Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1530 2022-07-20 12:04:54 |
2 format change -28 word(s) 1502 2022-07-21 03:12:49 |

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Lach, J.;  Jęcz, P.;  Strapagiel, D.;  Matera-Witkiewicz, A.;  Stączek, P. Biodiversity of Hypersaline Environments. Encyclopedia. Available online: (accessed on 15 April 2024).
Lach J,  Jęcz P,  Strapagiel D,  Matera-Witkiewicz A,  Stączek P. Biodiversity of Hypersaline Environments. Encyclopedia. Available at: Accessed April 15, 2024.
Lach, Jakub, Paulina Jęcz, Dominik Strapagiel, Agnieszka Matera-Witkiewicz, Paweł Stączek. "Biodiversity of Hypersaline Environments" Encyclopedia, (accessed April 15, 2024).
Lach, J.,  Jęcz, P.,  Strapagiel, D.,  Matera-Witkiewicz, A., & Stączek, P. (2022, July 20). Biodiversity of Hypersaline Environments. In Encyclopedia.
Lach, Jakub, et al. "Biodiversity of Hypersaline Environments." Encyclopedia. Web. 20 July, 2022.
Biodiversity of Hypersaline Environments

Halophiles are the salt-loving organisms. They are found in all three domains of life, namely Archaea, Bacteria, and Eukarya, and occur in saline and hypersaline environments worldwide. They are already a valuable source of various biomolecules for biotechnological, pharmaceutical, cosmetological and industrial applications. 

halophiles biomolecules metagenomics biodiversity hypersaline environments

1. Introduction

Halophiles are a highly miscellaneous class of extremophilic organisms characterised by their requirements for high salinity and comprise entities from all three domains of life, namely Bacteria, Archaea, and Eukarya [1][2]. Owing to their phylogenetic origin and the nourishment acquisition manner, halophilic microorganisms can be grouped as follows: (1) heterotrophic, phototrophic or methanogenic archaea; (2) heterotrophic, lithotrophic or photosynthetic bacteria, and (3) heterotrophic or photosynthetic eukaryotes [2][3][4]
Due to the salt concentration requirements (specifically and commonly, sodium cations and chloride anions), halophiles can be classified as slight, with optimal growth at 0.2–0.85M (1–5%) NaCl, moderate thriving in 0.85–3.4M (5–20%) NaCl, and extreme growing optimally at 3.4–5.1M (20–30%) [5]. On the contrary, non-halophiles do not grow in the environment containing above 0.2M (1%) NaCl, and halotolerant organisms are viable in the presence or absence of highly saline conditions, but it is not necessary for their optimal growth [5]. Moreover, halophilic and halotolerant organisms are able to adapt to a broad range of salt concentrations, occurring seasonally, annually, or irregularly in their natural environments [4][6].
Halophilic microorganisms are forced to efficiently prevent osmosis due to the high external salinity, and thus they have evolved two types of strategies to struggle with cellular water loss—“salt-out” (“low-salt-in”) and “salt-in” [4][7]. The first strategy is based on biosynthesis (de novo or from the storage substances) or absorption from the environment compatible solutes (osmolytes or osmoprotectants) and is utilized mainly by moderate halophiles, halotolerant bacteria, and eukaryotes. Polyols, sugars, amino acids, betaines, ectoines, N-acetylated diamino acids, and N-derivatized carboxamides of glutamine are commonly used. The second strategy relies on the accumulation of salt, predominantly potassium chloride, to provide intracellular osmotic pressure comparable to the external one and is typical for extremely halophilic Archaea and a few representatives of Bacteria (genus Salinibacter and members of the order Halanaerobiales) [2]. This mechanism requires specific adaptation of enzymes and other proteins, e.g., by elevating a level of negatively charged amino acids, leading to the formation of an acidic proteome as observed in Halobacterium sp. NRC-1 [7][8][9]. However, the evidence provided by Elevi Bardavid and Oren (2012) suggests that this may not be a strict rule, and other mechanisms must be involved in osmoregulation in halophiles [10]. Some halophiles (especially from the archaeal class of Halobacteria) have applied a mix of these strategies to cope mainly with periodic fluctuation of salinity [11][12].

2. Global Distribution of Hypersaline Environments

Although the oceans and seas (average salinity–0.6 M, 3.5% or 35 parts per thousand) come to mind first, the term “hypersaline environments” refers to conditions where the salt concentration exceeds that present in marine basins (even ten times up to or above salt saturation) [13][14]. Hypersaline environments are generally classified as thalassic (thalassohaline) when originating from seawater with its characteristic ionic composition (dominated by Cl—49% and Na+—42% of the total molarity) and as athalassic (athalassohaline, also inland or epicontinental) not directly associated with a marine source and dominated by divalent ions mainly Mg2+ and Ca2+ [5]. Some authors also distinguish the third type—artificial reservoirs employed for salt production (saltern crystalliser ponds) [15].
Nevertheless, hypersaline ecosystems and their habitats are widely explored mainly due to their utilisation in mineral processing—salt mines, solar salterns and salt flat [16][17][18], aquaculture (e.g., brine-shrimps predominantly in the Great Salt Lake, commercial lakes in China, Russia, and Kazakhstan) [19][20], biotechnical applications (biomolecules like enzymes, pigments, antimicrobial agents, nanoparticles) [21][22][23][24]; in the role of microbial cell factors [25]; environmental and protection studies as niches for eukaryotes, prokaryotes, and archaea [15][17][26][27], biodegradation of contaminants [28][29][30][31]; astrobiological signification and early Earth connotations [32][33]. On the other hand, issues related to the anthropogenic impact on hypersaline environments have become more and more significant in recent years. To name only some: climate alteration, overexploitation of mining and mineral extraction, overflow of agriculture, water diversion and salinity enlargement, urban overdevelopment, industrial sewage and contamination with ultimate examples of the Dead Sea, the Caspian Sea, the Aral Sea, and the Great Salt Lake [15]. And as it turns out, these activities have a tremendous influence on the (bio)diversity of the hypersaline ecosystems.

3. Biodiversity of Hypersaline Environments

The Dutch microbiologist and botanist investigating various saline and hypersaline lakes worldwide Lourens G. M. Baas Becking (1895-1963) claimed that “everything is everywhere: but, the environment selects[34]. This statement is highly relevant to the hypersaline ecosystems broadly distributed around the world, from the Antarctic to the Himalayas, from Australia to the USA, from Africa to South America, and thus are much dissimilar in terms of salt concentration, chemical composition, and presence of additional stress conditions designated by geological attributes [5][35][36][37]. Therefore, they are not only characterised by high-salt content but other environmental physicochemical extrema like high pressure and UV radiation, low oxygen concentration, hydrophobic conditions, extreme temperatures and pH, high concentrations of toxic compounds and heavy metals [27][36][38][39][40][41][42].
The most frequently identified bacterial phyla in saline and hypersaline environments are Actinobacteria, Bacteroidetes, Cyanobacteria, Proteobacteria (Alpha, Beta, Gamma, and Delta), and Firmicutes [36][41][43][44][45][46][47][48]. Halophilic Archaea are typically represented by Halobacteria and methylotrophic methanogens class members, both belonging to the phylum Euryarchaeota. The former includes about 70 genera and 260 species, classified in three orders and six families: the Halobacteriales (families Halobacteriaceae, Haloarculaceae, Halococcaceae), the Haloferacales (families Haloferacaceae, Halorubraceae), and the Natrialbales (family Natrialbaceae), and the latter comprises of 4 classes: Methanomicrobia, Methanobacteria, Methanopyri and Methanococci [49][50]. Furthermore, it was demonstrated that Archaea tend to dominate Bacteria as salinity increases, which is illustrated by an excellent example of the two arms of the Great Salt Lake, significantly different in the salt content, and thus in a taxonomy of their inhabitants [36][37][51][52]. Moreover, the composition and structure of halophilic communities in saline and hypersaline ecosystems are considerably influenced by the salinity fluctuation in time or geographical location and may differ between the places of sampling within the same setting [53][54][55][56][57].
Saline soils are other fascinating and valuable from the ecological, economical, and biotechnological points of view examined environments with abundance and high diversity of their inhabitants, taxonomically comparable to aqueous ones (phylum level) [58][59]. In addition, it has been established that salinity, along with pH and electrical conductivity (EC), are the pivotal factors determining the variety and arrangement of halophiles and haloalkaliphiles in saline soils [60][61][62]. Intriguingly, these microorganisms are gaining special attention due to progressing global soil salinisation, and thus their potential applicability as plant symbionts enabling and increasing crop productivity in saline soils [63][64]. It is noteworthy that a successful attempt was currently done to employ halophilic microorganisms as bioindicators of the soil salt contamination caused by extensive de-icing of roads during harsh winters in Baltimore, Maryland, USA. It became possible since halophiles become persistent members of microbial communities as a result of salting roads for their de-icing during winter months [65].
In addition to these environmental species, there is a constantly extending group of human or human-related halophiles, both bacterial and archaeal [66][67][68][69]. Brining, i.e., treating, food with dry salt or a salt solution, is one of the oldest methods to preserve and season the eatables in food processing. There are numerous and continual scientific reports on isolating new halophilic microorganisms, the diversity and properties of halophilic Bacteria and Archaea, as well as genomic analyses from commercial salt [70][71][72][73], cheeses [74][75][76][77], table olives [78], kimchi (Asian fermented vegetables) [79][80][81], and shrimp paste [82][83]. Recent years have also brought interest in the halophilic and halotolerant prokaryotes contributing to the human gut microbiota [73][84][85][86]. This attention results in part from observing a hazardous tendency to consume increasing amounts of salt delivered with food and its tremendous consequences on human health, including obesity, hypertension, cardiovascular disorders, and stomach cancers [69].
Finally, halophilic prokaryotes are the established producers of multiple biomolecules and chemical substances, predominantly osmolytes, hydrolytic enzymes, and pigments (e.g., carotenoids) [22][87][88][89][90]. The increasing interest in compounds and proteins of halophilic origin results mainly from the fact that they remain active under harsh conditions like high salinity, extreme temperatures, and ultimate pH [91]. Moreover, halophilic enzymes retain solubility and solvation in low water activity [11], and as has been shown recently, they demonstrate anti-desiccation and antifreeze properties, so desirable in food processing and preservation [88]. Halophiles also produce biodegradable polysaccharides and polymers, potentially replacing environmentally hazardous plastics; glycoproteins are considered promising candidates in nanoparticles synthesis, and gas vesicles are examined in terms of an effective drug delivery system as described thoroughly in a review released by Singh and Singh, 2017 [90]. Despite that, bacterial and particularly archaeal halophiles for decades have been underestimated and unexplored in terms of the ability to produce various bioactive compounds, especially of antimicrobial and anticancer potential. However, due to the rapid development of molecular techniques, they turned out to be a promising and rich source of diverse biomolecules of great importance in the ongoing post-antibiotic era that is additionally characterised by the galloping increase of cancer cases [22][91][92][93][94][95]. Due to methodological difficulties, time-consuming and expensive procedures that require frequent optimization and the increasing availability of sequencing, research on halophilic biomolecules are moving more and more towards genomic and metagenomic-based bioinformatics analyses [96][97][98][99][100][101].


  1. Ma, Y.; Galinski, E.A.; Grant, W.D.; Oren, A.; Ventosa, A. Halophiles 2010: Life in Saline Environments. Appl. Environ. Microbiol. 2010, 76, 6971–6981.
  2. Oren, A. Extremophiles Handbook. Extrem. Handb. 2011, 31, 1–26.
  3. Andrei, A.-S.; Banciu, H.L.; Oren, A. Living with salt: Metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol. Lett. 2012, 330, 1–9.
  4. DasSarma, S.; DasSarma, P. Halophiles. eLS 2017, 1–13.
  5. Ventosa, A.; Arahal, D.R. Physico-chemical characteristics of hypersaline environments and their biodiversity. In Extremophiles; CRC Press: Boca Raton, FL, USA, 2009.
  6. Vauclare, P.; Natali, F.; Kleman, J.-P.; Zaccai, G.; Franzetti, B. Surviving salt fluctuations: Stress and recovery in Halobacterium salinarum, an extreme halophilic Archaeon. Sci. Rep. 2020, 10, 3298.
  7. Gunde-Cimerman, N.; Plemenitaš, A.; Oren, A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 2018, 42, 353–375.
  8. Ng, W.V.; Kennedy, S.P.; Mahairas, G.G.; Berquist, B.; Pan, M.; Shukla, H.D.; Lasky, S.R.; Baliga, N.; Thorsson, V.; Sbrogna, J.; et al. Genome sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sci. USA 2000, 97, 12176–12181.
  9. Fukuchi, S.; Yoshimune, K.; Wakayama, M.; Moriguchi, M.; Nishikawa, K. Unique Amino Acid Composition of Proteins in Halophilic Bacteria. J. Mol. Biol. 2003, 327, 347–357.
  10. Bardavid, R.E.; Oren, A. Acid-shifted isoelectric point profiles of the proteins in a hypersaline microbial mat: An adaptation to life at high salt concentrations? Extremophiles 2012, 16, 787–792.
  11. DasSarma, S.; DasSarma, P. Halophiles and their enzymes: Negativity put to good use. Curr. Opin. Microbiol. 2015, 25, 120–126.
  12. Purdy, K.J.; Cresswell-Maynard, T.D.; Nedwell, D.B.; McGenity, T.J.; Grant, W.D.; Timmis, K.N.; Embley, T.M. Isolation of haloarchaea that grow at low salinities. Environ. Microbiol. 2004, 6, 591–595.
  13. Green, W.J.; Lyons, W.B. The Saline Lakes of the McMurdo Dry Valleys, Antarctica. Aquat. Geochem. 2008, 15, 321–348.
  14. Castro, P.; Huber, M.E. Marine Biology, 11th ed.; Mcgraw-Hill Education: New York City, NY, USA, 2018; ISBN 978-1-260-08510-5.
  15. Paul, V.G.; Mormile, M.R. A case for the protection of saline and hypersaline environments: A microbiological perspective. FEMS Microbiol. Ecol. 2017, 93, fix091.
  16. Albuquerque, L.; Kowalewicz-Kulbat, M.; Drzewiecka, D.; Stączek, P.; D’Auria, G.; Rosselló-Móra, R.; da Costa, M.S. Halorhabdus rudnickae sp. nov., a halophilic archaeon isolated from a salt mine borehole in Poland. Syst. Appl. Microbiol. 2016, 39, 100–105.
  17. Gajardo, G.; Redón, S. Andean hypersaline lakes in the Atacama Desert, northern Chile: Between lithium exploitation and unique biodiversity conservation. Conserv. Sci. Pract. 2019, 1, e94.
  18. Pal, S.; Biswas, R.; Misra, A.; Sar, A.; Banerjee, S.; Mukherjee, P.; Dam, B. Poorly known microbial taxa dominate the microbiome of hypersaline Sambhar Lake salterns in India. Extremophiles 2020, 24, 875–885.
  19. Anufriieva, E.V. How can saline and hypersaline lakes contribute to aquaculture development? A review. J. Oceanol. Limnol. 2018, 36, 2002–2009.
  20. Litvinenko, L.I.; Litvinenko, A.I.; Boiko, E.G.; Kutsanov, K. Artemia cyst production in Russia. Chin. J. Oceanol. Limnol. 2015, 33, 1436–1450.
  21. Abdollahnia, M.; Makhdoumi, A.; Mashreghi, M.; Eshghi, H. Exploring the potentials of halophilic prokaryotes from a solar saltern for synthesizing nanoparticles: The case of silver and selenium. PLoS ONE 2020, 15, e0229886.
  22. Corral, P.; Amoozegar, M.A.; Ventosa, A. Halophiles and Their Biomolecules: Recent Advances and Future Applications in Biomedicine. Mar. Drugs 2019, 18, 33.
  23. Yin, J.; Chen, J.C.; Wu, Q.; Chen, G.Q. Halophiles, Coming Stars for Industrial Biotechnology; Elsevier B.V.: Amsterdam, The Netherlands, 2015; Volume 33, ISBN 8610627942.
  24. Liu, C.; Baffoe, D.K.; Zhan, Y.; Zhang, M.; Li, Y.; Zhang, G. Halophile, an essential platform for bioproduction. J. Microbiol. Methods 2019, 166, 105704.
  25. Mitra, R.; Xu, T.; Xiang, H.; Han, J. Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb. Cell Factories 2020, 19, 86.
  26. Oren, A. Biodiversity in highly saline environments. In Physiology and Biochemistry of Extremophiles; Wiley: Hoboken, NJ, USA, 2007; pp. 223–231.
  27. Ventosa, A. Unusual micro-organisms from unusual habitats: Hypersaline environments. Prokaryotic Divers. Mech. Significance Publ. Soc. Gen. Microbiol. 2010, 66, 223–254.
  28. Edbeib, M.F.; Wahab, R.A.; Huyop, F. Halophiles: Biology, adaptation, and their role in decontamination of hypersaline environments. World J. Microbiol. Biotechnol. 2016, 32, 135.
  29. Ibrahim, I.M.; Konnova, S.; Sigida, E.N.; Lyubun, E.V.; Muratova, A.; Fedonenko, Y.P.; Elbanna, K. Bioremediation potential of a halophilic Halobacillus sp. strain, EG1HP4QL: Exopolysaccharide production, crude oil degradation, and heavy metal tolerance. Extremophiles 2019, 24, 157–166.
  30. John, J.; Siva, V.; Kumari, R.; Arya, A.; Kumar, A. Unveiling Cultivable and Uncultivable Halophilic Bacteria Inhabiting Marakkanam Saltpan, India and Their Potential for Biotechnological Applications. Geomicrobiol. J. 2020, 37, 691–701.
  31. Kiadehi, M.S.H.; Amoozegar, M.A.; Asad, S.; Siroosi, M. Exploring the potential of halophilic archaea for the decolorization of azo dyes. Water Sci. Technol. 2018, 77, 1602–1611.
  32. Bryanskaya, A.V.; Berezhnoy, A.A.; Rozanov, A.S.; Serdyukov, D.S.; Malup, T.K.; Peltek, S.E. Survival of halophiles of Altai lakes under extreme environmental conditions: Implications for the search for Martian life. Int. J. Astrobiol. 2019, 19, 1–15.
  33. DasSarma, P.; Laye, V.; Harvey, J.; Reid, C.; Shultz, J.; Yarborough, A.; Lamb, A.; Koske-Phillips, A.; Herbst, A.; Molina, F.; et al. Survival of halophilic Archaea in Earth’s cold stratosphere. Int. J. Astrobiol. 2016, 16, 321–327.
  34. Becking, L.B. Geobiologie of Inleiding tot de Milieukunde; WP Van Stockum & Zoon: Amsterdam, The Netherlands, 1934.
  35. Oren, A. Halophilic microbial communities and their environments. Curr. Opin. Biotechnol. 2015, 33, 119–124.
  36. Shurigin, V.; Hakobyan, A.; Panosyan, H.; Egamberdieva, D.; Davranov, K.; Birkeland, N.-K. A glimpse of the prokaryotic diversity of the Large Aral Sea reveals novel extremophilic bacterial and archaeal groups. Microbiol. Open 2019, 8, e00850.
  37. Simachew, A.; Lanzén, A.; Gessesse, A.; Øvreås, L. Prokaryotic Community Diversity Along an Increasing Salt Gradient in a Soda Ash Concentration Pond. Microb. Ecol. 2015, 71, 326–338.
  38. Belilla, J.; Moreira, D.; Jardillier, L.; Reboul, G.; Benzerara, K.; López-García, J.M.; Bertolino, P.; López-Archilla, A.I.; López-García, P. Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nat. Ecol. Evol. 2019, 3, 1552–1561.
  39. Edwardson, C.; Hollibaugh, J.T. Composition and Activity of Microbial Communities along the Redox Gradient of an Alkaline, Hypersaline, Lake. Front. Microbiol. 2018, 9, 14.
  40. Merino, N.; Aronson, H.S.; Bojanova, D.P.; Feyhl-Buska, J.; Wong, M.L.; Zhang, S.; Giovannelli, D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front. Microbiol. 2019, 10, 780.
  41. Pecher, W.T.; Martínez, F.L.; DasSarma, P.; Guzman, D.; DasSarma, S. 16S rRNA Gene Diversity in the Salt Crust of Salar de Uyuni, Bolivia, the World’s Largest Salt Flat. Microbiol. Resour. Announc. 2020, 9, 16–18.
  42. Williams, T.J.; Allen, M.A.; DeMaere, M.; Kyrpides, N.; Tringe, S.; Woyke, T.; Cavicchioli, R. Microbial ecology of an Antarctic hypersaline lake: Genomic assessment of ecophysiology among dominant haloarchaea. ISME J. 2014, 8, 1645–1658.
  43. AlBataineh, H.; Stevens, D.C. Marine Myxobacteria: A Few Good Halophiles. Mar. Drugs 2018, 16, 209.
  44. Gupta, S.; Sharma, P.; Dev, K.; Srivastava, M.; Sourirajan, A. A diverse group of halophilic bacteria exist in Lunsu, a natural salt water body of Himachal Pradesh, India. SpringerPlus 2015, 4, 274.
  45. Leboulanger, C.; Agogué, H.; Bernard, C.; Bouvy, M.; Carré, C.; Cellamare, M.; Duval, C.; Fouilland, E.; Got, P.; Intertaglia, L.; et al. Microbial Diversity and Cyanobacterial Production in Dziani Dzaha Crater Lake, a Unique Tropical Thalassohaline Environment. PLoS ONE 2017, 12, e0168879.
  46. Mora-Ruiz, M.R.; Cifuentes, A.; Font-Verdera, F.; Pérez-Fernández, C.; Farias, M.E.; González, B.; Orfila, A.; Rosselló-Móra, R. Biogeographical patterns of bacterial and archaeal communities from distant hypersaline environments. Syst. Appl. Microbiol. 2018, 41, 139–150.
  47. Ul-Hasan, S.; Bowers, R.M.; Figueroa-Montiel, A.; Licea-Navarro, A.F.; Beman, J.M.; Woyke, T.; Nobile, C.J. Community ecology across bacteria, archaea and microbial eukaryotes in the sediment and seawater of coastal Puerto Nuevo, Baja California. PLoS ONE 2019, 14, e0212355.
  48. Sorokin, D.Y.; Berben, T.; Melton, E.D.; Overmars, L.; Vavourakis, C.; Muyzer, G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 2014, 18, 791–809.
  49. McGenity, T. Methanogens and Methanogenesis in Hypersaline Environments. In Handbook of Hydrocarbon and Lipid Microbiology; Springer: Berlin, Germany, 2010.
  50. Oren, A. The microbiology of red brines. In Advances in Applied Microbiology; Elsevier Inc.: Amsterdam, The Netherlands, 2020; Volume 113, pp. 57–110. ISBN 9780128207093.
  51. Baxter, B.K.; Zalar, P. The extremophiles of Great Salt Lake: Complex microbiology in a dynamic hypersaline ecosystem. In Model Ecosystems in Extreme Environments; Elsevier Inc.: Amsterdam, The Netherlands, 2019; pp. 57–99.
  52. Ben Abdallah, M.; Karray, F.; Kallel, N.; Armougom, F.; Mhiri, N.; Quemeneur, M.; Cayol, J.-L.; Erauso, G.; Sayadi, S. Abundance and diversity of prokaryotes in ephemeral hypersaline lake Chott El Jerid using Illumina Miseq sequencing, DGGE and qPCR assays. Extremophiles 2018, 22, 811–823.
  53. Almeida-Dalmet, S.; Sikaroodi, M.; Gillevet, P.M.; Litchfield, C.D.; Baxter, B.K. Temporal Study of the Microbial Diversity of the North Arm of Great Salt Lake, Utah, U.S. Microorganisms 2015, 3, 310–326.
  54. Chen, S.; Xu, Y.; Helfant, L. Geographical Isolation, Buried Depth, and Physicochemical Traits Drive the Variation of Species Diversity and Prokaryotic Community in Three Typical Hypersaline Environments. Microorganisms 2020, 8, 120.
  55. Di Meglio, L.; Santos, F.; Gomariz, M.; Almansa, C.; López, C.; Anton, J.; Nercessian, D. Seasonal dynamics of extremely halophilic microbial communities in three Argentinian salterns. FEMS Microbiol. Ecol. 2016, 92.
  56. Haferburg, G.; Gröning, J.A.D.; Schmidt, N.; Kummer, N.-A.; Erquicia, J.C.; Schlömann, M. Microbial diversity of the hypersaline and lithium-rich Salar de Uyuni, Bolivia. Microbiol. Res. 2017, 199, 19–28.
  57. Kalwasińska, A.; Deja-Sikora, E.; Burkowska-But, A.; Szabó, A.; Felföldi, T.; Kosobucki, P.; Krawiec, A.; Walczak, M. Changes in bacterial and archaeal communities during the concentration of brine at the graduation towers in Ciechocinek spa (Poland). Extremophiles 2017, 22, 233–246.
  58. Canfora, L.; Bacci, G.; Pinzari, F.; Papa, G.L.; Dazzi, C.; Benedetti, A. Salinity and Bacterial Diversity: To What Extent Does the Concentration of Salt Affect the Bacterial Community in a Saline Soil? PLoS ONE 2014, 9, e106662.
  59. Delgado-García, M.; Contreras-Ramos, S.M.; Rodríguez, J.A.; Mateos-Díaz, J.C.; Aguilar, C.N.; Camacho-Ruíz, R.M. Isolation of halophilic bacteria associated with saline and alkaline-sodic soils by culture dependent approach. Heliyon 2018, 4, e00954.
  60. Mukhtar, S.; Mehnaz, S.; Malik, K.A. Microbial diversity in the rhizosphere of plants growing under extreme environments and its impact on crop improvement. Environ. Sustain. 2019, 2, 329–338.
  61. Wang, S.; Sun, L.; Ling, N.; Zhu, C.; Chi, F.; Li, W.; Hao, X.; Zhang, W.; Bian, J.; Chen, L.; et al. Exploring Soil Factors Determining Composition and Structure of the Bacterial Communities in Saline-Alkali Soils of Songnen Plain. Front. Microbiol. 2020, 10, 2902.
  62. Zhao, R.; Feng, J.; Yin, X.; Liu, J.; Fu, W.; Berendonk, T.U.; Zhang, T.; Li, X.; Li, B. Antibiotic resistome in landfill leachate from different cities of China deciphered by metagenomic analysis. Water Res. 2018, 134, 126–139.
  63. Acuña-Rodríguez, I.S.; Hansen, H.; Gallardo-Cerda, J.; Atala, C.; Molina-Montenegro, M.A. Antarctic Extremophiles: Biotechnological Alternative to Crop Productivity in Saline Soils. Front. Bioeng. Biotechnol. 2019, 7, 1–13.
  64. Otlewska, A.; Migliore, M.; Dybka-Stępień, K.; Manfredini, A.; Struszczyk-Świta, K.; Napoli, R.; Białkowska, A.; Canfora, L.; Pinzari, F. When Salt Meddles Between Plant, Soil, and Microorganisms. Front. Plant Sci. 2020, 11, 553087.
  65. Pecher, W.T.; Al Madadha, M.E.; DasSarma, P.; Ekulona, F.; Schott, E.J.; Crowe, K.; Gut, B.S.; DasSarma, S. Effects of road salt on microbial communities: Halophiles as biomarkers of road salt pollution. PLoS ONE 2019, 14, e0221355.
  66. Kim, J.Y.; Whon, T.W.; Lim, M.Y.; Kim, Y.B.; Kim, N.; Kwon, M.-S.; Kim, J.; Lee, S.H.; Choi, H.-J.; Nam, I.-H.; et al. The human gut archaeome: Identification of diverse haloarchaea in Korean subjects. Microbiome 2020, 8, 114.
  67. Lagier, J.-C.; Khelaifia, S.; Azhar, E.; Croce, O.; Bibi, F.; Jiman-Fatani, A.A.; Yasir, M.; Ben Helaby, H.; Robert, C.; Fournier, P.-E.; et al. Genome sequence of Oceanobacillus picturae strain S1, an halophilic bacterium first isolated in human gut. Stand. Genom. Sci. 2015, 10, 91.
  68. Rodriguez-Medina, J.; Kim, H.G.; Castro, J.; Contreras, C.M.; Glon, C.L.; Goyal, A.; Guo, B.Y.; Knowles, S.; Lin, J.C.; McGuiness, C.L.; et al. Draft Genome Sequences of 16 Halophilic Prokaryotes Isolated from Diverse Environments. Microbiol. Resour. Announc. 2020, 9, 20–22.
  69. Seck, E.H.; Senghor, B.; Merhej, V.; Bachar, D.; Cadoret, F.; Robert, C.; Azhar, E.; Yasir, M.; Bibi, F.; Jiman-Fatani, A.A.; et al. Salt in stools is associated with obesity, gut halophilic microbiota and Akkermansia muciniphila depletion in humans. Int. J. Obes. 2018, 43, 862–871.
  70. Enomoto, S.; Shimane, Y.; Ihara, K.; Kamekura, M.; Itoh, T.; Ohkuma, M.; Takahashi-Ando, N.; Fukushima, Y.; Yoshida, Y.; Usami, R.; et al. Haloarcula mannanilytica sp. nov., a galactomannan-degrading haloarchaeon isolated from commercial salt. Int. J. Syst. Evol. Microbiol. 2020, 70, 6331–6337.
  71. Gibtan, A.; Park, K.; Woo, M.; Shin, J.-K.; Lee, D.-W.; Sohn, J.H.; Song, M.; Roh, S.W.; Lee, S.-J.; Lee, H.-S. Diversity of Extremely Halophilic Archaeal and Bacterial Communities from Commercial Salts. Front. Microbiol. 2017, 8, 799.
  72. Minegishi, H.; Echigo, A.; Kuwahara, A.; Shimane, Y.; Kamekura, M.; Itoh, T.; Ohkuma, M.; Usami, R. Halocalculus aciditolerans gen. nov., sp. nov., an acid-tolerant haloarchaeon isolated from commercial salt. Int. J. Syst. Evol. Microbiol. 2015, 65, 1640–1645.
  73. Seck, E.H.; Dufour, J.-C.; Raoult, D.; Lagier, J.-C. Halophilic & halotolerant prokaryotes in humans. Futur. Microbiol. 2018, 13, 799–812.
  74. Anast, J.M.; Dzieciol, M.; Schultz, D.L.; Wagner, M.; Mann, E.; Schmitz-Esser, S. Brevibacterium from Austrian hard cheese harbor a putative histamine catabolism pathway and a plasmid for adaptation to the cheese environment. Sci. Rep. 2019, 9, 6164.
  75. Ishikawa, M.; Kodama, K.; Yasuda, H.; Okamoto-Kainuma, A.; Koizumi, K.; Yamasato, K. Presence of halophilic and alkaliphilic lactic acid bacteria in various cheeses. Lett. Appl. Microbiol. 2006, 44, 308–313.
  76. Suzuki, T.; Matsutani, M.; Matsuyama, M.; Unno, R.; Matsushita, H.; Sugiyama, M.; Yamasato, K.; Koizumi, Y.; Ishikawa, M. Growth and metabolic properties of halophilic and alkaliphilic lactic acid bacterial strains of Marinilactibacillus psychrotolerans isolated from surface-ripened soft cheese. Int. Dairy J. 2020, 112, 104840.
  77. Jonnala, B.R.Y.; McSweeney, P.L.H.; Sheehan, J.J.; Cotter, P.D. Sequencing of the Cheese Microbiome and Its Relevance to Industry. Front. Microbiol. 2018, 9, 1020.
  78. Yalçınkaya, S.; Kılıç, G.B. Isolation, identification and determination of technological properties of the halophilic lactic acid bacteria isolated from table olives. J. Food Sci. Technol. 2019, 56, 2027–2037.
  79. Jang, J.-Y.; Oh, Y.J.; Lim, S.K.; Park, H.K.; Lee, C.; Kim, J.Y.; Lee, M.-A.; Choi, H.-J. Salicibibacter kimchii gen. nov., sp. nov., a moderately halophilic and alkalitolerant bacterium in the family Bacillaceae, isolated from kimchi. J. Microbiol. 2018, 56, 880–885.
  80. Oh, Y.J.; Kim, J.Y.; Park, H.K.; Jang, J.-Y.; Lim, S.K.; Kwon, M.-S.; Choi, H.-J. Salicibibacter halophilus sp. nov., a moderately halophilic bacterium isolated from kimchi. J. Microbiol. 2019, 57, 997–1002.
  81. Oh, Y.J.; Kim, J.Y.; Jo, H.E.; Park, H.K.; Lim, S.K.; Kwon, M.-S.; Choi, H.-J. Lentibacillus cibarius sp. nov., isolated from kimchi, a Korean fermented food. J. Microbiol. 2020, 58, 387–394.
  82. Booncharoen, A.; Visessanguan, W.; Kuncharoen, N.; Yiamsombut, S.; Santiyanont, P.; Mhuantong, W.; Charoensri, S.; Rojsitthisak, P.; Tanasupawat, S. Lentibacillus lipolyticus sp. nov., a moderately halophilic bacterium isolated from shrimp paste (Ka-pi). Int. J. Syst. Evol. Microbiol. 2019, 69, 3529–3536.
  83. Li, K.; Sang, X.; Zhu, Y.; Zhang, G.; Bi, J.; Hao, H.; Hou, H.; Qian, F. Lentibacillus panjinensis sp. nov., Isolated from Shrimp Paste, a Traditional Chinese Fermented Seafood. Curr. Microbiol. 2020, 77, 1997–2001.
  84. Diop, A.; Seck, E.H.; Dubourg, G.; Armstrong, N.; Blanc-Tailleur, C.; Raoult, D.; Fournier, P. Genome sequence and description ofGracilibacillus timonensissp. nov. strain Marseille-P2481T, a moderate halophilic bacterium isolated from the human gut microflora. Microbiol. Open 2018, 8, e00638.
  85. Khelaifia, S.; Lagier, J.-C.; Bibi, F.; Azhar, E.I.; Croce, O.; Padmanabhan, R.; Jiman-Fatani, A.A.; Yasir, M.; Robert, C.; Andrieu, C.; et al. Microbial Culturomics to Map Halophilic Bacterium in Human Gut: Genome Sequence and Description of Oceanobacillus jeddahense sp. nov. OMICS A J. Integr. Biol. 2016, 20, 248–258.
  86. Ngom, I.I.; Hasni, I.; Senghor, B.; Lo, C.I.; Armstrong, N.; Sokhna, C.; Raoult, D.; Fournier, P.-E.; Lagier, J.-C. Description of Gracilibacillus phocaeensis sp. nov., a new halophilic bacterium isolated from Senegalian human stool. New Microbes New Infect. 2020, 38, 100799.
  87. Amoozegar, M.A.; Siroosi, M.; Atashgahi, S.; Smidt, H.; Ventosa, A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. Microbiology 2017, 163, 623–645.
  88. Desai, C.; Patel, P.; Markande, A.R.; Kamala, K.; Sivaperumal, P. Exploration of haloarchaea for their potential applications in food industry. Int. J. Environ. Sci. Technol. 2020, 17, 4455–4464.
  89. Rodrigo-Baños, M.; Garbayo, I.; Vílchez, C.; Bonete, M.-J.; Martínez-Espinosa, R.M. Carotenoids from Haloarchaea and Their Potential in Biotechnology. Mar. Drugs 2015, 13, 5508–5532.
  90. Singh, A.; Singh, A.K. Haloarchaea: Worth exploring for their biotechnological potential. Biotechnol. Lett. 2017, 39, 1793–1800.
  91. Gómez-Villegas, P.; Vigara, J.; Vila, M.; Varela, J.; Barreira, L.; Léon, R. Antioxidant, Antimicrobial, and Bioactive Potential of Two New Haloarchaeal Strains Isolated from Odiel Salterns (Southwest Spain). Biology 2020, 9, 298.
  92. Ghanmi, F.; Carré-Mlouka, A.; Zarai, Z.; Mejdoub, H.; Peduzzi, J.; Maalej, S.; Rebuffat, S. The extremely halophilic archaeon Halobacterium salinarum ETD5 from the solar saltern of Sfax (Tunisia) produces multiple halocins. Res. Microbiol. 2019, 171, 80–90.
  93. Makarova, K.S.; Wolf, Y.; Karamycheva, S.; Zhang, D.; Aravind, L.; Koonin, E.V. Antimicrobial Peptides, Polymorphic Toxins, and Self-Nonself Recognition Systems in Archaea: An Untapped Armory for Intermicrobial Conflicts. mBio 2019, 10, e00715-19.
  94. Shirazian, P.; Asad, S.; Amoozegar, M.A. The potential of halophilic and halotolerant bacteria for the production of antineoplastic enzymes: L-asparaginase and L-glutaminase. EXCLI J. 2016, 15, 268–279.
  95. Zolfaghar, M.; Amoozegar, M.A.; Khajeh, K.; Babavalian, H.; Tebyanian, H. Isolation and screening of extracellular anticancer enzymes from halophilic and halotolerant bacteria from different saline environments in Iran. Mol. Biol. Rep. 2019, 46, 3275–3286.
  96. De Castro, I.; Mendo, S.; Caetano, T. Antibiotics from Haloarchaea: What Can We Learn from Comparative Genomics? Mar. Biotechnol. 2020, 22, 308–316.
  97. Othoum, G.; Bougouffa, S.; Razali, R.; Bokhari, A.; Alamoudi, S.; Antunes, A.; Gao, X.; Hoehndorf, R.; Arold, S.T.; Gojobori, T.; et al. In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters. BMC Genom. 2018, 19, 382.
  98. Othoum, G.; Bougouffa, S.; Bokhari, A.; Lafi, F.F.; Gojobori, T.; Hirt, H.; Mijakovic, I.; Bajic, V.B.; Essack, M. Mining biosynthetic gene clusters in Virgibacillus genomes. BMC Genom. 2019, 20, 1–10.
  99. Othoum, G.; Prigent, S.; Derouiche, A.; Shi, L.; Bokhari, A.; Alamoudi, S.; Bougouffa, S.; Gao, X.; Hoehndorf, R.; Arold, S.T.; et al. Comparative genomics study reveals Red Sea Bacillus with characteristics associated with potential microbial cell factories (MCFs). Sci. Rep. 2019, 9, 19254.
  100. Ziko, L.; Adel, M.; Malash, M.; Siam, R. Insights into Red Sea Brine Pool Specialized Metabolism Gene Clusters Encoding Potential Metabolites for Biotechnological Applications and Extremophile Survival. Mar. Drugs 2019, 17, 273.
  101. Wang, H.; Fewer, D.; Holm, L.; Rouhiainen, L.; Sivonen, K. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc. Natl. Acad. Sci. USA 2014, 111, 9259–9264.
Subjects: Microbiology
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to : , , , ,
View Times: 707
Revisions: 2 times (View History)
Update Date: 21 Jul 2022