1. Brief Introduction to Anti-Human Immunodeficiency Virus
The primary transmission mode of HIV is genital-to-genital contact, blood, sperm, and blood transfusion. This virus attacks the body’s immune system, leading to acquired immunodeficiency syndrome (AIDS), a condition in which the immune system gradually fails, allowing dangerous opportunistic infections and cancer to develop. HIV primarily infects cluster of differentiation 4
+ (CD4
+) T cells, dendritic cells, and macrophages
[1].
Furthermore, the condition may reduce the number of CD4
+ T cells to a critical level, resulting in a loss of cell-mediated immunity and greater susceptibility to opportunistic infection, eventually leading to AIDS
[2]. As of 2019, the World Health Organization (WHO) estimates that 38 billion people worldwide are infected with HIV
[3]. However, approximately 1.7 million people were unaware they were HIV-positive
[3]. Therefore, several antiretroviral drugs that may slow the progression of HIV in the body have been discovered and developed. Antiretroviral drugs were only recently available to 67% of the world’s population. Lopinavir, darunavir, atazanavir, and saquinavir are protease inhibitors, while lamivudine, stavudine, emtricitabine, efavirenz, nevirapine, and rand aziridine are reverse transcription inhibitors
[4]. However, no HIV drug on the market can cure HIV.
2. Microbial Natural Products with Anti-Human Immunodeficiency Virus
Natural products produced by microorganisms, as shown in
Table 1, could be used to develop anti-HIV medications. Anti-HIV bioactive compounds from fungi are widely considered to be one of the most promising sources. Several compounds, including alachalasin A from
Podospora vesticola fungus cultures, have been identified as effective HIV-1 replication suppressors in cellosaurus cells C8166
[5][6]. The half-maximal effective concentration, or EC
50, of alachalasin is 8.01 μM. Pestalofone A, as well as its derivatives, including pestalofone B and E, as well as pestaloficiol G, H, J, and K isolated from the
Pestalotiopsis fici fungus, possess anti-HIV activity
[7][8]. Furthermore, epicoccin G and H were isolated from ascomycete
Epicoccum nigrum fermentation culture, in addition to its diphenylalazine A
[9]. Another study discovered that bacillamide B, derived from the ascomycete
Tricladium sp., exhibited anti-HIV activity
[10]. Furthermore, cytochalasan alkaloids, such as armochaetoglobin K, L, M, N, O, P, Q, and R, purified from the arthropod-associated
Chaetomium globosum fungus had significant anti-HIV activity (EC
50 = 0.25–0.55 μM)
[11].
Table 1. Natural product produce by microbes and its target.
| Compound Name [Ref.] |
Compound Type |
Microbial Strain |
Strain Origin/Host |
Viral Target |
IC50/EC50/ED50 |
Target Inhibition |
| alachalasin A [5] |
alkaloid |
Podospora vesticola XJ03-56-1 |
glacier |
HIV-1 |
EC50 = 8.01 μM |
ND |
| pestalofone A [8] |
terpenoid |
Pestalotiopsis fici W106-1 |
plant endophyte |
HIV-1 |
EC50 = 90.4 μM |
ND |
| pestalofone B [8] |
terpenoid |
P. fici W106-1 |
plant endophyte |
HIV-1 |
EC50 = 64.0 μM |
ND |
| pestalofone E [8] |
terpenoid |
P. fici W106-2 |
plant endophyte |
HIV-1 |
EC50 = 93.7 μM |
ND |
| pestaloficiol G [8] |
terpenoid |
P. fici W106-3 |
plant endophyte |
HIV-1 |
EC50 = 89.2 μM |
ND |
| pestaloficiol H [8] |
terpenoid |
P. fici W106-4 |
plant endophyte |
HIV-1 |
EC50 = 89.2 μM |
ND |
| pestaloficiol J [8] |
terpenoid |
P. fici W106-5 |
plant endophyte |
HIV-1 |
EC50 = 8 μM |
ND |
| pestaloficiol K [8] |
terpenoid |
P. fici W106-6 |
plant endophyte |
HIV-1 |
EC50 = 78.2 μM |
ND |
| epicoccin G [12] |
alkaloid |
Epicoccum nigrum XZC04-CS-302 |
Cordyceps sinensis fungus |
HIV-1 |
EC50 = 13.5 μM |
ND |
| epicoccin H [12] |
alkaloid |
E. nigrum XZC04-CS-302 |
C. sinensis |
HIV-1 |
EC50 = 42.2 μM |
ND |
| diphenylalazine A [12] |
peptide |
E. nigrum XZC04-CS-302 |
C. sinensis |
HIV-1 |
EC50 = 27.9 μM |
ND |
| bacillamide B [10] |
peptide |
Tricladium sp. No. 2520 |
soil in which C. sinensis grow |
HIV-1 |
EC50 = 24.8 μM |
ND |
| armochaetoglobin K [11] |
alkaloid |
Chaetomium globosum TW 1-1 |
Armadillidium vulgare insect |
HIV-1 |
EC50 = 1.23 μM |
ND |
| armochaetoglobin L [11] |
alkaloid |
C. globosum TW 1-1 |
A. vulgare insect |
HIV-1 |
EC50 = 0.48 μM |
ND |
| armochaetoglobin M [11] |
alkaloid |
C. globosum TW 1-1 |
A. vulgare insect |
HIV-1 |
EC50 = 0.55μM |
ND |
| armochaetoglobin N [11] |
alkaloid |
C. globosum TW 1-1 |
A. vulgare insect |
HIV-1 |
EC50 = 0.25 μM |
ND |
| armochaetoglobin O [11] |
alkaloid |
C. globosum TW 1-1 |
A. vulgare insect |
HIV-1 |
EC50 = 0.61 μM |
ND |
| armochaetoglobin P [11] |
alkaloid |
C. globosum TW 1-1 |
A. vulgare insect |
HIV-1 |
EC50 = 0.68 μM |
ND |
| armochaetoglobin Q [11] |
alkaloid |
C. globosum TW 1-1 |
A. vulgare insect |
HIV-1 |
EC50 = 0.31 μM |
ND |
| armochaetoglobin R [11] |
alkaloid |
C. globosum TW 1-1 |
A. vulgare insect |
HIV-1 |
EC50 = 0.34 μM |
ND |
| stachybotrin D [13] |
terpenoid |
Stachybotrys chartarum MXH-X73 |
Xestospongia testudinaris sponge |
HIV-1 |
EC50 = 8.4 μM |
replication |
| stachybotrysam A [14] |
alkaloid |
S. chartarum CGMCC 3.5365. |
ND |
HIV-1 |
EC50 = 9.3 μM |
ND |
| stachybotrysam B [14] |
alkaloid |
S. chartarum CGMCC 3.5365. |
ND |
HIV-1 |
EC50 = 1.0 μM |
ND |
| stachybotrysam C [14] |
alkaloid |
S. chartarum CGMCC 3.5365. |
ND |
HIV-1 |
EC50 = 9.6 μM |
ND |
| chartarutine B [15] |
alkaloid |
S. chartarum WGC-25C-6 |
Niphates sp. sponge |
HIV-1 |
IC50 = 4.90 μM |
ND |
| chartarutine G [15] |
alkaloid |
S. chartarum WGC-25C-6 |
Niphates sp. sponge |
HIV-1 |
IC50 = 5.57 μM |
ND |
| chartarutine H [15] |
alkaloid |
S. chartarum WGC-25C-6 |
Niphates sp. sponge |
HIV-1 |
IC50 = 5.58 μM |
ND |
| malformin C [16] |
peptide |
Aspergillus niger SCSIO Jcsw6F30 |
marine |
HIV-1 |
IC50 = 1.4 μM |
entry |
| aspernigrin C [17] |
alkaloid |
A. niger SCSIO Jcsw6F30 |
marine |
HIV-1 |
IC50 = 4.7 μM |
entry |
| eutypellazine E [18] |
alkaloid |
Eutypella sp. MCCC 3A00281 |
deep sea sediment |
HIV-1 |
IC50 = 3.2 μM |
ND |
| truncateol O [19] |
terpenoid |
Truncatella angustata XSB-01-43 |
Amphimedon sp. sponge |
HIV-1 and H1N1 |
IC50 = 39.0 μM (HIV) and 30.4 μM (H1N1) |
ND |
| truncateol P [19] |
terpenoid |
T. angustata XSB-01-43 |
Amphimedon sp. sponge |
HIV-1 |
IC50 = 16.1 μM |
ND |
| penicillixanthone A [20] |
polyketide |
Aspergillus fumigatus |
jellyfish |
HIV-1 |
IC50 = 0.26 μM |
entry |
| DTM [21] |
polyketide |
C. globosum |
deep sea sediment |
HIV-1 |
75.1% at 20 μg/mL |
ND |
| epicoccone B [21] |
polyketide |
C. globosum |
deep sea sediment |
HIV-1 |
88.4% at 20 μg/mL |
ND |
| xylariol [21] |
polyketide |
C. globosum |
deep sea sediment |
HIV-1 |
70.2% at 20 μg/mL |
ND |
| phomonaphthalenone A [22] |
polyketide |
Phomopsis sp. HCCB04730 |
Stephania japonica-plant endophyte |
HIV-1 |
IC50: 11.6 μg/mL |
ND |
| bostrycoidin [22] |
polyketide |
Phomopsis sp. HCCB04730 |
S. japonica plant endophyte |
HIV-1 |
IC50: 9.4 μg/mL |
ND |
| altertoxin I [23] |
phenalene |
Alternaria tenuissima QUE1Se |
Quercus emoryi plant endophyte |
HIV-1 |
IC50: 1.42 μM |
ND |
| altertoxin II [23] |
phenalene |
A. tenuissima QUE1Se |
Q. emoryi plant endophyte |
HIV-1 |
IC50: 0.21 μM |
ND |
| altertoxin III [23] |
phenalene |
A. tenuissima QUE1Se |
Q. emoryi plant endophyte |
HIV-1 |
IC50: 0.29 μM |
ND |
| alternariol 5-O-methyl ether [24] |
phenolic |
Colletotrichum sp |
plant endophyte |
HIV-1 |
EC50: 30.9 μM |
replication |
| ergokonin A [25] |
terpenoid |
Trichoderma sp. Xy24 |
Xylocarpus granatum plant endophyte |
HIV-1 |
IC50: 22.3 μM |
ND |
| ergokonin B [25] |
terpenoid |
Trichoderma sp. Xy24 |
X. granatum plant endophyte |
HIV-1 |
IC50: 1.9 μM |
ND |
| sorrentanone [25] |
terpenoid |
Trichoderma sp. Xy24 |
X. granatum plant endophyte |
HIV-1 |
IC50: 4.7 μM |
ND |
| cerevisterol [25] |
terpenoid |
Trichoderma sp. Xy24 |
X. granatum plant endophyte |
HIV-1 |
IC50: 9.3 μM |
ND |
| phomopsone B [26] |
alkaloid |
Phomopsis sp. CGMCC 5416 |
Achyranthes bidentata plant endophyte |
HIV-1 |
IC50: 7.6 μmol/L |
ND |
| phomopsone C [26] |
alkaloid |
Phomopsis sp. CGMCC 5416 |
A. bidentata plant endophyte |
HIV-1 |
IC50: 0.5 μmol/L |
ND |
| pericochlorosin B [27] |
polyketide |
Periconia sp. F-31 |
plant endophyte |
HIV-1 |
IC50: 2.2 μM |
ND |
| asperphenalenone A [28] |
alkaloid |
Aspergillus sp. |
Kadsura longipedunculata plant endophyte |
HIV-1 |
IC50: 4.5 μM |
ND |
| asperphenalenone D [28] |
alkaloid |
Aspergillus sp. |
K. longipedunculata plant endophyte |
HIV-1 |
IC50: 2.4 μM |
ND |
| cytochalasin Z8 [28] |
alkaloid |
Aspergillus sp. |
K. longipedunculata plant endophyte |
HIV-1 |
IC50: 9.2 μM |
ND |
| epicocconigrone A [28] |
alkaloid |
Aspergillus sp. |
K. longipedunculata plant endophyte |
HIV-1 |
IC50: 6.6 μM |
ND |
| neoechinulin B/NeoB [29][30][31] |
alkaloid |
Aspergillus amstelodami |
ND |
HCV and SARS-CoV-2 |
IC50: 5.5 μM (HCV) and 32.9 μM (SARS-CoV-2) |
replication |
| Eurotium rubrum F33 |
marine sediment |
H1N1 |
IC50; 7 μM |
entry |
| raistrickindole A [32] |
alkaloid |
Penicillium raistrickii IMB17-034 |
mangrove sediment |
HCV |
EC50: 5.7 μM |
ND |
| raistrickin [32] |
alkaloid |
P. raistrickii IMB17-035 |
mangrove sediment |
HCV |
EC50: 7.0 μM |
ND |
| sclerotigenin [32] |
alkaloid |
P. raistrickii IMB17-036 |
mangrove sediment |
HCV |
EC50: 5.8 μM |
ND |
| harzianoic acid A [25] |
terpenoid |
Trichoderma harzianum LZDX-32-08 |
Xestospongia testudinaria sponge |
HCV |
IC50: 5.5 μM |
entry |
| harzianoic acid B [25] |
terpenoid |
T. harzianum LZDX-32-08 |
X. testudinaria sponge |
HCV |
IC50: 42.9 μM |
entry |
| peniciherquamide C [33] |
peptide |
Penicillium herquei P14190 |
seaweed |
HCV |
IC50: 5.1 μM |
ND |
| cyclo (L-Tyr-L-Pro) [34] |
peptide |
Aspergillus versicolor |
Spongia officinalis sponge |
HCV |
IC50: 8.2 μg/mL |
replication |
| 7-dehydroxyl-zinniol [35] |
alkaloid |
Alternia solani |
Aconitum transsectum plant endophyte |
HBV |
IC50: 0.38 mM |
ND |
| THA [36] |
polyketide |
Penicillium sp. OUCMDZ-4736 |
mangrove sediment |
HBV |
IC50: 4.63 μM |
ND |
| MDMX [36] |
polyketide |
Penicillium sp. OUCMDZ-4736 |
mangrove sediment |
HBV |
IC50: 11.35 μM |
ND |
| vanitaracin A [37] |
polyketide |
Talaromyces sp. |
sand |
HBV |
IC50: 10.58 μM |
entry |
| destruxin A [38] |
peptide |
Metarhizium anisopliae var. dcjhyium |
Odontoternes formosanus termite |
HBV |
IC50: 1.2 μg/mL (mix A+B+E) |
ND |
| destruxin B [38] |
peptide |
M. anisopliae var. dcjhyium; |
O. formosanus termite |
HBV |
IC50: 1.2 μg/mL (mix A+B+E) |
ND |
| destruxin E [38] |
peptide |
M. anisopliae var. dcjhyium |
O. formosanus termite |
HBV |
IC50: 1.2 μg/mL (mix A+B+E) |
ND |
| amphiepicoccin A [12] |
alkaloid |
Epicoccum nigrum HDN17-88 |
Amphilophus sp. fish gill |
HSV-2 |
IC50: 70 μM |
ND |
| amphiepicoccin C [12] |
alkaloid |
E. nigrum HDN17-88 |
Amphilophus sp. fish gill |
HSV-2 |
IC50: 64 μM |
ND |
| amphiepicoccin F [12] |
alkaloid |
E. nigrum HDN17-88 |
Amphilophus sp. fish gill |
HSV-2 |
IC50: 29 μM |
ND |
| aspergillipeptide D [39] |
peptide |
Aspergillus sp. SCSIO 41501 |
gorgonian coral |
HSV-1 |
IC50: 7.93 μM |
entry |
| aspergilol H [40] |
polyketide |
Aspergillus versicolor SCSIO 41501 |
deep sea sediment |
HSV-1 |
EC50 = 4.68 μM |
ND |
| aspergilol I [40] |
polyketide |
A. versicolor SCSIO 41503 |
deep sea sediment |
HSV-1 |
IC50 = 6.25 μM |
ND |
| coccoquinone A [40] |
polyketide |
A. versicolor SCSIO 41504 |
deep sea sediment |
HSV-1 |
IC50 = 3.12 μM |
ND |
| trichobotrysin A [41] |
alkaloid |
Trichobotrys effuse DFFSCS021 |
deep sea sediment |
HSV-1 |
IC50 = 3.08 μM |
ND |
| trichobotrysin B [41] |
alkaloid |
Trichobotrys effuse DFFSCS021 |
deep sea sediment |
HSV-1 |
IC50 = 9.37 μM |
ND |
| trichobotrysin D [41] |
alkaloid |
Trichobotrys effuse DFFSCS021 |
deep sea sediment |
HSV-1 |
IC50 = 3.12 μM |
ND |
| 11a-dehydroxyisoterreulactone A [42] |
terpenoid |
Aspergillus terreus SCSGAF0162 |
gorgonian corals Echinogorgia aurantiaca |
HSV-1 |
IC50 = 16.4 μg/mL |
ND |
| arisugacin A [42] |
terpenoid |
Aspergillus terreus SCSGAF0162 |
gorgonian corals E. aurantiaca |
HSV-1 |
IC50 = 6.34 μg/mL |
ND |
| isobutyrolactone II [42] |
terpenoid |
Aspergillus terreus SCSGAF0162 |
gorgonian corals E. aurantiaca |
HSV-1 |
IC50 = 21.8 μg/mL |
ND |
| aspernolide A [42] |
terpenoid |
Aspergillus terreus SCSGAF0162 |
gorgonian corals E. aurantiaca |
HSV-1 |
IC50 = 28.9 μg/mL |
ND |
| halovir A [43] |
peptide |
Scytalidium sp. |
NI |
HSV-1 and HSV-2 |
ED50 = 1.1 μM (HSV-1) and 0.28 (HSV-2) |
ND |
| halovir B [43] |
peptide |
Scytalidium sp. |
NI |
HSV-1 |
ED50 = 3.5 μM |
ND |
| halovir C [43] |
peptide |
Scytalidium sp. |
NI |
HSV-1 |
ED50 = 2.2 μM |
ND |
| halovir D [43] |
peptide |
Scytalidium sp. |
NI |
HSV-1 |
ED50 = 2.0 μM |
ND |
| halovir E [43] |
peptide |
Scytalidium sp. |
NI |
HSV-1 |
ED50 = 3.1 μM |
ND |
| balticolid [44] |
polyketide |
Ascomycetous fungus |
driftwood |
HSV-1 |
IC50 = 0.45 μM |
ND |
| alternariol [45] |
phenolic |
Pleospora tarda |
Ephedra aphylla endphyte |
HSV-1 |
IC50 = 13.5 μM |
ND |
| alternariol-(9)-methyl ether [45] |
phenolic |
Pleospora tarda |
E. aphylla endophyte |
HSV-1 |
IC50 = 21.3 μM |
ND |
| oblongolide Z [46] |
polyketide |
Phomopsis sp. BCC 9789 |
Musa acuminata endophyte |
HSV-1 |
IC50: 14 μM |
ND |
| DHI [47] |
phenolic |
Torrubiella tenuis BCC 12732 |
Homoptera scale insect |
HSV-1 |
IC50: 50 μg/mL |
ND |
| cordyol C [48] |
polyketide |
Cordyceps sp. BCC 1861 |
Homoptera-cicada nymph |
HSV-1 |
IC50: 1.3 μg/mL |
ND |
| DTD [49] |
polyketide |
Streptomyces hygroscopicus 17997 |
GdmP mutant |
HSV-1 |
IC50: 0.252 μgmol/L |
ND |
| labyrinthopeptin A1/LabyA1 [50] |
peptide |
Actinomadura namibiensis DSM 6313 |
desert soil |
HSV-1 and HSV-2 |
EC50 = 0.56 μM (HSV-1) and 0.32 μM (HSV-2) |
entry |
| HIV-1 and HIV-2 |
EC50 = 2.0 μM (HIV-1) and 1.9 μM (HIV-2) |
entry |
| monogalactopyranose [51] |
polyphenol |
Acremonium sp. BCC 14080 |
palm leaf |
HSV |
IC50: 7.2 μM |
ND |
| mellisol [52] |
polyketide |
Xylaria mellisii BCC 1005 |
NI |
HSV |
IC50: 10.5 μg/mL |
ND |
| DOG [52] |
polyketide |
Xylaria mellisii BCC 1005 |
NI |
HSV |
IC50: 8.4 μg/mL |
ND |
| spirostaphylotrichin X [53] |
polyketide |
Cochliobolus lunatus SCSIO41401 |
marine algae |
H1N1 and H3N2 |
IC50: 1.6 μM (H1N1) and 4.1 μM (H3N2) |
replication |
| cladosin C [54] |
polyketide |
Cladosporium sphaerospermum 2005-01-E3 |
deep sea sludge |
H1N1 |
IC50: 276 μM |
ND |
| abyssomicin Y [50] |
polyketide |
Verrucosispora sp. MS100137 |
deep sea sediment |
H1N1 |
inhibition rate: 97.9% |
ND |
| purpurquinone B [55] |
polyketide |
Penicillium purpurogenum JS03-21 |
acidic red soil |
H1N1 |
IC50: 61.3 μM |
ND |
| purpurquinone C [55] |
polyketide |
Penicillium purpurogenum JS03-22 |
acidic red soil |
H1N1 |
IC50: 64 μM |
ND |
| purpurester A [55] |
polyketide |
Penicillium purpurogenum JS03-23 |
acidic red soil |
H1N1 |
IC50: 85.3 μM |
ND |
| TAN-931 [55] |
polyketide |
Penicillium purpurogenum JS03-24 |
acidic red soil |
H1N1 |
IC50: 58.6 μM |
ND |
| pestalotiopsone B [56] |
polyketide |
Diaporthe sp. SCSIO 41011 |
Rhizophora stylosa mangrove endophte |
H1N1 and H3N2 |
IC50: 2.56 μM (H1N1) and 6.76 μM (H3N2) |
ND |
| pestalotiopsone F [56] |
polyketide |
Diaporthe sp. SCSIO 41012 |
R. stylosa mangrove endophte |
H1N1 and H3N2 |
IC50: 21.8 μM (H1N1) and 6.17 μM (H3N2) |
ND |
| DMXC [56] |
polyketide |
Diaporthe sp. SCSIO 41013 |
R. stylosa mangrove endophte |
H1N1 and H3N2 |
IC50: 9.4 μM (H1N1) and 5.12 μM (H3N2) |
ND |
| 5-chloroisorotiorin [56] |
polyketide |
Diaporthe sp. SCSIO 41014 |
R. stylosa mangrove endophte |
H1N1 and H3N2 |
IC50: 2.53 μM (H1N1) and 10.1 μM (H3N2) |
ND |
| 3-deoxo-4b-deoxypaxilline [57] |
alkaloid |
Penicillium camemberti |
mangrove sediment |
H1N1 |
IC50: 28.3 μM |
ND |
| DCA [57] |
alkaloid |
P. camemberti OUCMDZ-1492 |
mangrove sediment |
H1N1 |
IC50: 38.9 μM |
ND |
| DPT [57] |
alkaloid |
P. camemberti OUCMDZ-1492 |
mangrove sediment |
H1N1 |
IC50: 32.2 μM |
ND |
| 9,10-diisopentenylpaxilline |
alkaloid |
P. camemberti OUCMDZ-1492 |
mangrove sediment |
H1N1 |
IC50: 73.3 μM |
ND |
| TTD [57] |
alkaloid |
P. camemberti OUCMDZ-1492 |
mangrove sediment |
H1N1 |
IC50: 34.1 μM |
ND |
| emindole SB [57] |
alkaloid |
P. camemberti OUCMDZ-1492 |
mangrove sediment |
H1N1 |
IC50: 26.2 μM |
ND |
| 21-isopentenylpaxilline [57] |
alkaloid |
P. camemberti OUCMDZ-1492 |
mangrove sediment |
H1N1 |
IC50: 6.6 μM |
ND |
| paspaline [57] |
alkaloid |
P. camemberti OUCMDZ-1492 |
mangrove sediment |
H1N1 |
IC50: 77.9 μM |
ND |
| paxilline [57] |
alkaloid |
P. camemberti OUCMDZ-1492 |
mangrove sediment |
H1N1 |
IC50: 17.7 μM |
ND |
| (14S)-oxoglyantrypine [58] |
alkaloid |
Cladosporium sp. PJX-41 |
mangrove sediment |
H1N1 |
IC50: 85 μM |
ND |
| norquinadoline A [58] |
alkaloid |
Cladosporium sp. PJX-42 |
mangrove sediment |
H1N1 |
IC50: 82 μM |
ND |
| deoxynortryptoquivaline [58] |
alkaloid |
Cladosporium sp. PJX-43 |
mangrove sediment |
H1N1 |
IC50: 85 μM |
ND |
| deoxytryptoquivaline [58] |
alkaloid |
Cladosporium sp. PJX-44 |
mangrove sediment |
H1N1 |
IC50: 85 μM |
ND |
| tryptoquivaline [58] |
alkaloid |
Cladosporium sp. PJX-45 |
mangrove sediment |
H1N1 |
IC50: 89 μM |
ND |
| quinadoline B [58] |
alkaloid |
Cladosporium sp. PJX-46 |
mangrove sediment |
H1N1 |
IC50: 82 μM |
ND |
| 22-O-(N-Me-l-valyl)-21-epi-aflaquinolone B [59] |
alkaloid |
Aspergillus sp strain XS-2009 |
Muricella abnormaliz gorgonian |
RSV |
IC50: 0.042 μM |
ND |
| aflaquinolone D [59] |
alkaloid |
Aspergillus sp strain XS-2009 |
M. abnormaliz gorgonian |
RSV |
IC50: 6.6 μM |
ND |
| aurasperone A [60] |
polyphenol |
Aspergillus niger No.LC582533 |
Phallusia nigra tunicate |
SARS-CoV-2 |
IC50: 12.25 μM |
replication |
| neoechinulin A [30] |
alkaloid |
Aspergillus fumigatus MR2012 |
marine sediment |
SARS-CoV-2 |
IC50: 0.47 μM |
replication |
| aspulvinone D [61] |
polyphenol |
Cladosporium sp. 7951 |
Paris polyphylla endophyte |
SARS-CoV-2 |
IC50: 10.3 μM |
replication |
| aspulvinone M [61] |
polyphenol |
Cladosporium sp. 7951 |
P. polyphylla endophyte |
SARS-CoV-2 |
IC50: 9.4 μM |
replication |
| aspulvinone R [61] |
polyphenol |
Cladosporium sp. 7952 |
P. polyphylla endophyte |
SARS-CoV-2 |
IC50: 7.7 μM |
replication |
Abbreviations: * ND: not yet described, * NI; no information, * DTM: 1,3-dihydro-4,5,6-trihydroxy-7-methylisobenzofuran, * THA: 1,2,4,5-tetrahydroxy-7-((2R)-2-hydroxypropyl) anthracene-9,10-dione, * MDMX: methyl 6,8-dihydroxy-3-methyl-9-oxo-9H-xanthene-1-carboxylate, * DHI: 6,8-dihydroxy-3-hydroxymethyl isocoumarin, * DOG: 1,8-dihydroxynaphthol 1-O-glucopyranoside, * DMXC: 3,8-dihydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylate, * TTD: (6S,7R,10E,14E)-16-(1H-indol-3-yl)-2,6,10,14-tetramethylhexadeca-2,10,14-triene-6,7-diol, * DTD: 4,5-dihydro-thiazinogeldanamycin, * DCA: 4a-demethylpaspaline-4a-carboxylic acid, * DPT: 4a-demethylpaspaline-3,4,4a-triol.
An ocean-dwelling fungus is one of the most potent sources of HIV-combating compounds. Meroterpenoids with a phenylspirodrimane skeleton, such as stachybotrin D, derived from the sponge-derived fungus
Stachybotrys chartarum MXH-X73, were able to inhibit HIV-1 replication by targeting the reverse transcriptase enzyme
[13]. This fungus was discovered on the island of Xisha in China, where it was isolated from the marine sponge
Xestospongia testudinaris [13]. Furthermore, stachybotrysams A, B, and C, extracted from a different strain of
Stachybotrys chartarum, also showed strong HIV-inhibitory activity
[14]. Another report showed that chartarutine B, G, and H, which are all derived from the sponge-associated
Stachybotrys chartarum, have shown significant antiviral activity against the HIV-1 virus
[15]. In addition, malformin C, derived from the marine fungus
Aspergillus niger SCSIO Jcsw6F30, demonstrated significant anti-HIV-1 activity with an IC
50, a half-maximal inhibitory concentration, of 1.4 μM when tested on HIV-infected TZM-bl cells (also called JC.53bl-13)
[16]. In addition, aspernigrin C from the same fungus also demonstrated similar action with an IC
50 of 4.7 μM
[16].
An anti-HIV bioassay conducted in 293T cells, also refered as a highly transfectable derivative of human embryonic kidney 293 cells, revealed that eutypellazine E, extracted from a fungus found in the depths of the ocean named
Eutypella sp., significantly inhibited HIV-1 proliferation
[18]. Furthermore, unlike truncateol P, truncateol O, which is derived from the ascomycete
Truncatella angustata, was found to inhibit the replication of both the H1N1 and HIV-1 viruses
[19]. In addition, penicillixanthone A which is derived from the fungus
Aspergillus fumigatus that is native to jellyfish, has been shown to possess significant anti-HIV-1 activity by inhibiting the infection of CXCR4-tropic HIV-1 NL4-3 and CCR5-tropic HIV-1 SF162
[20]. Additionally, the fungus
Chaetomium globosum found in the depths of the ocean was able to produce 1,3-dihydro-4,5,6-trihydroxy-7-methylisobenzofuran, epicoccone B, and xylariol
[21]. They showed highly effective anti-HIV activity in vitro at the concentration of 20 μg/mL, with 75.10, 88.4, and 70.20% suppression rates, respectively
[21].
Endophytic fungus metabolites have been demonstrated to possess a vast array of bioactivities, including anti-HIV properties. Phomonaphthalenone A and bostrycoidin, both of which were derived from the endophytic fungus
Phomopsis sp., showed moderate anti-HIV activity and low cytotoxicity, with IC
50 values of 11.6 and 9.4 μg/mL, respectively
[22]. In addition, altertoxin I, II and III derived from the endophytic fungus
Alternaria tenuissima QUE1Se inhibited HIV-1 virus replication completely
[23]. The epoxyperylene structure of these molecules is a promising scaffold for the development of potent and non-toxic anti-HIV therapies
[23]. Alternariol 5-O-methyl ether, on the other hand, was identified as a molecule that inhibits HIV-1 pre-integration processes after screening a library of bioactive compounds from the endophytic fungus
Colletotrichum sp.
[24]. Ergokonin A and B isolated from the endophytic fungus
Trichoderma sp. Xy24 had IC
50 values of 1.9 μM, which indicated that it significantly suppressed the HIV-1 virus
[25]. Recently, it was discovered that the endophytic fungus
Phomopsis sp. CGMCC No. 5416 produces phomopsone B and C, and these two phomopsones have significant antiviral activity, with IC
50 values of 7.6 and 0.5 μmol/L, respectively
[26]. Furthermore, the phenol pericochlorosin B, isolated from the endophytic fungus
Periconia sp. F-31, showed significant anti-HIV activity in 293T cells, with an IC
50 value of 2.2 μM
[27]. In 2017, Pang et al. discovered four compounds produced by the plant endophytic fungus
Aspergillus sp. That belong to phenalenone derivatives
[28]. These compounds include asperphenalenone A and D, cytochalasin Z
8, and epicocconigrone A, which have anti-HIV activities in vitro with IC
50 values of 4.5, 2.4, 9.2, and 6.6 μM, respectively
[28]. The endophytic fungus was isolated from the
Kadsura longipedunculata plant, also known as the Chinese Kadsura Vine, and used in traditional Chinese medicine
[28]. Lamivudine and efavirenz, two control positives, demonstrated a greater activity level, with IC
50 values of 0.1 and 0.0004 μM, respectively
[28].