory Testing in the German Research Network on Neuropathic Pain (DFNS): Standardized Protocol and Reference Values. Pain 2006, 123, 231–243.
  6. Braun, M.; Bello, C.; Riva, T.; Hönemann, C.; Doll, D.; Urman, R.D.; Luedi, M.M. Quantitative Sensory Testing to Predict Postoperative Pain. Curr. Pain Headache Rep. 2021, 25, 3.
  7. Treede, R.D. The role of quantitative sensory testing in the prediction of chronic pain. Pain 2019, 160 (Suppl. 1), S66–S69.
  8. Timmerman, H.; Wilder-Smith, O.H.G.; Steegers, M.A.H.; Vissers, K.C.P.; Wolff, A.P. The Added Value of Bedside Examination and Screening QST to Improve Neuropathic Pain Identification in Patients with Chronic Pain. J. Pain Res. 2018, 11, 1307–1318.
  9. Castien, R.F.; van der Wouden, J.C.; De Hertogh, W. Pressure pain thresholds over the cranio-cervical region in headache: A systematic review and meta-analysis. J. Headache Pain 2018, 19, 9.
  10. Courtney, C.A.; Kavchak, A.E.; Lowry, C.D.; O’Hearn, M.A. Interpreting joint pain: Quantitative sensory testing in musculoskeletal management. J. Orthop. Sports Phys. Ther. 2010, 40, 818–825.
  11. Uddin, Z.; MacDermid, J.C. Quantitative Sensory Testing in Chronic Musculoskeletal Pain. Pain Med. 2016, 17, 1694–1703.
  12. Pavlaković, G.; Petzke, F. The role of quantitative sensory testing in the evaluation of musculoskeletal pain conditions. Curr. Rheumatol. Rep. 2010, 12, 455–461.
  13. Neziri, A.Y.; Scaramozzino, P.; Andersen, O.K.; Dickenson, A.H.; Arendt-Nielsen, L.; Curatolo, M. Reference values of mechanical and thermal pain tests in a pain-free population. Eur. J. Pain 2011, 15, 376–383.
  14. Blankenburg, M.; Boekens, H.; Hechler, T.; Maier, C.; Krumova, E.; Scherens, A.; Magerl, W.; Aksu, F.; Zernikow, B. Reference Values for Quantitative Sensory Testing in Children and Adolescents: Developmental and Gender Differences of Somatosensory Perception. Pain 2010, 149, 76–88.
  15. Edwards, R.R.; Fillingim, R.B. Age-associated differences in responses to noxious stimuli. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M180–M185.
  16. Chesterton, L.S.; Barlas, P.; Foster, N.E.; Baxter, D.G.; Wright, C.C. Gender differences in pressure pain threshold in healthy humans. Pain 2003, 101, 259–266.
  17. Andersen, S.; Petersen, M.W.; Svendsen, A.S.; Gazerani, P. Pressure pain thresholds assessed over temporalis, masseter, and frontalis muscles in healthy individuals, patients with tension-type headache, and those with migraine—A systematic review. Pain 2015, 156, 1409–1423.
  18. Cruz-Almeida, Y.; Fillingim, R.B. Can quantitative sensory testing move us closer to mechanism-based pain management? Pain Med. 2014, 15, 61–72.
  19. Izumi, M.; Petersen, K.K.; Laursen, M.B.; Arendt-Nielsen, L.; Graven-Nielsen, T. Facilitated Temporal Summation of Pain Correlates with Clinical Pain Intensity after Hip Arthroplasty. Pain 2017, 158, 323–332.
  20. Siao, P.; Cros, D.P. Quantitative sensory testing. Phys. Med. Rehabil. Clin. 2003, 14, 261–286.
  21. Sangesland, A.; Støren, C.; Vaegter, H.B. Are preoperative experimental pain assessments correlated with clinical pain outcomes after surgery? A systematic review. Scand. J. Pain 2017, 15, 44–52.
  22. van Helmond, N.; Aarts, H.M.; Timmerman, H.; Olesen, S.S.; Drewes, A.M.; Wilder-Smith, O.H.; Steegers, M.A.; Vissers, K.C. Is Preoperative Quantitative Sensory Testing Related to Persistent Postsurgical Pain? A Systematic Literature Review. Anesth. Analg. 2020, 131, 1146–1155.
  23. Arant, K.R.; Katz, J.N.; Neogi, T. Quantitative sensory testing: Identifying pain characteristics in patients with osteoarthritis. Osteoarthr. Cartil. 2022, 30, 17–31.
  24. Park, G.; Kim, C.W.; Park, S.B.; Kim, M.J.; Jang, S.H. Reliability and usefulness of the pressure pain threshold measurement in patients with myofascial pain. Ann. Rehabil. Med. 2011, 35, 412–417.
  25. Treede, R.D.; Rolke, R.; Andrews, K.; Magerl, W. Pain elicited by blunt pressure: Neurobiological basis and clinical relevance. Pain 2002, 98, 235–240.
  26. Mutlu, E.K.; Ozdincler, A.R. Reliability and responsiveness of algometry for measuring pressure pain threshold in patients with knee osteoarthritis. J. Phys. Ther. Sci. 2015, 27, 1961–1965.
  27. Woolf, C.J.; Thompson, S.W.N. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain 1991, 44, 293–299.
  28. Coronado, R.A.; Simon, C.B.; Valencia, C.; George, S.Z. Experimental pain responses support peripheral and central sensitization in patients with unilateral shoulder pain. Clin. J. Pain 2014, 30, 143–151.
More
Information
Subjects: Orthopedics
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , , , , , , ,
View Times: 1.1K
Revisions: 2 times (View History)
Update Date: 20 Aug 2022
1000/1000
Video Production Service