Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 2950 2022-07-12 13:46:57 |
2 format correct -54 word(s) 2896 2022-07-13 03:06:52 |

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Ferreira, O.O.;  Cruz, J.N.;  Moraes, �.A.B.D.;  Franco, C.D.J.P.;  Lima, R.R.;  Anjos, T.O.D.;  Siqueira, G.M.;  Nascimento, L.D.D.;  Cascaes, M.M.;  Oliveira, M.S.D.; et al. Essential Oil of Plants Growing in Brazilian Amazon. Encyclopedia. Available online: (accessed on 24 June 2024).
Ferreira OO,  Cruz JN,  Moraes �ABD,  Franco CDJP,  Lima RR,  Anjos TOD, et al. Essential Oil of Plants Growing in Brazilian Amazon. Encyclopedia. Available at: Accessed June 24, 2024.
Ferreira, Oberdan Oliveira, Jorddy Neves Cruz, Ângelo Antônio Barbosa De Moraes, Celeste De Jesus Pereira Franco, Rafael Rodrigues Lima, Taina Oliveira Dos Anjos, Giovanna Moraes Siqueira, Lidiane Diniz Do Nascimento, Márcia Moraes Cascaes, Mozaniel Santana De Oliveira, et al. "Essential Oil of Plants Growing in Brazilian Amazon" Encyclopedia, (accessed June 24, 2024).
Ferreira, O.O.,  Cruz, J.N.,  Moraes, �.A.B.D.,  Franco, C.D.J.P.,  Lima, R.R.,  Anjos, T.O.D.,  Siqueira, G.M.,  Nascimento, L.D.D.,  Cascaes, M.M.,  Oliveira, M.S.D., & Andrade, E.H.D.A. (2022, July 12). Essential Oil of Plants Growing in Brazilian Amazon. In Encyclopedia.
Ferreira, Oberdan Oliveira, et al. "Essential Oil of Plants Growing in Brazilian Amazon." Encyclopedia. Web. 12 July, 2022.
Essential Oil of Plants Growing in Brazilian Amazon

Essential oils are biosynthesized in the secondary metabolism of plants, and in their chemical composition, they can be identified different classes of compounds with potential antioxidant and biological applications.In the Amazon, several species of aromatic plants were discovered and used in traditional medicine. The essential oils extracted from amazon species have several biological activities, such as antioxidant, antibacterial, antifungal, cytotoxic, and antiprotozoal activities. These activities are related to the diversified chemical composition found in essential oils that, by synergism, favors its pharmacological action.

species of Brazil essential oils bioactive compounds biological activities

1. Introduction

Brazil has the world’s highest plant diversity. It houses more than 46,000 species of plants, algae, and fungi, and most of this biodiversity is found in the Amazon [1][2]. This biome occupies 5 million km2 of the territory, corresponding to 60% of the entire national territory. Such areas include the Brazilian Amazon, which accounts for 51% of all tropical plant species. The Brazilian Amazon forest accounts for approximately 26% of the remaining tropical rainforests on Earth [3][4].
Typifying this exuberance, 12 families that provide essential oil are predominant in the Amazon region (in descending order): Piperaceae, Asteraceae, Myrtaceae, Lamiaceae, Annonaceae, Lauraceae, Euphorbiaceae, Verbenaceae, Scrophulariaceae, Anacardiaceae, Burseraceae, and Rutaceae [5][6].
Essential oils are volatile, with a strong smell and taste derived from the secondary metabolites of the plants. Essential oils can be extracted from the roots, stems, leaves, and flowers by steam distillation, hydrodistillation, and squeezing citrus fruit pericarps. The terminology “oil” is closely related to the physicochemical characteristics of these substances, as they are liquids at room temperature [7][8].
The biological activity of essential oils is due to the diversity of chemical components in these volatile oils. These properties include antibacterial, antifungal, and antioxidant activities [9][10][11][12]. Essential oils can also be used as raw materials for products such as cosmetics and perfumes, or in pharmaceutical industries to obtain structural derivatives (plant products) in addition to horticulture [7][13].
Although essential oils have several potential applications, many aromatic plants in the Amazon ecosystem are under constant environmental pressure, as this region undergoes increasing fires, deforestation, and unsustainable forest exploitation [5].
Although Brazil is still the largest natural angiosperm bank in the world and these aromatic plants have the potential for varied uses, part of this exuberance was lost long before scientific knowledge was gained [3][14]. Therefore, efforts and resources must be invested to acquire a greater awareness of the diversity and value of the plants that remain in the Amazon region.

2. Chemical Composition of the Essential Oils of the Amazon

Table 1 shows the major chemical components found in the essential oils of the species from the Amazon region.
Table 1. Major chemical constituents (≥3.00%) found in the essential oils of the Amazon.
In the documented studies, the essential oils were obtained by hydrodistillation, except in the case of the species Copaifera multijuga (perforation), Piper aduncum (MAE), P. aduncum (SD), Ipomea setifera (SD), and I. asarifolia (SD). Gas chromatography coupled with mass spectrometry (GC-MS) was used to identify the volatile compounds in the essential oils. There was little difference in the chemical composition and chemical profile of the essential oils of the species studied based on the families/genera/species, which may be related to the type of botanical material used from the plant in the extraction of the essential oils.
The chemical profile of essential oils from species of the Annonaceae family showed hydrocarbon and oxygenated sesquiterpenes as the main constituents, where the compounds β-bisabolene (55.77%), caryophyllene oxide (55.70%), and β-eudesmol (51.92%), were respectively dominant in the essential oils of Bocageopsis pleiosperma [22]Guatteria blepharophylla [23], and G. friesiana [35]. However, it was possible to observe other types of chemical classes in the genus Anonnace-ae, such as the oxygenated monoterpene cis-linalool oxide (33.10%) in the essential oil of Bocageopsis multiflora [24] and the alcohol 4-heptanol (33.80%) in the essential oil of Duguetia quitarensis [24].
Oxygenated monoterpenes, hydrocarbon sesquiterpenes, and phenylpropanoids are the major components in the essential oils of the Lauraceae family, where linalool (93.60%) is dominant in the essential oil of Aniba rosaeodora [16], as well as bicyclogermacrene (42.20%) and apiole (28.10%), respectively, in the essential oil of Endlicheria arenosa [28] and Nectandra puberula [47]. Phenylpropanoids and oxygenated monoterpenes are also present in essential oils of the Lamiaceae family, where methyleugenol (80.00–87.00%) [48] and eucalyptol (16–33%) are dominant [64].
Studies carried out by Aranha et al. [29] and Da Silva et al. [30] confirmed the predominance of oxygenated sesquiterpenes and hydrocarbons in species of the genus Eugenia of the Myrtaceae family. Hydrocarbon sesquiterpenes were also observed as the main chemical classes in the essential oils of the genus Myrcia, where (E)-caryophyllene (45.80%) was dominant in the essential oil of M. splendens [32]. Monoterpene hydrocarbons characterize the essential oil profile of some species of the genus Psidium [32].
In species of the Piperaceae family, phenylpropanoids are present in the essential oils of some species of the genus Piper, as shown in the study of Piper aduncum essential oil by Nascimento et al. [54], the main component of which is dilapiol (91.07%). In species of the family Verbenaceae, the presence of oxygenated monoterpenes such as thymol (63.59–66.20%) was documented in Lippia thymoides essential oil [43]. In the species of Zingiberaceae, Siparunaceae, and Myristicaceae, sesquiterpenes are one of the main chemical classes in the chemical profile of the essential oil of some species, especially the compounds (E)-caryophyllene (62.38%) [59], and β-selinene (60.50%) [61].

3. Antioxidant Activity of Essential Oils

Essential oils comprise different organic compounds that have conjugated carbon double bonds, where the functional species are hydroxyl radicals, which can transfer hydrogen, inhibit free radicals, and minimize oxidative stress [65]. Essential oils with antioxidant properties are preferred over synthetic antioxidants because the former are safer for human health and are eco-friendly [66][67].
Aromatic plants are a well-known source of essential oils with antioxidant properties. These properties are exhibited by the raw essential oils and the isolated chemical constituents, both of which are efficient in preventing lipid oxidation [68]. The antioxidant potential of essential oils can be attributed to a single volatile constituent present in the chemical composition or to the synergistic effect among many components [69]Table 2 summarizes the antioxidant potential of essential oils from Amazonian plants.
Table 2. Essential oils of the Amazon and their antioxidant activities.
Studies on the antioxidant capacity of essential oils from the Amazon region have shown promising results. da Silva et al. [18] studied the essential oil from both the leaves and branches of Aniba parviflora, which strongly inhibited 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals. The authors indicated that the antioxidant activity may be related to the presence of β-phellandrene, linalool, β-caryophyllene, and γ-eudesmol, which presented antioxidant potential in other documented studies.
The antioxidant potential of some essential oils is equivalent to the inhibition potential of the Trolox standard determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, as observed for the essential oils of leaves and twigs of Endlicheria arenosa [28]. These results may be related to the difference in the chemical composition of the two oils because the chemical profile of the product distilled from the leaves was characterized by the sesquiterpene hydrocarbons bicyclogermacrene (42.2%), germacrene D (12.5%), and β-caryophyllene (10.1%).
Other studies have shown that the inhibition potential of essential oils for the free radicals DPPH and ABTS is higher than that of the Trolox standard, as in the case of the essential oils of Eugenia patrisiiE. punicifolia, and Myrcia tomentosa [31]. Some studies have also reported that a high thymol content may favor higher potential inhibition for essential oils, in which thymol is a major constituent [42]. This is a result of the presence of hydroxyl radicals that facilitate the capture of free radicals and reduce the effects of lipid oxidation [70].


  1. Filardi, F.L.R.; De Barros, F.; Baumgratz, J.F.A.; Bicudo, C.E.; Cavalcanti, T.B.; Coelho, M.A.N.; Costa, A.F.; Costa, D.P.; Goldenberg, R.; Labiak, P.H.; et al. Brazilian Flora 2020: Innovation and collaboration to meet Target 1 of the Global Strategy for Plant Conservation (GSPC). Rodriguésia 2018, 69, 1513–1527.
  2. Almeida da Costa, W.; Elen Pereira de Lima, C.; Henrique Brabo de Sousa, S.; Santana de Oliveira, M.; Wariss Figueiredo Bezerra, F.; Neves da Cruz, J.; Gomes Silva, S.; Macedo Cordeiro, R.; Cordovil Rodrigues, C.; Robson Batista de Carvalho, A.; et al. Invasive Species in the Amazon. In Diversity and Ecology of Invasive Plants; IntechOpen: London, UK, 2019.
  3. Zappi, D.C.; Filardi, F.L.R.; Leitman, P.; Souza, V.C.; Walter, B.M.T.; Pirani, J.R.; Morim, M.P.; Queiroz, L.P.; Cavalcanti, T.B.; Mansano, V.F.; et al. Growing knowledge: An overview of Seed Plant diversity in Brazil. Rodriguésia 2015, 66, 1085–1113.
  4. de Oliveira, M.S.; Cruz, J.N.; Ferreira, O.O.; Pereira, D.S.; Pereira, N.S.; Oliveira, M.E.C.; Venturieri, G.C.; Guilhon, G.M.S.P.; Souza Filho, A.P.D.S.; Andrade, E.H.D.A.; et al. Chemical composition of volatile compounds in apis mellifera propolis from the northeast region of pará state, brazil. Molecules 2021, 26, 3462.
  5. Maia, J.G.S.; Andrade, E.H.A. Database of the Amazon aromatic plants and their essential oils. Quim. Nova 2009, 32, 595–622.
  6. Ferreira, O.O.; Neves da Cruz, J.; de Jesus Pereira Franco, C.; Silva, S.G.; da Costa, W.A.; de Oliveira, M.S.; de Aguiar Andrade, E.H. First report on yield and chemical composition of essential oil extracted from myrcia eximia DC (Myrtaceae) from the Brazilian Amazon. Molecules 2020, 25, 783.
  7. Simões, C.M.O.; Schenkel, E.P.; Mello, J.C.P.; Mentz, L.A.; Petrovick, P.R. Farmacognosia: Do produto natural ao medicamento; Artmed: Porto Alegre, Brizil, 2017; 486, ISBN 8582713657.
  8. Ju, J.; Chen, X.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of Essential Oil as a Sustained Release Preparation in Food Packaging. Trends Food Sci. Technol. 2019, 92, 22–32.
  9. Morandim-giannetti, A.D.A.; Pin, A.R.; Ama, N.; Pietro, S.; De Oliveira, H.C.; Mendes-giannini, M.J.S.; Alecio, A.C.; Kato, M.J.; De Oliveira, J.E.; Furlan, M.; et al. Composition and antifungal activity against Candida albicans, Candida parapsilosis, Candida krusei and Cryptococcus neoformans of essential oils from leaves of Piper and Peperomia species. J. Med. Plant Res. 2010, 4, 1810–1814.
  10. Silva, L.; Sarrazin, S.; Oliveira, R.; Suemitsu, C.; Maia, J.; Mourão, R. Composition and Antimicrobial Activity of Leaf Essential Oils of Myrcia sylvatica (G. Mey.) DC. Eur. J. Med. Plants 2016, 13, 1–9.
  11. da Silva, M.F.R.; Bezerra-Silva, P.C.; de Lira, C.S.; de Lima Albuquerque, B.N.; Agra Neto, A.C.; Pontual, E.V.; Maciel, J.R.; Paiva, P.M.G.; Navarro, D.M.d.A.F. Composition and biological activities of the essential oil of Piper corcovadensis (Miq.) C. DC (Piperaceae). Exp. Parasitol. 2016, 165, 64–70.
  12. da Silva, J.K.R.; Pinto, L.C.; Burbano, R.M.R.; Montenegro, R.C.; Guimarães, E.F.; Andrade, E.H.A.; Maia, J.G.S. Essential oils of Amazon Piper species and their cytotoxic, antifungal, antioxidant and anti-cholinesterase activities. Ind. Crops Prod. 2014, 58, 55–60.
  13. Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential Oils as Natural Sources of Fragrance Compounds for Cosmetics and Cosmeceuticals. Molecules 2021, 26, 666.
  14. Neves Cruz, J.; Gomes da Silva, A.; Almeida da Costa, W.; Simone Cajueiro Gurgel, E.; Eduardo Oliveira Campos, W.; Campos e Silva, R.; Ene Chaves Oliveira, M.; Pedro da Silva Souza Filho, A.; Santiago Pereira, D.; Gomes Silva, S.; et al. Volatile Compounds, Chemical Composition and Biological Activities of Apis mellifera Bee Propolis. In Essential Oils-Bioactive Compounds, New Perspectives and Applications; IntechOpen: London, UK, 2020.
  15. De Alencar, D.C.; Pinheiro, M.L.B.; Pereira, J.L.D.S.; De Carvalho, J.E.; Campos, F.R.; Serain, A.F.; Tirico, R.B.; Hernández-Tasco, A.J.; Costa, E.V.; Salvador, M.J. Chemical composition of the essential oil from the leaves of Anaxagorea brevipes (Annonaceae) and evaluation of its bioactivity. Nat. Prod. Res. 2016, 30, 1088–1092.
  16. Teles, R.D.M.; Filho, V.E.M.; Souza, A.G. De Chemical Characterization and Larvicidal Activity of Essential Oil from Aniba duckei Kostermans against Aedes aegypti. Int. J. Life-Sci. Sci. Res. 2017, 3, 1495–1499.
  17. Sarrazin, S.; Oliveira, R.; Maia, J.; Mourão, R. Antibacterial Activity of the Rosewood (Aniba rosaeodora and A. parviflora) Linalool-rich Oils from the Amazon. Eur. J. Med. Plants 2016, 12, 1–9.
  18. Da Silva, J.K.R.; Maia, J.G.S.; Dosoky, N.S.; Setzer, W.N. Antioxidant, antimicrobial, and cytotoxic properties of Aniba parviflora essential oils from the Amazon. Nat. Prod. Commun. 2016, 11, 1025–1028.
  19. Teles, A.M.; Silva-Silva, J.V.; Fernandes, J.M.P.; da Calabrese, K.S.; Abreu-Silva, A.L.; Marinho, S.C.; Mouchrek, A.N.; Filho, V.E.M.; Almeida-Souza, F. Aniba rosaeodora (Var. amazonica Ducke) Essential Oil: Chemical Composition, Antibacterial, Antioxidant and Antitrypanosomal Activity. Antibiotics 2020, 10, 24.
  20. Cascaes, M.M.; Silva, S.G.; Cruz, J.N.; Santana de Oliveira, M.; Oliveira, J.; de Moraes, A.A.B.; da Costa, F.A.M.; da Costa, K.S.; Diniz do Nascimento, L.; Helena de Aguiar Andrade, E. First report on the Annona exsucca DC. Essential oil and in silico identification of potential biological targets of its major compounds. Nat. Prod. Res. 2021, 1–4.
  21. Sandra, R.N.A.M.; de Antonio, A.M.F.; da Habdel, N.R.C.; dos Francisco, S.S.; dos Ricardo, C.S.; Jacqueline, A.T.; Vany, P.F.; de Ana, C.G.R.M.; Pedro, R.E.R.; de Andreina, G.A.L.; et al. Chemical profile, antimicrobial activity, toxicity on Artemia salina and anti-acetylcholinesterase enzyme essential oil from Bauhinia ungulata L. (Fabaceae) leaves. J. Med. Plants Res. 2016, 10, 442–449.
  22. Soares, E.R.; Da Silva, F.M.A.; De Almeida, R.A.; De Lima, B.R.; Koolen, H.H.F.; Lourenço, C.C.; Salvador, M.J.; Flach, A.; Da Costa, L.A.M.A.; De Souza, A.Q.L.; et al. Chemical composition and antimicrobial evaluation of the essential oils of Bocageopsis pleiosperma Maas. Nat. Prod. Res. 2015, 29, 1285–1288.
  23. Alcântara, J.M.; De Lucena, J.M.V.M.; Facanali, R.; Marques, M.O.M.; Da Paz Lima, M. Chemical composition and bactericidal activity of the essential oils of four species of annonaceae growing in brazilian amazon. Nat. Prod. Commun. 2017, 12, 619–622.
  24. Bay, M.; Souza de Oliveira, J.V.; Sales Junior, P.A.; Fonseca Murta, S.M.; Rogério dos Santos, A.; dos Santos Bastos, I.; Puccinelli Orlandi, P.; Teixeira de Sousa Junior, P. In Vitro Trypanocidal and Antibacterial Activities of Essential Oils from Four Species of the Family Annonaceae. Chem. Biodivers. 2019, 16, e1900359.
  25. Oliveira, E.S.C.; Amaral, A.C.F.; Lima, E.S.; Jefferson, J.R. Chemical composition and biological activities of Bocageopsis multiflora essential oil. J. Essent. Oil Res. 2014, 26, 161–165.
  26. Deus, R.J.A.; Alves, C.N.; Arruda, M.S.P. Avaliação do efeito antifúngico do óleo resina e do óleo essencial de copaíba (Copaifera multijuga Hayne). Rev. Bras. Plantas Med. 2011, 13, 1–7.
  27. Rodrigues, I.A.; Azevedo, M.M.B.; Chaves, F.C.M.; Bizzo, H.R.; Corte-Real, S.; Alviano, D.S.; Alviano, C.S.; Rosa, M.S.S.; Vermelho, A.B. In vitro cytocidal effects of the essential oil from Croton cajucara (red sacaca) and its major constituent 7-hydroxycalamenene against Leishmania chagasi. BMC Complement. Altern. Med. 2013, 13, 249.
  28. da Silva, J.K.R.; da Trindade, R.C.S.; Maia, J.G.S.; Setzer, W.N. Chemical Composition, Antioxidant, and Antimicrobial Activities of Essential Oils of Endlicheria arenosa (Lauraceae) from the Amazon. Nat. Prod. Commun. 2016, 11, 695–698.
  29. Aranha, E.S.P.; de Azevedo, S.G.; dos Reis, G.G.; Silva Lima, E.; Machado, M.B.; de Vasconcellos, M.C. Essential oils from Eugenia spp.: In vitro antiproliferative potential with inhibitory action of metalloproteinases. Ind. Crops Prod. 2019, 141, 111736.
  30. da Silva, J.; Andrade, E.; Barreto, L.; da Silva, N.; Ribeiro, A.; Montenegro, R.; Maia, J. Chemical Composition of Four Essential Oils of Eugenia from the Brazilian Amazon and Their Cytotoxic and Antioxidant Activity. Medicines 2017, 4, 51.
  31. de Franco, C.J.P.; Ferreira, O.O.; Antônio Barbosa de Moraes, Â.; Varela, E.L.P.; Do Nascimento, L.D.; Percário, S.; de Oliveira, M.S.; de Andrade, E.H.A. Chemical composition and antioxidant activity of essential oils from eugenia patrisii vahl, e. Punicifolia (kunth) dc., and myrcia tomentosa (aubl.) dc., leaf of family myrtaceae. Molecules 2021, 26, 3292.
  32. Jerônimo, L.B.; da Costa, J.S.; Pinto, L.C.; Montenegro, R.C.; Setzer, W.N.; Mourão, R.H.V.; da Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Antioxidant and Cytotoxic Activities of Myrtaceae Essential Oils Rich in Terpenoids from Brazil. Nat. Prod. Commun. 2021, 16, 1–13.
  33. Dias, C.N.; Alves, L.P.L.; da Rodrigues, K.A.F.; Brito, M.C.A.; dos Rosa, C.S.; do Amaral, F.M.M.; dos Monteiro, O.S.; de Andrade, E.H.A.; Maia, J.G.S.; Moraes, D.F.C. Chemical Composition and Larvicidal Activity of Essential Oils Extracted from Brazilian Legal Amazon Plants against Aedes aegypti L. (Diptera: Culicidae). Evid.-Based Complement Altern. Med. 2015, 2015, 1–8.
  34. da Costa, J.S.; Barroso, A.S.; Mourão, R.H.V.; da Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Seasonal and antioxidant evaluation of essential oil from Eugenia uniflora L., curzerene-rich, thermally produced in situ. Biomolecules 2020, 10, 328.
  35. Meira, C.S.; Menezes, L.R.A.; dos Santos, T.B.; Macedo, T.S.; Fontes, J.E.N.; Costa, E.V.; Pinheiro, M.L.B.; da Silva, T.B.; Teixeira Guimarães, E.; Soares, M.B.P. Chemical composition and antiparasitic activity of essential oils from leaves of Guatteria friesiana and Guatteria pogonopus (Annonaceae). J. Essent. Oil Res. 2017, 29, 156–162.
  36. Costa, R.G.A.; da Anunciação, T.A.; de S. Araujo, M.; Souza, C.A.; Dias, R.B.; Sales, C.B.S.; Rocha, C.A.G.; Soares, M.B.P.; da Silva, F.M.A.; Koolen, H.H.F.; et al. In vitro and in vivo growth inhibition of human acute promyelocytic leukemia HL-60 cells by Guatteria megalophylla Diels (Annonaceae) leaf essential oil. Biomed. Pharmacother. 2020, 122, 109713.
  37. Noriega, P.; Guerrini, A.; Sacchetti, G.; Grandini, A.; Ankuash, E.; Manfredini, S. Chemical composition and biological activity of five essential oils from the Ecuadorian Amazon rain forest. Molecules 2019, 24, 1637.
  38. da Silva Júnior, O.S.; de Franco, C.J.P.; de Moraes, A.A.B.; Cruz, J.N.; da Costa, K.S.; do Nascimento, L.D.; Andrade, E.H.d.A. In silico analyses of toxicity of the major constituents of essential oils from two Ipomoea L. species. Toxicon 2021, 195, 111–118.
  39. Martins, E.R.; Díaz, I.E.C.; Paciencia, M.L.B.; Fana, S.A.; Morais, D.; Eberlin, M.N.; Silva, J.S.; Silveira, E.R.; Barros, M.P.; Suffredini, I.B. Interference of Seasonal Variation on the Antimicrobial and Cytotoxic Activities of the Essential Oils from the Leaves of Iryanthera polyneura in the Amazon Rain Forest. Chem. Biodivers. 2019, 16, e1900374.
  40. Sarrazin, S.L.F.; Oliveira, R.B.; Barata, L.E.S.; Mourão, R.H.V. Chemical composition and antimicrobial activity of the essential oil of Lippia grandis Schauer (Verbenaceae) from the western Amazon. Food Chem. 2012, 134, 1474–1478.
  41. Mar, J.M.; Silva, L.S.; Azevedo, S.G.; França, L.P.; Goes, A.F.F.; dos Santos, A.L.; de Bezerra, J.A.; de Cássia, S.; Nunomura, R.; Machado, M.B.; et al. Lippia origanoides essential oil: An efficient alternative to control Aedes aegypti, Tetranychus urticae and Cerataphis lataniae. Ind. Crops Prod. 2018, 111, 292–297.
  42. Do Nascimento, L.D.; Silva, S.G.; Cascaes, M.M.; da Costa, K.S.; Figueiredo, P.L.B.; Costa, C.M.L.; de Andrade, E.H.A.; de Faria, L.J.G. Drying effects on chemical composition and antioxidant activity of lippia thymoides essential oil, a natural source of thymol. Molecules 2021, 26, 2621.
  43. Silva, S.G.; Da Costa, R.A.; De Oliveira, M.S.; Da Cruz, J.N.; Figueiredo, P.L.B.; Do Socorro Barros Brasil, D.; Nascimento, L.D.; De Jesus Chaves Neto, A.M.; De Carvalho, R.N.; De Aguiar Andrade, E.H. Chemical profile of lippia thymoides, evaluation of the acetylcholinesterase inhibitory activity of its essential oil, and molecular docking and molecular dynamics simulations. PLoS ONE 2019, 14, 1–17.
  44. Ramos, S.; Bruno, A.; Rodrigues, L.; Luzia, A.; Farias, F.; Simões, R.C.; Pinheiro, M.T.; Marcelo, R.; Mayana, L.; Barbosa, C.; et al. Chemical Composition and In Vitro Antioxidant, Cytotoxic, Antimicrobial, and Larvicidal Activities of the Essential Oil of Mentha piperita L. Lamiaceae Sci. World J. 2017, 2017, 4927214.
  45. Luz, T.R.S.A.; Leite, J.A.C.; de Mesquita, L.S.S.; Bezerra, S.A.; Silveira, D.P.B.; de Mesquita, J.W.C.; Edilene Carvalho Gomes, R.; Vilanova, C.M.; de Ribeiro, M.N.S.; do Amaral, F.M.M.; et al. Seasonal variation in the chemical composition and biological activity of the essential oil of Mesosphaerum suaveolens (L.) Kuntze. Ind. Crops Prod. 2020, 153, 112600.
  46. Scalvenzi, L.; Grandini, A.; Spagnoletti, A.; Tacchini, M.; Neill, D.; Ballesteros, J.L.; Sacchetti, G.; Guerrini, A. Myrcia splendens (Sw.) DC. (syn. M. fallax (Rich.) DC.) (myrtaceae) essential oil from amazonian Ecuador: A chemical characterization and bioactivity profile. Molecules 2017, 22, 1163.
  47. Da Silva, J.K.R.; Andrade, E.H.A.; Mourão, R.H.V.; Maia, J.G.S.; Dosoky, N.S.; Setzer, W.N. Chemical profile and in vitro biological activities of essential oils of Nectandra puberula and N. cuspidata from the Amazon. Nat. Prod. Commun. 2017, 12, 131–134.
  48. Figueiredo, P.L.B.; Silva, S.G.; Nascimento, L.D.; Ramos, A.R.; Setzer, W.N.; Da Silva, J.K.R.; Andrade, E.H.A. Seasonal study of methyleugenol chemotype of ocimum campechianum essential oil and its fungicidal and antioxidant activities. Nat. Prod. Commun. 2018, 13, 1055–1058.
  49. da Silva, V.D.; Almeida-Souza, F.; Teles, A.M.; Neto, P.A.; Mondego-Oliveira, R.; Mendes Filho, N.E.; Taniwaki, N.N.; Abreu-Silva, A.L.; da Calabrese, K.S.; Mouchrek Filho, V.E. Chemical composition of Ocimum canum Sims. essential oil and the antimicrobial, antiprotozoal and ultrastructural alterations it induces in Leishmania amazonensis promastigotes. Ind. Crops Prod. 2018, 119, 201–208.
  50. Da Silva, J.K.; Da Trindade, R.; Moreira, E.C.; Maia, J.G.S.; Dosoky, N.S.; Miller, R.S.; Cseke, L.J.; Setzer, W.N. Chemical diversity, biological activity, and genetic aspects of three Ocotea species from the Amazon. Int. J. Mol. Sci. 2017, 18, 1081.
  51. de Lima, B.R.; da Silva, F.M.A.; Soares, E.R.; de Almeida, R.A.; da Silva Filho, F.A.; Pereira Junior, R.C.; Hernandez Tasco, Á.J.; Salvador, M.J.; Koolen, H.H.F.; de Souza, A.D.L.; et al. Chemical composition and antimicrobial activity of the essential oils of Onychopetalum amazonicum R.E.Fr. Nat. Prod. Res. 2016, 30, 2356–2359.
  52. Da Silva, J.K.R.; Pinto, L.C.; Burbano, R.M.R.; Montenegro, R.C.; Andrade, E.H.A.; Maia, J.G.S. Composition and cytotoxic and antioxidant activities of the oil of Piper aequale Vahl. Lipids Health Dis. 2016, 15, 1–6.
  53. Souto, R.N.P.; Harada, A.Y.; Andrade, E.H.A.; Maia, J.G.S. Insecticidal Activity of Piper Essential Oils from the Amazon Against the Fire Ant Solenopsis saevissima (Smith) (Hymenoptera: Formicidae). Neotrop. Entomol. 2012, 41, 510–517.
  54. do Nascimento, L.D.; Almeida, L.Q.; de Sousa, E.M.P.; Costa, C.M.L.; da Costa, K.S.; de Aguiar Andrade, E.H.; de Faria, L.J.G. Microwave-assisted extraction: An alternative to extract Piper aduncum essential oil. Braz. J. Dev. 2020, 6, 40619–40638.
  55. Sanini, C.; Massarolli, A.; Krinski, D.; Butnariu, A.R. Essential oil of spiked pepper, Piper aduncum L. (Piperaceae), for the control of caterpillar soybean looper, Chrysodeixis includens Walker (Lepidoptera: Noctuidae). Rev. Bras. Bot. 2017, 40, 399–404.
  56. Araujo, C.A.; da Camara, C.A.G.; de Moraes, M.M.; de Vasconcelos, G.J.N.; Pereira, M.R.; Zartman, C.E. Chemical composition of essential oils from four Piper species, differentiation using multivariate analysis and antioxidant activity. Nat. Prod. Res. 2021, 36, 436–439.
  57. França, L.P.; Amaral, A.C.F.; de Ramos, A.S.; Ferreira, J.L.P.; Maria, A.C.B.; Oliveira, K.M.T.; Araujo, E.S.; Branches, A.D.S.; Silva, J.N.; Silva, N.G.; et al. Piper capitarianum essential oil: A promising insecticidal agent for the management of Aedes aegypti and Aedes albopictus. Environ. Sci. Pollut. Res. 2021, 28, 9760–9776.
  58. Do Carmo, D.F.M.; Amaral, A.C.F.; MacHado, G.M.C.; Leon, L.L.; De Andrade Silva, J.R. Chemical and biological analyses of the essential oils and main constituents of Piper species. Molecules 2012, 17, 1819–1829.
  59. Gevú, K.V.; Lima, H.R.P.; Neves, I.A.; Mello, É.O.; Taveira, G.B.; Carvalho, L.P.; Carvalho, M.G.; Gomes, V.M.; Melo, E.J.T.; Da Cunha, M. Chemical composition and anti-candida and anti-trypanosoma cruzi activities of essential oils from the rhizomes and leaves of Brazilian species of renealmia L. fil. Rec. Nat. Prod. 2019, 13, 268–280.
  60. da Rodrigues, K.A.F.; Amorim, L.V.; Dias, C.N.; Moraes, D.F.C.; Carneiro, S.M.P.; de Carvalho, F.A.A. Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. J. Ethnopharmacol. 2015, 160, 32–40.
  61. da Mesquita, R.S.; de Oliveira, A.C.; Sá, I.S.C.; Sales, M.L.F.; Bastos, L.M.; Koolen, H.H.F.; Tadei, W.P.; da Silva, F.M.A.; Nunomura, R.C.S. Essential Oils from Leaves of Virola calophylla, Virola multinervia, and Virola pavonis (Myristicaceae): Chemical Composition and Larvicidal Activity against Aedes aegypti. J. Essent. Oil-Bearing Plants 2020, 23, 453–463.
  62. Anunciação, T.A.d.; Costa, R.G.A.; Lima, E.J.S.P.d.; Silva, V.R.; de Santos, L.S.; Soares, M.B.P.; Dias, R.B.; Rocha, C.A.G.; Costa, E.V.; Silva, F.M.A.d.; et al. In vitro and in vivo inhibition of HCT116 cells by essential oils from bark and leaves of Virola surinamensis (Rol. ex Rottb.) Warb. (Myristicaceae). J. Ethnopharmacol. 2020, 262, 113166.
  63. Barbosa, A.T.; da Silva, V.H.N.; daSilva, B.Y.K.; da Lopes, A.S.N.; Guesdon, I.R.; Maia, P.J.S.; Abegg, M.A.; Corrêa, G.M.; de Carmo, D.F.M. do Chemical Composition and Biological Activities of Essential Oils from Fresh Vismia guianensis (Aubl.) Choisy and Vismia cayennensis (Jacq.) Pers. Leaves. Res. Soc. Dev. 2021, 10, e37410817440.
  64. dos Santos, E.L.; Lima, A.M.; dos S. Moura, V.F.; Setzer, W.N.; da Silva, J.K.R.; Maia, J.G.S.; da Silva Carneiro, J.; Figueiredo, P.L.B. Seasonal and Circadian Rhythm of a 1,8-Cineole Chemotype Essential Oil of Calycolpus Goetheanus From Marajó Island, Brazilian Amazon. Nat. Prod. Commun. 2020, 15.
  65. da Trindade, R.C.S.; Xavier, J.K.A.M.; Setzer, W.N.; Maia, J.G.S.; da Silva, J.K.R. Chemical Diversity and Therapeutic Effects of Essential Oils of Aniba Species from the Amazon: A Review. Plants 2021, 10, 1854.
  66. Ray, A.; Jena, S.; Dash, B.; Kar, B.; Halder, T.; Chatterjee, T.; Ghosh, B.; Panda, P.C.; Nayak, S.; Mahapatra, N. Chemical diversity, antioxidant and antimicrobial activities of the essential oils from Indian populations of Hedychium coronarium Koen. Ind. Crops Prod. 2018, 112, 353–362.
  67. de Oliveira, M.S.; da Cruz, J.N.; Gomes Silva, S.; da Costa, W.A.; de Sousa, S.H.B.; Bezerra, F.W.F.; Teixeira, E.; da Silva, N.J.N.; de Aguiar Andrade, E.H.; de Jesus Chaves Neto, A.M.; et al. Phytochemical profile, antioxidant activity, inhibition of acetylcholinesterase and interaction mechanism of the major components of the Piper divaricatum essential oil obtained by supercritical CO2. J. Supercrit. Fluids 2019, 145, 74–84.
  68. Rezaeian, S.; Pourianfar, H.R.; Janpoor, J. Antioxidant properties of several medicinal plants growing wild in northeastern Iran. Pelagia Res. Libr. 2015, 5, 63–68.
  69. Jena, S.; Ray, A.; Sahoo, A.; Panda, P.C.; Nayak, S. Deeper insight into the volatile profile of essential oil of two Curcuma species and their antioxidant and antimicrobial activities. Ind. Crops Prod. 2020, 155, 112830.
  70. Diniz do Nascimento, L.; de Moraes, A.A.B.; da Costa, K.S.; Pereira Galúcio, J.M.; Taube, P.S.; Costa, C.M.L.; Neves Cruz, J.; de Aguiar Andrade, E.H.; Faria, L.J.G. de Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications. Biomolecules 2020, 10, 988.
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to : , , , , , , , , , ,
View Times: 523
Revisions: 2 times (View History)
Update Date: 14 Jul 2022
Video Production Service