Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 1533 2022-07-15 20:05:28 |
2 layout + 4 word(s) 1537 2022-07-18 05:05:56 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Gabbiadini, R.;  Buono, A.D.;  Correale, C.;  Spinelli, A.;  Repici, A.;  Armuzzi, A.;  Roda, G. Ileal Pouch–Anal Anastomosis and Pouchitis. Encyclopedia. Available online: https://encyclopedia.pub/entry/25191 (accessed on 17 November 2024).
Gabbiadini R,  Buono AD,  Correale C,  Spinelli A,  Repici A,  Armuzzi A, et al. Ileal Pouch–Anal Anastomosis and Pouchitis. Encyclopedia. Available at: https://encyclopedia.pub/entry/25191. Accessed November 17, 2024.
Gabbiadini, Roberto, Arianna Dal Buono, Carmen Correale, Antonino Spinelli, Alessandro Repici, Alessandro Armuzzi, Giulia Roda. "Ileal Pouch–Anal Anastomosis and Pouchitis" Encyclopedia, https://encyclopedia.pub/entry/25191 (accessed November 17, 2024).
Gabbiadini, R.,  Buono, A.D.,  Correale, C.,  Spinelli, A.,  Repici, A.,  Armuzzi, A., & Roda, G. (2022, July 15). Ileal Pouch–Anal Anastomosis and Pouchitis. In Encyclopedia. https://encyclopedia.pub/entry/25191
Gabbiadini, Roberto, et al. "Ileal Pouch–Anal Anastomosis and Pouchitis." Encyclopedia. Web. 15 July, 2022.
Ileal Pouch–Anal Anastomosis and Pouchitis
Edit

Inflammatory bowel diseases, Crohn’s disease and ulcerative colitis, are life-long disorders characterized by the chronic relapsing inflammation of the gastrointestinal tract with the intermittent need for escalation treatment and, eventually, even surgery. The total proctocolectomy with ileal pouch–anal anastomosis (IPAA) is the surgical intervention of choice in subjects affected by ulcerative colitis (UC). Although IPAA provides satisfactory functional outcomes, it can be susceptible to some complications, including pouchitis as the most common.

ileal pouch–anal anastomosis microbiota pouchitis

1. Introduction

In humans, a wide number of different microbial species are located in the bowel, which hosts several trillion microbial cells [1]. This ensemble of microbial species is generally called gut microbiota [2]. There is a profound interplay between the gut microbiota and the human biology [3]. Indeed, the gut microbiota is important for various physiological functions such as eliciting immune maturation [4], defending against pathogens colonization and overgrowth [5], influencing epithelial proliferation [6] and intestinal vascular density [7], modifying bile acids in the large bowel [8], promoting metabolic homeostasis [9] and hormone modulation [10], synthesizing vitamins [11] and neurotransmitters [12], supplying energy [1], and regulating bone metabolism [13]. The intestinal microbiota of a healthy subject is composed predominantly by Bacteroidetes and Firmicutes, with also other smaller sections comprised by ActinobacteriaProteobacteriaVerrucomicrobia, methanogenic archaea, Eucarya, and various phages [1]. Modifications in the constitution and function of gut microbes lead to dysbiosis [1], and several diseases are associated with gut dysbiosis [1][14]. In particular, intestinal dysbiosis is an important feature of inflammatory bowel diseases (IBD) [14][15], playing a crucial role in the onset of the disease in predisposed subjects [16]. Indeed, some important alterations of intestinal microbiota have been identified in IBD, including an underrepresentation of Firmicutes (in particular Faecalibacterium prausnitzii) [17]Bacteroidetes, and Lactobacillus [16] with increased levels of Proteobacteria [18]. IBD are life-long disorders characterized by the chronic relapsing inflammation of the gastrointestinal tract [19][20] with the intermittent need for escalation treatment, eventually requiring surgical intervention [21]. In particular, although decreasing over time, subjects affected by UC still have a 5- and 10-year risk of colectomy of 7.0% and 9.6%, respectively [22]. Indications for colectomy comprise refractory acute severe UC, medically refractory disease, and colorectal cancer [19]. For these cases, restorative total proctocolectomy with ileal pouch–anal anastomosis (IPAA) is the surgical intervention of choice [19][23][24]. Although IPAA provides a good quality of life and satisfactory functional outcomes [25][26], it can be subject to some complications, including pouchitis as the most common [27]. Pouchitis is an active, non-specific, idiopathic inflammation of the IPAA mucosa [28]. Approximately 25% of subjects develop pouchitis a year after IPAA with an increasing trend that reaches up to 45% at 5 years [29]. Approximately 10–20% of the pouchitis may also progress to chronic pouchitis, leading to antibiotic dependency or refractoriness requiring immunosuppressive therapy [30]. Furthermore, pouchitis is a risk factor for hospitalization [31] and pouch failure [32], which can occur in 5–10% of cases [33][34][35]. The etiology of pouchitis is mostly unclear. However, the efficacy of antibiotics in pouchitis suggests that the IPAA-related dysbiosis of the microbiota could play an important role in its pathogenesis [36][37][38]

2. Ileal Pouch–Anal Anastomosis (IPAA) Microbiota Evolution over Time

Although derived from the small intestinal tissue, the microbiota of the IPAA changes over time into a microbiota with a colonic profile [39][40][41][42]. These modifications can arise as early as two months after surgery and achieve a more stable composition as the years go by after the creation of the IPAA [40][42]Clostridium coccoidesClostridium leptumBacteroides fragilisAtopobiumE. coliKlebsiellaVeillonellaStaphylococcus (coag-), and Enterobacter are the more counted bacterial species in functional IPAA [40][41][43]. In particular, it seems that the microbiota of healthy IPAAs try to recover to a composition comparable to that observed prior to surgery [43], and it has been hypothesized that the presence of VeillonellaLachnospiraceae, Ruminococcus gnavus, and clostridial cluster IV (i.e., Faecalibacterium prausnitzii) might be a marker of regularity of the IPAA flora [37][43][44]. Furthermore, a comparison between the microbiota of IPAA in subjects with UC and subjects with familial adenomatous polyposis (FAP), which exhibit a low incidence of pouch inflammation, might help to understand the microbial families potentially implicated in the pathogenesis of pouchitis [37]. Indeed, a higher presence of sulfate-reducing bacteria (SRB) in UC-IPAA has been observed compared to FAP-IPAA [45][46]. SRB produce hydrogen-sulfide, which inhibits butyrate oxidation and prevents its utilization by the intestinal epithelial cells, potentially resulting in the damage of the mucosa of IPAA [37][46]. Other findings confirm the presence of differences between UC-IPAA and FAP-IPAA observing less bacterial diversity, an increased proportion of Proteobacteria, and decreased levels of Bacteroidetes and Faecalibacterium prausnitzii in the UC-IPAA group [47][48]Table 1 shows the most common microorganisms and the main differences between healthy adults, IBD patients, UC-IPAA, and FAP-IPAA patients.
Table 1. Most common microorganisms and main differences between healthy adults, IBD patients, UC-IPAA, and FAP-IPAA patients.
Healthy Adults IBD UC-IPAA FAP-IPAA
Bacteroidetes * ↓ Bacteroidetes ↓ Bacteroidetes ↑ Bacteroidetes
Firmicutes * ↓ Firmicutes ↓ Firmicutes ↑ Firmicutes
Actinobacteria * ↓ Lactobacillus ↑ Proteobacteria ↓ Proteobacteria
Proteobacteria * ↑ Proteobacteria Presence of SRB Absence of SRB
Verrucomicrobia ↑ Enterobacteriaceae    
Methanogenic archaea      
Eucaria (i.e., yeasts)      
* Representing about 90% of the bacterial phyla of the gut microbiota. IBD: inflammatory bowel disease; UC-IPAA: ulcerative colitis–ileal pouch–anal anastomosis; FAP-IPAA: familial adenomatous polyposis–ileal pouch–anal anastomosis; SRB: sulfate-reducing bacteria; ↓: reduced levels; ↑: increased levels.

3. Microbiota as a Target for the Treatment of Pouchitis

3.1. Antibiotics

Antibiotics represent the mainstay for the treatment of pouchitis [49] as they can induce remission by 74% in chronic pouchitis [50]. Ciprofloxacin and metronidazole are the first-line recommended antibiotics, although the best modality of treatment is still unclear [51]. A randomized clinical trial showed that both antibiotics produced a reduction in the total Pouchitis Disease Activity Index (PDAI) score in patients with acute pouchitis; however, ciprofloxacin produced a greater reduction in both symptom score and endoscopic score with fewer adverse events compared to metronidazole (0% vs. 33%, respectively) [52]. Furthermore, it has been shown that a combination of the two antibiotics can be effective also in patients with refractory/recurrent pouchitis [53]. The mechanisms implicated in the pouch microbiota’s changes after antibiotic therapy that are responsible for their favorable effects are not clearly understood [38]. In the study of Gosselink et al., ciprofloxacin could eradicate pathogens that are significantly increased during pouchitis (Clostridium perfringens, hemolytic Escherichia coli) while not disrupting most of the anaerobic bacteria that contribute to the stability of the IPAA’s flora [36]. Subsequently, Dubinsky et al. observed that the effectiveness of antibiotic therapy in pouchitis may be ascribed to the establishment of an intestinal microbiota with non-pathogenic, antibiotic-resistant bacteria with low inflammatory potential. This newly established microbiota may prevent more aggressive inflammatory bacteria from colonizing the pouch [54]. However, within three months after therapy discontinuation, most subjects relapsed, requiring additional antibiotic treatment [54]. Indeed, 7–20% of subjects that experience a first episode of pouchitis will eventually develop chronic pouchitis [55]. Therefore, further interventions following treatment with antibiotics should be contemplated (i.e., probiotics, diet) to support beneficial bacteria and prevent subsequent colonization by pathogenic species [54].

3.2. Probiotics

Randomized placebo-controlled trials (RCTs) showed that a probiotic mixture of Lactobacilli (four strains), Bifidobacteria (three strains), and Streptococcus thermophilus was effective in maintaining remission in subjects that suffered previous pouchitis. The treatment was generally well tolerated without significant serious adverse events (only one patient stopped medication complaining of abdominal cramps, vomiting, and diarrhoea) [56][57]. The same probiotic mixture led to increased fecal levels of lactobacillibifidobacteria, and Streptococcus salivarius in comparison to patients treated with placebo (p < 0.001) [56]. Similar findings were observed also in the RCT of Mimura et al. [57]. One of the potential mechanisms of the beneficial effect of the probiotic mixture could be its ability to increase tissue levels of the anti-inflammatory interleukin (IL)-10 and to reduce levels of tumor necrosis factor (TNF)-α, interferon-γ, and IL-1α. IL-10 may increase the tolerance of the intestinal immune system to resident pouch bacteria. Nevertheless, other mechanisms are probably involved in the anti-inflammatory effects of probiotics [58]. Indeed, Persborn et al. demonstrated that maintenance treatment with Ecologic 825 (another probiotic mixture containing strains of Lactobacilli and Bifidobacterium) after induction therapy with antibiotics restored the mucosal barrier to E.Coli in subjects with pouchitis [59].
Interestingly, some probiotics have been shown to be effective also as a prophylaxis therapy after surgery, reducing the rate of the first episode of pouchitis [60][61]. Therefore, some Authors suggest prescribing prophylaxis treatment with probiotics in subjects with high-risk factors of pouchitis after surgery (i.e., primary sclerosing cholangitis and extraintestinal manifestations) [55].
In addition to probiotics, other treatments have been studied to rebalance the intestinal flora in patients with IPAA.

3.3. Fecal Microbiota Transplantation

Fecal microbiota transplantation (FMT) has been shown to be a successful treatment in other conditions of microbiota alteration, such as recurrent Clostridioides difficile infection [62][63]. As a result, there is increasing interest in the use of FMT to treat pouchitis. In the study of Kousgaard et al., FMT could increase the microbial diversity in subjects with chronic pouchitis and obtain clinical remission in 33% of the patients at 6 months of follow-up [64]. However, a recent systematic review observed that FMT seems ineffective in treating chronic pouchitis [65]. Indeed, two recent randomized controlled trials observed a low efficacy of FMT in chronic pouchitis. Interestingly, the majority of the relapses occurred during or shortly after the completion of FMT [66][67]. Overall, only a few studies have explored the role of FMT in chronic pouchitis so far, exhibiting some pitfalls such as the heterogeneity in study design and type of fecal transplant delivery [38]. Future specifically dedicated RCTs with large sample-sizes and standardized protocols (i.e., disease definitions, type of FMT delivery, dose, or duration) will help to ensure reproducible data and provide higher quality of evidence on the real efficacy of FMT in the treatment of chronic pouchitis [68].

References

  1. Lynch, S.V.; Pedersen, O. The Human Intestinal Microbiome in Health and Disease. N. Engl. J. Med. 2016, 375, 2369–2379.
  2. Cani, P.D. Human gut microbiome: Hopes, threats and promises. Gut 2018, 67, 1716–1725.
  3. Lavelle, A.; Sokol, H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 223–237.
  4. Atarashi, K.; Tanoue, T.; Oshima, K.; Suda, W.; Nagano, Y.; Nishikawa, H.; Fukuda, S.; Saito, T.; Narushima, S.; Hase, K.; et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013, 500, 232–236.
  5. Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14, 685–690.
  6. Ijssennagger, N.; Belzer, C.; Hooiveld, G.J.; Dekker, J.; van Mil, S.W.; Müller, M.; Kleerebezem, M.; van der Meer, R. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc. Natl. Acad. Sci. USA 2015, 112, 10038–10043.
  7. Reinhardt, C.; Bergentall, M.; Greiner, T.U.; Schaffner, F.; Ostergren-Lundén, G.; Petersen, L.C.; Ruf, W.; Bäckhed, F. Tissue factor and PAR1 promote microbiota-induced intestinal vascular remodelling. Nature 2012, 483, 627–631.
  8. Devlin, A.S.; Fischbach, M. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat. Chem. Biol. 2015, 11, 685–690.
  9. Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031.
  10. Neuman, H.; Debelius, J.W.; Knight, R.; Koren, O. Microbial endocrinology: The interplay between the microbiota and the endocrine system. FEMS Microbiol. Rev. 2015, 39, 509–521.
  11. Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24.
  12. Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015, 161, 264–276.
  13. Seely, K.D.; Kotelko, C.A.; Douglas, H.; Bealer, B.; Brooks, A.E. The Human Gut Microbiota: A Key Mediator of Osteoporosis and Osteogenesis. Int. J. Mol. Sci. 2021, 22, 9452.
  14. Weiss, G.A.; Hennet, T. Mechanisms and consequences of intestinal dysbiosis. Cell. Mol. Life Sci. 2017, 74, 2959–2977.
  15. Wlodarska, M.; Kostic, A.D.; Xavier, R.J. An integrative view of microbiome-host interactions in inflammatory bowel diseases. Cell Host Microbe 2015, 17, 577–591.
  16. Mentella, M.C.; Scaldaferri, F.; Pizzoferrato, M.; Gasbarrini, A.; Miggiano, G.A.D. Nutrition, IBD and Gut Microbiota: A Review. Nutrients 2020, 12, 944.
  17. Sokol, H.; Seksik, P.; Furet, J.P.; Firmesse, O.; Nion-Larmurier, I.; Beaugerie, L.; Cosnes, J.; Corthier, G.; Marteau, P.; Doré, J. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm. Bowel Dis. 2009, 15, 1183–1189.
  18. Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M.; et al. The gut microbiota and host health: A new clinical frontier. Gut 2016, 65, 330–339.
  19. Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.F. Ulcerative colitis. Lancet 2017, 389, 1756–1770.
  20. Torres, J.; Mehandru, S.; Colombel, J.F.; Peyrin-Biroulet, L. Crohn’s disease. Lancet 2017, 389, 1741–1755.
  21. Cosnes, J.; Gower-Rousseau, C.; Seksik, P.; Cortot, A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 2011, 140, 1785–1794.
  22. Tsai, L.; Ma, C.; Dulai, P.S.; Prokop, L.J.; Eisenstein, S.; Ramamoorthy, S.L.; Feagan, B.G.; Jairath, V.; Sandborn, W.J.; Singh, S. Contemporary Risk of Surgery in Patients With Ulcerative Colitis and Crohn’s Disease: A Meta-Analysis of Population-Based Cohorts. Clin. Gastroenterol. Hepatol. 2021, 19, 2031–2045.e11.
  23. Spinelli, A.; Bonovas, S.; Burisch, J.; Kucharzik, T.; Adamina, M.; Annese, V.; Bachmann, O.; Bettenworth, D.; Chaparro, M.; Czuber-Dochan, W.; et al. ECCO Guidelines on Therapeutics in Ulcerative Colitis: Surgical Treatment. J. Crohns Colitis 2022, 16, 179–189.
  24. Nebbia, M.; Yassin, N.A.; Spinelli, A. Colorectal Cancer in Inflammatory Bowel Disease. Clin. Colon Rectal Surg. 2020, 33, 305–317.
  25. Michelassi, F.; Lee, J.; Rubin, M.; Fichera, A.; Kasza, K.; Karrison, T.; Hurst, R.D. Long-term functional results after ileal pouch anal restorative proctocolectomy for ulcerative colitis: A prospective observational study. Ann. Surg. 2003, 238, 433–441.
  26. Hahnloser, D.; Pemberton, J.H.; Wolff, B.G.; Larson, D.R.; Crownhart, B.S.; Dozois, R.R. Results at up to 20 years after ileal pouch-anal anastomosis for chronic ulcerative colitis. Br. J. Surg. 2007, 94, 333–340.
  27. Shen, B. Pouchitis: What every gastroenterologist needs to know. Clin. Gastroenterol. Hepatol. 2013, 11, 1538–1549.
  28. Villanacci, V.; Reggiani-Bonetti, L.; Salviato, T.; Leoncini, G.; Cadei, M.; Albarello, L.; Caputo, A.; Aquilano, M.C.; Battista, S.; Parente, P. Histopathology of IBD Colitis. A practical approach from the pathologists of the Italian Group for the study of the gastrointestinal tract (GIPAD). Pathologica 2021, 113, 39–53.
  29. Ferrante, M.; Declerck, S.; De Hertogh, G.; Van Assche, G.; Geboes, K.; Rutgeerts, P.; Penninckx, F.; Vermeire, S.; D’Hoore, A. Outcome after proctocolectomy with ileal pouch-anal anastomosis for ulcerative colitis. Inflamm. Bowel Dis. 2008, 14, 20–28.
  30. Quinn, K.P.; Raffals, L.E. An Update on the Medical Management of Inflammatory Pouch Complications. Am. J. Gastroenterol. 2020, 115, 1439–1450.
  31. Barnes, E.L.; Herfarth, H.H.; Kappelman, M.D.; Zhang, X.; Lightner, A.; Long, M.D.; Sandler, R.S. Incidence, Risk Factors, and Outcomes of Pouchitis and Pouch-Related Complications in Patients with Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2021, 19, 1583–1591.e4.
  32. Shen, B.; Yu, C.; Lian, L.; Remzi, F.H.; Kiran, R.P.; Fazio, V.W.; Kattan, M.W. Prediction of late-onset pouch failure in patients with restorative proctocolectomy with a nomogram. J. Crohns Colitis 2012, 6, 198–206.
  33. Fazio, V.W.; Kiran, R.P.; Remzi, F.H.; Coffey, J.C.; Heneghan, H.M.; Kirat, H.T.; Manilich, E.; Shen, B.; Martin, S.T. Ileal pouch anal anastomosis: Analysis of outcome and quality of life in 3707 patients. Ann. Surg. 2013, 257, 679–685.
  34. Tekkis, P.P.; Lovegrove, R.E.; Tilney, H.S.; Smith, J.J.; Sagar, P.M.; Shorthouse, A.J.; Mortensen, N.J.; Nicholls, R.J. Long-term failure and function after restorative proctocolectomy—A multi-centre study of patients from the UK National Ileal Pouch Registry. Colorectal Dis. 2010, 12, 433–441.
  35. Tulchinsky, H.; Hawley, P.R.; Nicholls, J. Long-term failure after restorative proctocolectomy for ulcerative colitis. Ann. Surg. 2003, 238, 229–234.
  36. Gosselink, M.P.; Schouten, W.R.; van Lieshout, L.M.; Hop, W.C.; Laman, J.D.; Ruseler-van Embden, J.G. Eradication of pathogenic bacteria and restoration of normal pouch flora: Comparison of metronidazole and ciprofloxacin in the treatment of pouchitis. Dis. Colon Rectum 2004, 47, 1519–1525.
  37. Schieffer, K.M.; Williams, E.D.; Yochum, G.S.; Koltun, W.A. Review article: The pathogenesis of pouchitis. Aliment. Pharmacol. Ther. 2016, 44, 817–835.
  38. LeBlanc, J.F.; Segal, J.P.; de Campos Braz, L.M.; Hart, A.L. The Microbiome as a Therapy in Pouchitis and Ulcerative Colitis. Nutrients 2021, 13, 1780.
  39. Weingarden, A.R.; Vaughn, B.P. Intestinal microbiota, fecal microbiota transplantation, and inflammatory bowel disease. Gut Microbes 2017, 8, 238–252.
  40. Hinata, M.; Kohyama, A.; Ogawa, H.; Haneda, S.; Watanabe, K.; Suzuki, H.; Shibata, C.; Funayama, Y.; Takahashi, K.; Sasaki, I.; et al. A shift from colon- to ileum-predominant bacteria in ileal-pouch feces following total proctocolectomy. Dig. Dis. Sci. 2012, 57, 2965–2974.
  41. Kohyama, A.; Ogawa, H.; Funayama, Y.; Takahashi, K.; Benno, Y.; Nagasawa, K.; Tomita, S.; Sasaki, I.; Fukushima, K. Bacterial population moves toward a colon-like community in the pouch after total proctocolectomy. Surgery 2009, 145, 435–447.
  42. Segal, J.P.; Oke, S.; Hold, G.L.; Clark, S.K.; Faiz, O.D.; Hart, A.L. Systematic review: Ileoanal pouch microbiota in health and disease. Aliment. Pharmacol. Ther. 2018, 47, 466–477.
  43. Almeida, M.G.; Kiss, D.R.; Zilberstein, B.; Quintanilha, A.G.; Teixeira, M.G.; Habr-Gama, A. Intestinal mucosa-associated microflora in ulcerative colitis patients before and after restorative proctocolectomy with an ileoanal pouch. Dis. Colon Rectum 2008, 51, 1113–1119.
  44. Tannock, G.W.; Lawley, B.; Munro, K.; Lay, C.; Taylor, C.; Daynes, C.; Baladjay, L.; Mcleod, R.; Thompson-Fawcett, M. Comprehensive analysis of the bacterial content of stool from patients with chronic pouchitis, normal pouches, or familial adenomatous polyposis pouches. Inflamm. Bowel Dis. 2012, 18, 925–934.
  45. Smith, F.M.; Coffey, J.C.; Kell, M.R.; O’Sullivan, M.; Redmond, H.P.; Kirwan, W.O. A characterization of anaerobic colonization and associated mucosal adaptations in the undiseased ileal pouch. Colorectal Dis. 2005, 7, 563–570.
  46. Duffy, M.; O’Mahony, L.; Coffey, J.C.; Collins, J.K.; Shanahan, F.; Redmond, H.P.; Kirwan, W.O. Sulfate-reducing bacteria colonize pouches formed for ulcerative colitis but not for familial adenomatous polyposis. Dis. Colon Rectum 2002, 45, 384–388.
  47. McLaughlin, S.D.; Walker, A.W.; Churcher, C.; Clark, S.K.; Tekkis, P.P.; Johnson, M.W.; Parkhill, J.; Ciclitira, P.J.; Dougan, G.; Nicholls, R.J.; et al. The bacteriology of pouchitis: A molecular phylogenetic analysis using 16S rRNA gene cloning and sequencing. Ann. Surg. 2010, 252, 90–98.
  48. Sinha, S.R.; Haileselassie, Y.; Nguyen, L.P.; Tropini, C.; Wang, M.; Becker, L.S.; Sim, D.; Jarr, K.; Spear, E.T.; Singh, G.; et al. Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation. Cell Host Microbe 2020, 27, 659–670.e5.
  49. Shen, B.; Kochhar, G.S.; Rubin, D.T.; Kane, S.V.; Navaneethan, U.; Bernstein, C.N.; Cross, R.K.; Sugita, A.; Schairer, J.; Kiran, R.P.; et al. Treatment of pouchitis, Crohn’s disease, cuffitis, and other inflammatory disorders of the pouch: Consensus guidelines from the International Ileal Pouch Consortium. Lancet Gastroenterol. Hepatol. 2022, 7, 69–95.
  50. Segal, J.P.; Ding, N.S.; Worley, G.; Mclaughlin, S.; Preston, S.; Faiz, O.D.; Clark, S.K.; Hart, A.L. Systematic review with meta-analysis: The management of chronic refractory pouchitis with an evidence-based treatment algorithm. Aliment. Pharmacol. Ther. 2017, 45, 581–592.
  51. Magro, F.; Gionchetti, P.; Eliakim, R.; Ardizzone, S.; Armuzzi, A.; Barreiro-de Acosta, M.; Burisch, J.; Gecse, K.B.; Hart, A.L.; Hindryckx, P.; et al. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, Diagnosis, Extra-intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-anal Pouch Disorders. J. Crohns. Colitis 2017, 11, 649–670.
  52. Shen, B.; Achkar, J.P.; Lashner, B.A.; Ormsby, A.H.; Remzi, F.H.; Brzezinski, A.; Bevins, C.L.; Bambrick, M.L.; Seidner, D.L.; Fazio, V.W. A randomized clinical trial of ciprofloxacin and metronidazole to treat acute pouchitis. Inflamm. Bowel Dis. 2001, 7, 301–305.
  53. Mimura, T.; Rizzello, F.; Helwig, U.; Poggioli, G.; Schreiber, S.; Talbot, I.C.; Nicholls, R.J.; Gionchetti, P.; Campieri, M.; Kamm, M.A. Four-week open-label trial of metronidazole and ciprofloxacin for the treatment of recurrent or refractory pouchitis. Aliment. Pharmacol. Ther. 2002, 16, 909–917.
  54. Dubinsky, V.; Reshef, L.; Bar, N.; Keizer, D.; Golan, N.; Rabinowitz, K.; Godny, L.; Yadgar, K.; Zonensain, K.; Tulchinsky, H.; et al. Predominantly Antibiotic-resistant Intestinal Microbiome Persists in Patients with Pouchitis Who Respond to Antibiotic Therapy. Gastroenterology 2020, 158, 610–624.e13.
  55. Barreiro-de Acosta, M.; Bastón-Rey, I.; Calviño-Suárez, C.; Enrique Domínguez-Muñoz, J. Pouchitis: Treatment dilemmas at different stages of the disease. United Eur. Gastroenterol. J. 2020, 8, 256–262.
  56. Gionchetti, P.; Rizzello, F.; Venturi, A.; Brigidi, P.; Matteuzzi, D.; Bazzocchi, G.; Poggioli, G.; Miglioli, M.; Campieri, M. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: A double-blind, placebo-controlled trial. Gastroenterology 2000, 119, 305–309.
  57. Mimura, T.; Rizzello, F.; Helwig, U.; Poggioli, G.; Schreiber, S.; Talbot, I.C.; Nicholls, R.J.; Gionchetti, P.; Campieri, M.; Kamm, M.A. Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis. Gut 2004, 53, 108–114.
  58. Ulisse, S.; Gionchetti, P.; D’Alò, S.; Russo, F.P.; Pesce, I.; Ricci, G.; Rizzello, F.; Helwig, U.; Cifone, M.G.; Campieri, M.; et al. Expression of cytokines, inducible nitric oxide synthase, and matrix metalloproteinases in pouchitis: Effects of probiotic treatment. Am. J. Gastroenterol. 2001, 96, 2691–2699.
  59. Persborn, M.; Gerritsen, J.; Wallon, C.; Carlsson, A.; Akkermans, L.M.; Söderholm, J.D. The effects of probiotics on barrier function and mucosal pouch microbiota during maintenance treatment for severe pouchitis in patients with ulcerative colitis. Aliment. Pharmacol. Ther. 2013, 38, 772–783.
  60. Gionchetti, P.; Rizzello, F.; Helwig, U.; Venturi, A.; Lammers, K.M.; Brigidi, P.; Vitali, B.; Poggioli, G.; Miglioli, M.; Campieri, M. Prophylaxis of pouchitis onset with probiotic therapy: A double-blind, placebo-controlled trial. Gastroenterology 2003, 124, 1202–1209.
  61. Yasueda, A.; Mizushima, T.; Nezu, R.; Sumi, R.; Tanaka, M.; Nishimura, J.; Kai, Y.; Hirota, M.; Osawa, H.; Nakajima, K.; et al. The effect of Clostridium butyricum MIYAIRI on the prevention of pouchitis and alteration of the microbiota profile in patients with ulcerative colitis. Surg. Today 2016, 46, 939–949.
  62. Van Nood, E.; Vrieze, A.; Nieuwdorp, M.; Fuentes, S.; Zoetendal, E.G.; de Vos, W.M.; Visser, C.E.; Kuijper, E.J.; Bartelsman, J.F.; Tijssen, J.G.; et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 2013, 368, 407–415.
  63. Hvas, C.L.; Dahl Jørgensen, S.M.; Jørgensen, S.P.; Storgaard, M.; Lemming, L.; Hansen, M.M.; Erikstrup, C.; Dahlerup, J.F. Fecal Microbiota Transplantation Is Superior to Fidaxomicin for Treatment of Recurrent Clostridium difficile Infection. Gastroenterology 2019, 156, 1324–1332.e3.
  64. Kousgaard, S.J.; Michaelsen, T.Y.; Nielsen, H.L.; Kirk, K.F.; Brandt, J.; Albertsen, M.; Thorlacius-Ussing, O. Clinical results and microbiota changes after faecal microbiota transplantation for chronic pouchitis: A pilot study. Scand. J. Gastroenterol. 2020, 55, 421–429.
  65. Kayal, M.; Lambin, T.; Pinotti, R.; Dubinsky, M.C.; Grinspan, A. A Systematic Review of Fecal Microbiota Transplant for the Management of Pouchitis. Crohn’s Colitis 360 2020, 2, otaa034.
  66. Herfarth, H.; Barnes, E.L.; Long, M.D.; Isaacs, K.L.; Leith, T.; Silverstein, M.; Gerardin, Y.; Kassam, Z. Combined Endoscopic and Oral Fecal Microbiota Transplantation in Patients with Antibiotic-Dependent Pouchitis: Low Clinical Efficacy due to Low Donor Microbial Engraftment. Inflamm. Intest. Dis. 2019, 4, 1–6.
  67. Karjalainen, E.K.; Renkonen-Sinisalo, L.; Satokari, R.; Mustonen, H.; Ristimäki, A.; Arkkila, P.; Lepistö, A. Fecal Microbiota Transplantation in Chronic Pouchitis: A Randomized, Parallel, Double-Blinded Clinical Trial. Inflamm. Bowel Dis. 2021, 27, 1766–1772.
  68. Cold, F.; Kousgaard, S.J.; Halkjaer, S.I.; Petersen, A.M.; Nielsen, H.L.; Thorlacius-Ussing, O.; Hansen, L. Fecal Microbiota Transplantation in the Treatment of Chronic Pouchitis: A Systematic Review. Microorganisms 2020, 8, 1433.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , , ,
View Times: 389
Revisions: 2 times (View History)
Update Date: 18 Jul 2022
1000/1000
ScholarVision Creations