Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 3732 2022-06-22 17:43:10 |
2 Abbreviation explained + 8 word(s) 3740 2022-06-24 03:16:10 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Suades, R.;  Greco, M.F.;  Padró, T.;  Badimon, L. Extracellular Vesicles in Atherothrombosis. Encyclopedia. Available online: https://encyclopedia.pub/entry/24408 (accessed on 25 April 2024).
Suades R,  Greco MF,  Padró T,  Badimon L. Extracellular Vesicles in Atherothrombosis. Encyclopedia. Available at: https://encyclopedia.pub/entry/24408. Accessed April 25, 2024.
Suades, Rosa, Maria Francesca Greco, Teresa Padró, Lina Badimon. "Extracellular Vesicles in Atherothrombosis" Encyclopedia, https://encyclopedia.pub/entry/24408 (accessed April 25, 2024).
Suades, R.,  Greco, M.F.,  Padró, T., & Badimon, L. (2022, June 23). Extracellular Vesicles in Atherothrombosis. In Encyclopedia. https://encyclopedia.pub/entry/24408
Suades, Rosa, et al. "Extracellular Vesicles in Atherothrombosis." Encyclopedia. Web. 23 June, 2022.
Extracellular Vesicles in Atherothrombosis
Edit

Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of morbidity and mortality all over the world. Extracellular vesicles (EVs), small lipid-bilayer membrane vesicles released by most cellular types, exert pivotal and multifaceted roles in physiology and disease. Emerging evidence emphasizes the importance of EVs in intercellular communication processes with key effects on cell survival, endothelial homeostasis, inflammation, neoangiogenesis, and thrombosis. The following content focuses on EVs as effective signaling molecules able to both derail vascular homeostasis and induce vascular dysfunction, inflammation, plaque progression, and thrombus formation as well as drive anti-inflammation, vascular repair, and atheroprotection.

atherothrombosis atherosclerosis extracellular vesicles immunoinflammation immunothrombosis inflammation

1. Introduction

Extracellular vesicles (EVs) are released in healthy physiological steady conditions. Clinical atherosclerotic cardiovascular disease (ASCVD) development is associated with high release of EVs. Assessment of vascular status is crucial for atherosclerosis prevention and to this aim EVs can serve as potential biomarkers in the clinics [1]. Molecular footprints of EVs provide clues about their cellular origin under healthy and diseased states, configuring a precious biomedical tool for liquid biopsy, easily detectable in body fluids. Changes in circulating EVs of different cellular origin have been widely reported for almost all cardiovascular risk factors and pathologies [2] reflecting their pathophysiological severity. Beyond diagnostic use, EVs have been suggested for the prediction of major adverse cardiovascular events (MACE) [3] and mortality [4]. Circulating procoagulant MVs were found at higher levels in patients with acute coronary syndrome (ACS) than healthy subjects [5]. Risk assessment is critical in primary prevention of ASCVD, especially for asymptomatic patients with subclinical atherosclerosis. In this context, EVs emerge as promising biomarkers for cardiovascular risk stratification. It is found that patients with familial hypercholesterolemia (FH) presenting subclinical lipid-rich atherosclerotic plaques have significantly higher amounts of circulating lymphocyte-derived (CD3+/CD45+) EVs than FH patients with fibrous plaques [6] in agreement with other studies that reported high levels of EVs from T lymphocytes in subjects with essential hypertension [7]. Thus, lymphocyte-derived EVs might help to map atherosclerotic plaque burden. Accordingly, increased circulating levels of leukocyte-derived EVs in patients with unstable atherosclerotic plaques signal for plaque vulnerability [8]. Furthermore, it is also found that asymptomatic high cardiovascular risk FH patients have significantly higher number of circulating prothrombotic platelet EVs [9]. Patients with FH, despite being treated according to guidelines, have ongoing innate immune cell and platelet activation. Indeed, in asymptomatic high cardiovascular risk FH patients from the same cohort, pan-leukocyte-derived and activated neutrophil-derived circulating EVs as well as EVs bearing markers of platelet activation were significantly increased in patients about to suffer an ischemic event [3]. This specific EV signature is a prognostic marker able to improve the prediction of clinical events if included in the risk factor models. Altogether, it is clear that multiple biomarker-based strategies for patient stratification including EVs hold promise in precision medicine.
EVs orchestrate the entire spectrum of atherosclerotic disease phases by means of their intercellular and extracellular communication and adhesion between blood and vessel wall [10]. Human atherosclerotic plaques, from initial lesions to advanced stages, contain EVs expressing markers from vascular and blood cells (leukocytes, red blood cells (RBCs), smooth muscle cells, and endothelial cells (ECs) [11][12][13]. Therefore, it seems plausible that EVs from most cell types of the cardiovascular system participate in the atherosclerotic process. It should be taken into consideration that isolation of EVs from tissues (by homogenization, dissociation, or disruption) preserving their intact biochemical properties is still a challenging procedure that should be further developed. Nevertheless, the landmark study from Leroyer et al. [12] reported that plaque EVs derive mainly from white blood cells (WBCs), demonstrating the existence of an inflammatory milieu. Of interest, plaque EVs favored the balance towards a proinflammatory environment in the culprit lesion [14] and induced T-cell proliferation in a dose-dependent manner, contributing to vascular inflammation and plaque development [13]. A growing body of evidence supports the notion that immuno-inflammation plays a role in the pathogenesis of atherothrombotic disease either by promoting the disease or lesion resolution and vascular repair. The following sections will unravel the immuno-modulatory effect of EVs in the different stages of atherothrombotic disease.

2. Atherogenesis

Endothelial dysfunction (ED) characterized by a proatherogenic environment is an early sign of atherosclerosis development [1]. Under pathological conditions, such as risk factors or injury, circulating EVs contribute towards a dysfunctional endothelium [15][16][17][18][19][20][21][22][23][24][25][6]. Beyond the well-studied traditional cardiovascular risk factors, atherothrombosis is spearheaded by multiple risk factors such as clonal hematopoiesis and air pollution [26]. It has recently become apparent that particulate matter (PM) could induce an inflammatory response and EC damage favoring the initial formation of atherosclerotic lesion. EVs derived from PM-exposed alveolar epithelial cells fueled inflammatory signaling via inhibitor of the nuclear factor kappa alpha (IκBα)–nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)–vascular cell adhesion protein 1 (VCAM1) axis [27]. Nevertheless, EVs shed after PM exposure could also mediate crosstalk between EC-immune cells to cope with the inflammatory assault [28], a response impaired in overweight subjects at increased cardiovascular risk [29].
EVs of several cellular origins (mainly derived from ECs) upon distinct inflammatory stimuli (oxidized low-density lipoprotein (LDL), angiotensin II, hypertension, visceral adipose tissue, and infection) or isolated from diseased patients (circulating EVs) directly cause harmful effects on physiological EC function and vasorelaxation by impairing nitric oxide (NO) bioavailability via regulation of NO, nitric oxide synthase, nicotinamide adenine dinucleotide phosphate (NAPDH) oxidase, and prostacyclin as well as reactive oxygen species (ROS) and endoplasmic reticulum stress [30][31][32][33][34][35][36][37]. RBCs play key roles in vascular homeostasis. Not only altered RBC function but also RBC-derived EVs could reduce NO bioactivity and induce ED [38][39]. Likewise, excessive erythrocytosis exhibited by Andean highlanders also induce ED by means of dysfunctional circulating EVs [40]. Extracellular signal-regulated kinase (ERK) 1 embedded in platelet EVs from a mouse model of diabetes induce ED via intracellular adhesion molecule 1 (ICAM-1) [41]. Senescent EC-derived MVs (eMVs) from ACS patients induce premature ED and thrombogenicity through the angiotensin II–induced NADPH oxidase system [42]. On top of this detrimental vascular effect, EVs are also responsible for endothelial permeability [43][44]. Several works suggest that the disturbance of EC barrier function could also be mediated through apoptosis by EVs [45][46][47][48], whereas other studies ascribe to them a protective role as a way of reducing intracellular levels of caspase-3 [49]. Along the same line, Jansen et al. showed that eMV uptake in ECs via annexin I/PS receptor-p38 signaling protects against apoptosis [50]. Li et al. have demonstrated that endothelial progenitor cell (EPC)-derived EVs inhibit ferroptosis and alleviate atherosclerosis vascular injury via the miR-199a-3p/specificity protein 1 axis [51]. Of interest, EVs in basal conditions or from healthy subjects do not show deleterious effects to the vascular wall [52][53], highlighting that the impact of EVs in vivo is cell source- and context-dependent [54][55][56][57][58].

3. Atheroinflammation

An additional key feature of early atherosclerosis is the activation of the endothelium and, subsequently, the adhesion and recruitment of immune cells to the vasculature [59]. Importantly, EVs contribute in a multifaceted fashion to instigate vascular inflammation by increasing levels of adhesion molecules, ROS, and proinflammatory cytokines (e.g., interleukin (IL)-6 and -8) [60][61][62][63]. Specifically, platelet-derived EVs (pEVs) have shown in vitro to enhance the expression of adhesion molecules including E-selectin, ICAM-1, and VCAM-1 [64][65]; thus, favoring the adhesion of monocytes to the inflamed endothelium. Of note, P-selectin-enriched pEVs were found to promote leukocyte–leukocyte interactions leading to monocyte diapedesis through the endothelium even when flow conditions were not favorable [66]. Such chemo-attraction can be regulated by multiple mechanisms such as the transfer of Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) protein to ECs [67] and might contribute to long-term leukocyte differentiation [68]. In this regard, apoptotic-platelet-derived EVs can mediate the polarization towards M2 monocyte and resident macrophages. pEVs not only facilitate leukocyte adherence to the arterial wall but also to the atherosclerotic plaque [69]. In contrast, pEVs can also reshape the secretome of angiogenic early outgrowth cells (EOC) magnifying EOC-driven endothelial regeneration and promoting vascular protection [70]. Latter findings emphasize the importance of the environment in the final EV-directed effect.
A similar effect of chemo-attraction and transmigration of leukocytes to ECs towards the plaque is induced by EVs from other cellular sources [71]. Of note, neutrophil-derived EVs (nEVs) cause myeloperoxidase-mediated damage of vascular ECs [72]. nEVs shuttle Cox-1 substrate arachidonic acid (AA) from neutrophils to platelets, thereby fostering thromboxane A2, EC activation, and neutrophil recruitment in an experimental model of pulmonary hypertension [73]. Thus, nEVs are involved in platelet–neutrophil crosstalk. Leukocyte-derived EVs released upon proinflammatory triggers can adhere to ECs and promote further leukocyte adhesion in a positive feedback loop [74][75][76]. One of the mechanisms by which EVs exert their proinflammatory activity is by harboring mitochondria or mitochondria-derived proteins, the so-called mitovesicles [77][78]. Extracellular mitochondria cause inflammatory responses to injury because they bear damage-associated molecular patterns [79][80], mitochondrial DNA [81], and oxidized proteins [82]. For instance, monocyte-derived mitovesicles can induce type I interferon and tumor necrosis factor (TNF)α response in ECs [83]. It has also been described that coronary artery disease (CAD) patients with low levels of mitochondrial oxidase subunit I in monocyte-derived EVs are at higher risk for new cardiovascular events [84]. pEVs released from thrombin-stimulated platelets also have embedded mitochondria that act as a substrate for phospholipase A2 IIA [85]. Altogether, EVs selectively enriched with mitochondrial material promote the expression of inflammatory mediators and drive leukocyte recruitment in the vasculature. Another mechanism involved in the vascular pro-inflammatory milieu is the exporting and transferring of miRNAs to target cells. Endothelial-derived EVs (eEVs) have shown to transport miRNA-155 and reprogram monocytes into an M1 proinflammatory phenotype [86] and miRNA-92a to macrophages promoting an atheroprone phenotype [87]. Not only miRNAs but also post-translational modifications can influence EV-driven inflammatory signals to ECs. Recently, Yang et al. have shown that monocyte–EC interactions responsible for EC inflammatory phenotype depend on EV-associated glucose transporter 1 and glycosylation [88].
Conversely, EVs can also act as inflammatory repressors. Endothelial-derived EVs bearing the endothelial protein C receptor-activated protein C complex induce protease-activated receptor (PAR) 1-dependent survivable, cytoprotective, and anti-inflammatory effects on ECs [89]. MVs derived from lipid-loaded macrophages (CD16+) and containing LRP5 induce anti-inflammatory phenotypes in macrophages in an autocrine and paracrine fashion [90]. The EC-derived miRNA-143/-145 cluster is delivered to adjacent smooth muscle cells, through a MVs-mediated mechanism, to induce a vasculoprotective phenotype [91]. Neutrophil-derived EVs induce the release of transforming growth factor (TGF) β1 from macrophages with anti-inflammatory effects [92] that could be reinforced by the expression of annexin I on the surface of nEVs [93]. Moreover, ICAM-1 is downregulated by miRNA-222 embedded in eEVs [94]. Another example of a favorable vesicle-mediated miRNA transfer is the anti-inflammatory miRNA-10 targeting monocyte NF-κB pathway [95]. When EVs are taken up by B cells and monocytes, they are able to reprogram target cells towards an anti-inflammatory profile dependent on distinct factors [96]. Continuing with this dichotomy of pro- and anti-inflammatory properties of EVs and in an attempt to untangle the particular contribution of each vesicle subtype to the early phase of atherosclerotic disease, Hosseinkhani et al. provided evidence of a differential immunomodulatory content (inflammatory signals, chemokines, and cytokines) between small and large EVs released from activated ECs [97][98]. Specifically, sEV stimulate monocyte migration while lEVs are prompt to induce ICAM-1 expression and inflammation profile in target cells.
Even though most of the data regarding EVs as pro- and anti-inflammatory mediators in atherosclerosis derives from in vitro models, several studies with EVs from pathological conditions have been conducted [99][100][101][102][103]. Deepening to the mechanism, monocyte-derived EVs carrying IL-1β are involved in EC activatio [76] and, consistently, IL-1β-rich eEVs in inflammation in the setting of ACS [104]. Remarkably, MVs within atherosclerotic plaques are able to recruit pro-inflammatory cells through transfer of ICAM-1 to ECs [105].
In addition to chronic vascular inflammation, atherosclerosis is also characterized by an impaired resolution response leading to non-resolving inflammation persistence. EVs circulating in plasma could also exert such immunomodulatory potential in atherosclerosis. For instance, deregulated anti-inflammatory and pro-resolving molecules (CD5L and Resolvin E1 bioactive lipid mediator) in circulating EVs contribute to the systemic hyperinflammation in the context of chronic liver disease [106]. In atherosclerotic inflammation, miR-155 was found decreased in a model of atherosclerosis regression and increased in urinary EVs (uEVs) from unstable CAD patients. Interestingly, CAD progression was associated to increased CD45+ and CD11b+ uEVs, and decreased in CD16+ uEVs, pointing at miR-155 and uEVs as a potential prognostic marker of disease progression and severity and a therapeutic target [107].

4. Lesion Progression

4.1. Atherogenic Foam Cell Formation

The adaptive immune system appears at the center of human ASCVD development. Oxidized (ox-LDL) and aggregated LDL particles are taken up by the macrophages that, by removing the excess of lipids, become foam cells. As a consequence, macrophage lipid accumulation via shedding of EVs (1) inhibits their clearance [108], (2) leads to the formation of oxidation-specific epitopes in a subset of cholesterol-induced EVs [109], and (3) amplifies the inflammatory response. For instance, monocyte-derived EVs promote T-cell infiltration in atherosclerotic plaques [110]. More specifically, macrophages have shown to promote proinflammatory and proatherogenic phenotypes in recipient cells through secretion of EVs conveying miRNAs. Upon lipid uptake, atherogenic (cholesterol-loaded) macrophages secrete EVs and deliver miRNA-146a to naïve macrophages where it represses the expression of specific promigratory target genes (insulin-like growth factor 2 mRNA-binding protein 1 and human antigen R), leading to decreased macrophage migration and potential entrapment in the atherosclerotic plaque [108]. Finally, MV-mediated miR-223 transfer reinforces the macrophage activation loop [111]. Ox-LDL also induces EV release from ECs containing miR-155 which promotes M1 macrophage polarization [86]. Indeed, beyond macrophages and foam cells, ECs and platelets also secrete EVs that regulate macrophage polarization and contribute to atherosclerotic plaque progression. TNFα or low shear stress-induced EC-derived EVs also target macrophages [112]. Activated pEVs stimulate ox-LDL phagocytosis and inflammatory cytokine release by macrophages [113]. Thereafter, macrophages and foam cells undergo apoptosis, either by their phagocytosis of ceramide and AA-rich EVs [45][114] or by the EV-driven transfer of programmed-cell-death-related caspases [115] even in SMCs [48]. Lymphocyte accumulation in inflamed arteries can also display a regulatory and atheroprotective function. B-cell-derived natural IgM recognizes EVs bearing oxidation-specific epitopes and represses their inflammatory signaling and pathological endeavors [116]. Moreover, natural IgM antibodies inhibit MV-driven coagulation and thrombosis [117].

4.2. Vascular Smooth Muscle Cell Proliferation, Migration, and Phenotype Switching

During lesion growth, vascular smooth muscle cells (VSMC) located in the media change from a contractile to a proliferative phenotype and migrate into the intima layer. VSMC cell proliferation and migration, another key step in the development of atherosclerosis, is also influenced by EVs either from platelets [118] or foam cells [119]. Platelet-released EVs induce a pro-inflammatory phenotype in VSMC affecting vascular remodeling [118]. In addition, platelet-derived MVs have shown to promote VSMC proliferation and migration via a platelet-derived growth-factor-independent mechanism [120][121] and calcium oscillations and transient receptor potential vanilloid 4 [122], respectively. Macrophages release EVs rich in cholesterol that can be taken up by VSMC [123]. The contribution of macrophage foam cell-derived EVs to enhance VSMC adhesion and migration was shown by the transfer of integrins and subsequent downstream activation of ERK and Ak strain transforming (AKT) [119] and the transport of miR-19b-3p and targeting juxtaposed with another zinc finger gene 1 [124]. Those EVs rich in tissue factor (TF) have the capacity to modulate VSMC migration though PAR interaction [125]. Another study found that VSMC-derived EVs intervene in autocrine VSMC proliferation by upregulation of mitogen-associated protein kinase [126]. Interestingly, other studies address this question with a translational perspective. EVs bearing Ras-related protein 1 from patients with metabolic syndrome favored VSMC migration and proliferation [127]. Plasma EV containing miRNA-501-5p promotes VSMC phenotypic modulation through targeting Suppressor of mothers against decapentaplegic homolog (Smad) 3 in patients with in-stent restenosis one year after coronary stent implantation [128]. Conversely, several studies emphasize the fact that EVs and their miRNA content present an atheroprotective effect on VSMCs. In this regard, miRNA-223-EVs inhibited VSMC migration and proliferation, thereby decreasing plaque size [129]. Similarly, both high shear stress and Krüppel-like factor 2-expressing ECs-derived EVs enriched in the miR-143/145 cluster prevented VSMC dedifferentiation [91]. Moreover, macrophage-derived EVs also transmit miR-503-5p into VSMCs and inhibit their proliferation and migration via the Smad7-Transforming growth factor-β axis [130]. Finally, MVs reduced VSMC proliferation, migration and subsequent neointima formation by delivering functional miR-126 into recipient VSMCs [130]. Even EVs from adipose mesenchymal stem cells were involved in the regulation of VSMC phenotype to limit intimal hyperplasia [131].

4.3. Intravascular Calcification

Under pathological stimuli, EVs released by VSMCs and macrophages aggregate between collagen fibers and serve as a platform for ectopic mineralization eliciting micro- and macrocalcifications in the vessel wall. Vascular calcification in atherosclerosis shows a bimodal behavior in terms of risk and impact; while it has been shown that microcalcifications have a burdening effect on plaque rupture due to the low number of inflammatory cells and being more prone to rupture, higher amounts of calcification within stable plaques at various phases of atherosclerosis progression have also been found. Cellular-derived EVs from VSMCs, ECs, and platelets indisputably regulate the loss of the VSMC contractile phenotype and impact vascular calcification [132][133][134] favoring plaque calcification and atherogenesis [135][136][137][138]. EVs from dysfunctional endothelium [139] and senescent ECs [133][140] promote vascular calcification. VSMCs also release calcifying EVs themselves [141][142]. One described mechanism driving the VSMCs towards calcification involves the regulation of calcifying EVs by sortilin [141]. Oxidative stress also intervenes in this process. VSMC phenotype switching caused an increased Nox5 expression that was responsible for the subsequent extracellular calcium entry, ROS production, reduced contractile phenotype, and enhanced EV release fostering VSMC calcification [143].

4.4. Necrotic Core

EV-mediated cell death [48][114] triggers necrotic core formation and, in turn, lipid-rich necrotic core contains high amounts of thrombogenic EVs as well [12][13][144], conferring a procoagulant potential and instability to the atherosclerotic lesion and shifting towards a vulnerable plaque.

5. Advanced Lesion and Plaque Rupture

Atherosclerotic plaque erosion or rupture and the subsequent thrombosis leads to, eventually, acute ischemic syndromes. The interdependence between innate immune cells and platelets is essential for plaque destabilization and thrombotic occlusion [145][146].

5.1. Arterial Neoangiogenesis and Intraplaque Hemorrhage

During the last steps of atherosclerosis development, an increased number of vasa vasorum brings about intraplaque hemorrhage, a highly inflammatory environment, and a rapid activation of the coagulation cascade and platelet aggregation forming a fibrin mesh [147][148]. Several studies support the notion that EVs exert regulatory roles in these events [149][150]. EPC-EVs activate ECs and stimulate angiogenesis [151]. Inflammation-induced EC-derived EVs enhanced vascular endothelial growth factor B expression in pericytes, which in turn might mediate pathological neovascularization and vascular leakage in response to an inflamed endothelium [152]. Atherosclerotic EC-released EVs promoted angiogenic responses in ECs by a thrombospondin-1-depedent mechanism [87]. Communication between ECs and immune cells plays key roles in disease development. Spleen EC-derived VCAM1+- EVs mobilize splenic monocytes in myocardial infarction (MI) [153]. It has been reported that hypoxic ECs release endothelial-cell-derived MVs rich in TF and transport miRNA-126 that induces monocyte recruitment into the ischemic zone, reprogramming of monocytes and their differentiation into EC-like cells, and angiogenic response, which altogether improve tissue reperfusion [154],[155]. Of note, TF-containing eMVs could interact via paracrine signaling with other microvascular ECs and trigger angiogenesis ex vivo and postischemic collateral vessel growth in vivo [156]. MVs from human atherosclerotic plaques promoted in vivo angiogenesis [157]. Of interest, in vitro studies showed that the mechanism was mediated by MVs expressing the CD40 ligand [157]. Similarly, MVs from ischemic muscle induced postnatal vasculogenesis [158]. Fibrinolytic activity of EC and WBC-derived EVs could also favor angiogenesis and hamper thrombus dissolution [159]. Furthermore, Loyer et al. found that small and large cardiomyocyte-derived EVs are locally released from the heart to regulate the inflammatory process in a mouse model of myocardial ischemia [160]. Indeed, ischemia-induced cardiosomes stimulate cardiac angiogenesis both in vitro and in vivo [161]. Besides intraplaque neovascularization and bleeding, plaque, EC, and immune-cell-derived EVs influence endothelium denudation and fibrous cap integrity. EVs exert structural extracellular matrix degradation and fibrous cap weakening via metalloprotease activities [14][162][163][164][165][166][167][168]).

5.2. Thrombus Formation after Rupture

Fibrous cap disruption within the atherosclerotic plaque results in the exposure of subendothelial extracellular matrix (collagen and von Willebrand factor) and thrombogenic substances and, thus, a huge release of tissue factor triggering platelet activation, aggregation, and thrombus formation in the damaged area [169]. EVs from platelet/monocyte aggregates are capable of modulating human atherosclerotic plaque reactivity [170]. Under in vitro simulated conditions of coagulopathy, EV from different cellular origins (EC and platelet) and at distinct concentrations showed a divergent but procoagulant effect within the coagulation process [171]. Numerous studies have dissected in vitro and in vivo the procoagulant effect of EVs, mainly MVs, leading to thrombosis [117][172][173][174][175][176][177][178][179][180][181][182]. Procoagulant EVs within the necrotic core of atherosclerotic plaques provoke the burst of the coagulation cascade upon plaque rupture [144] being TF+-MVs the main initiators [183][184][185]. TF is functionally transferred to monocytes through MVs [186] in a PAR2-filamin A-mediated process [187]. The fact that the proinflammatory cytokine IL-33 [188] and EC-derived EVs [189] trigger the release of procoagulant TF+-MVs underscores the synergy between inflammation and thrombosis. TF+-MVs are also engulfed by platelets and trigger platelet aggregation [190][191]. In addition, TF-rich monocyte-derived EVs are recruited at the thrombus site [192]. TF shares the limelight of plaque thrombogenicity with phosphatidylserine. Negatively charged PS exposure in EV surface confers procoagulant activity [193], enables the concentration of factors VII/VIIa in the EV membrane [194], enhances platelet adhesion to the endothelium, and it is important for TF function, thrombin generation, and clot formation [195]. Beyond these two key factors (TF and PS), EVs were shown to directly modulate the clotting. A seminal study on leukocyte-derived EVs expressing P-selectin glycoprotein ligand-1 (PSGL-1) on their surface deconvolutes the crosstalk between platelets and TF-rich immune cells at the lesion site. Interactions between platelet adhesion molecule P-selectin and PSGL-1+-EVs allowed higher recruitment and activity of TF perpetuating thrombus formation [196]. Not only WBC-derived EVs participate in this dynamic process, circulating and platelet-derived MVs also enhance thrombus formation and growth on thromboactive substrates [180]. It has also been found that pEVs bearing surface epitopes of platelet adhesion and activation in perfused blood tend to bind more to adhered platelets and prothrombotic surfaces stimulating further platelet deposition and thrombus growth [182]. Interaction of platelets with subendothelial matrix, immobilized platelet surfaces [197], or fibrin [198] depends on pEV-associated αIIbβ3a integrin [199].
Several other platelet biological components contribute to this phenomenon such as protein disulphide isomerase [200], factors VIII and Va [201][202], and bioactive lipids [203]. Platelet-derived EVs also modulate EC–monocyte interactions [64] likely inducing enhanced expression of cell adhesion molecules under high shear stress conditions [65]. Interestingly, pEVs support megakaryocyte differentiation and platelet production that is relevant to keep a physiological level of circulating platelets after their consumption during thrombosis [204]. Recently, researchers have investigated the proteostatic characteristics of EVs shed from platelets upon thrombin activation by an untargeted proteomic approach [205]. Proteins involved in cell–cell interaction and signaling events underlying thrombus formation have been identified such as CUB domain-containing protein-1 or membrane glycoprotein gp140, fermitin family homolog 3 or kindlin-3, and the novel pEV-associated protein protocadherin-α4, among others. Deciphering platelet and cell signaling and biology by proteomics technique [205][206] will help to unveil paracrine regulation of EVs and provide new therapeutic targets involved in occlusive thrombus formation and atherothrombosis.

References

  1. Yvonne Alexander; Elena Osto; Arno Schmidt-Trucksäss; Michael Shechter; Danijela Trifunovic; Dirk J Duncker; Victor Aboyans; Magnus Bäck; Lina Badimon; Francesco Cosentino; et al.Marco De CarloMaria DorobantuDavid G HarrisonTomasz J GuzikImo HoeferPaul D MorrisGiuseppe D NorataRosa SuadesStefano TaddeiGemma VilahurJohannes WaltenbergerChristian WeberFiona WilkinsonMarie-Luce Bochaton-PiallatPaul C Evans Endothelial function in cardiovascular medicine: a consensus paper of the European Society of Cardiology Working Groups on Atherosclerosis and Vascular Biology, Aorta and Peripheral Vascular Diseases, Coronary Pathophysiology and Microcirculation, and Thrombosis. Cardiovascular Research 2020, 117, 29-42, 10.1093/cvr/cvaa085.
  2. Lina Badimon; Rosa Suades; Gemma Arderiu; Esther Peña; Gemma Chiva-Blanch; Teresa Padró; Microvesicles in Atherosclerosis and Angiogenesis: From Bench to Bedside and Reverse. Frontiers in Cardiovascular Medicine 2017, 4, 77, 10.3389/fcvm.2017.00077.
  3. Rosa Suades; Teresa Padró; Javier Crespo; Alessandro Sionis; Rodrigo Alonso; Pedro Mata; Lina Badimon; Liquid Biopsy of Extracellular Microvesicles Predicts Future Major Ischemic Events in Genetically Characterized Familial Hypercholesterolemia Patients. Arteriosclerosis, Thrombosis, and Vascular Biology 2019, 39, 1172-1181, 10.1161/atvbaha.119.312420.
  4. Gemma Chiva-Blanch; Vibeke Bratseth; Vibeke Ritschel; Geir Ø. Andersen; Sigrun Halvorsen; Jan Eritsland; Harald Arnesen; Lina Badimon; Ingebjørg Seljeflot; Monocyte-derived circulating microparticles (CD14+, CD14+/CD11b+ and CD14+/CD142+) are related to long-term prognosis for cardiovascular mortality in STEMI patients. International Journal of Cardiology 2016, 227, 876-881, 10.1016/j.ijcard.2016.11.302.
  5. R. Suades; T. Padró; J. Crespo; I. Ramaiola; V. Martin-Yuste; M. Sabaté; J. Sans-Roselló; A. Sionis; L. Badimon; Circulating microparticle signature in coronary and peripheral blood of ST elevation myocardial infarction patients in relation to pain-to-PCI elapsed time. International Journal of Cardiology 2015, 202, 378-387, 10.1016/j.ijcard.2015.09.011.
  6. Rosa Suades; Teresa Padró; Rodrigo Alonso; José López-Miranda; Pedro Mata; Lina Badimon; Circulating CD45+/CD3+ lymphocyte-derived microparticles map lipid-rich atherosclerotic plaques in familial hypercholesterolaemia patients. Thrombosis and Haemostasis 2014, 111, 111-121, 10.1160/th13-07-0612.
  7. Sabrina La Salvia; Luca Musante; Joanne Lannigan; Joseph Christopher Gigliotti; Thu H. Le; Uta Erdbrügger; T cell-derived extracellular vesicles are elevated in essential HTN. American Journal of Physiology-Renal Physiology 2020, 319, F868-F875, 10.1152/ajprenal.00433.2020.
  8. Gabrielle Sarlon-Bartoli; Youssef Bennis; Romaric Lacroix; Marie Dominique Piercecchi-Marti; Michel Bartoli; Laurent Arnaud; Julien Mancini; Audrey Boudes; Emmanuelle Sarlon; Benjamin Thevenin; et al.Aurelie LeroyerChristian SquarcioniPierre Edouard MagnanFrançoise Dignat-GeorgeFlorence Sabatier Plasmatic Level of Leukocyte-Derived Microparticles Is Associated With Unstable Plaque in Asymptomatic Patients With High-Grade Carotid Stenosis. Journal of the American College of Cardiology 2013, 62, 1436-1441, 10.1016/j.jacc.2013.03.078.
  9. Rosa Suades; Teresa Padró; Rodrigo Alonso; Pedro Mata; Lina Badimon; High levels of TSP1+/CD142+ platelet-derived microparticles characterise young patients with high cardiovascular risk and subclinical atherosclerosis. Thrombosis and Haemostasis 2015, 114, 1310-1321, 10.1160/th15-04-0325.
  10. Pierre‐Michaël Coly; Chantal M. Boulanger; Role of extracellular vesicles in atherosclerosis: An update. Journal of Leukocyte Biology 2021, 111, 51-62, 10.1002/jlb.3mir0221-099r.
  11. Yuri V. Bobryshev; Murray C. Killingsworth; Alexander Orekhov; Increased Shedding of Microvesicles from Intimal Smooth Muscle Cells in Athero-Prone Areas of the Human Aorta: Implications for Understanding of the Predisease Stage. Pathobiology 2012, 80, 24-31, 10.1159/000339430.
  12. Aurélie S. Leroyer; Hirotaka Isobe; Guy Lesèche; Yves Castier; Michel Wassef; Ziad Mallat; Bernd R. Binder; Alain Tedgui; Chantal M. Boulanger; Cellular Origins and Thrombogenic Activity of Microparticles Isolated From Human Atherosclerotic Plaques. Journal of the American College of Cardiology 2007, 49, 772-777, 10.1016/j.jacc.2006.10.053.
  13. Manuel Mayr; David Grainger; Ursula Mayr; Aurelie S. Leroyer; Guy Leseche; Anissa Sidibe; Olivier Herbin; Xiaoke Yin; Aldrin Gomes; Bassetti Madhu; et al.John R. GriffithsQingbo XuAlain TedguiChantal M. Boulanger Proteomics, Metabolomics, and Immunomics on Microparticles Derived From Human Atherosclerotic Plaques. Circulation: Cardiovascular Genetics 2009, 2, 379-388, 10.1161/circgenetics.108.842849.
  14. Matthias Canault; Aurélie S. Leroyer; Franck Peiretti; Guy Lesèche; Alain Tedgui; Bernadette Bonardo; Marie-Christine Alessi; Chantal M. Boulanger; Gilles Nalbone; Microparticles of Human Atherosclerotic Plaques Enhance the Shedding of the Tumor Necrosis Factor-α Converting Enzyme/ADAM17 Substrates, Tumor Necrosis Factor and Tumor Necrosis Factor Receptor-1. The American Journal of Pathology 2007, 171, 1713-1723, 10.2353/ajpath.2007.070021.
  15. Nicolas Amabile; Susan Cheng; Jean Marie Renard; Martin G. Larson; Anahita Ghorbani; Elizabeth McCabe; Gabriel Griffin; Coralie Guerin; Jennifer Ho; Stanley Y. Shaw; et al.Kenneth S. CohenRamachandran S. VasanAlain TedguiChantal M. BoulangerThomas J. Wang Association of circulating endothelial microparticles with cardiometabolic risk factors in the Framingham Heart Study. European Heart Journal 2014, 35, 2972-2979, 10.1093/eurheartj/ehu153.
  16. Michaela Diamant; Rienk Nieuwland; Renée F. Pablo; Augueste Sturk; Jan W. A. Smit; Jasper K. Radder; Elevated Numbers of Tissue-Factor Exposing Microparticles Correlate With Components of the Metabolic Syndrome in Uncomplicated Type 2 Diabetes Mellitus. Circulation 2002, 106, 2442-2447, 10.1161/01.cir.0000036596.59665.c6.
  17. Alexandre C. Ferreira; Arley A. Peter; Armando J. Mendez; Joaquín J. Jimenez; Lucia M. Mauro; Julio A. Chirinos; Reyan Ghany; Salim Virani; Santiago Garcia; Lawrence L. Horstman; et al.Joshua PurowWenche JyYeon S. AhnEduardo de Marchena Postprandial Hypertriglyceridemia Increases Circulating Levels of Endothelial Cell Microparticles. Circulation 2004, 110, 3599-3603, 10.1161/01.cir.0000148820.55611.6b.
  18. Christian Heiss; Nicolas Amabile; Andrew C. Lee; Wendy May Real; Suzaynn F. Schick; David Lao; Maelene L. Wong; Sarah Jahn; Franca S. Angeli; Petros Minasi; et al.Matthew L. SpringerS. Katharine HammondStanton A. GlantzWilliam GrossmanJohn R. BalmesYerem Yeghiazarians Brief Secondhand Smoke Exposure Depresses Endothelial Progenitor Cells Activity and Endothelial Function: Sustained Vascular Injury and Blunted Nitric Oxide Production. Journal of the American College of Cardiology 2008, 51, 1760-1771, 10.1016/j.jacc.2008.01.040.
  19. Hidenobu Koga; Seigo Sugiyama; Kiyotaka Kugiyama; Keisuke Watanabe; Hironobu Fukushima; Tomoko Tanaka; Tomohiro Sakamoto; Michihiro Yoshimura; Hideaki Jinnouchi; Hisao Ogawa; et al. Elevated Levels of VE-Cadherin-Positive Endothelial Microparticles in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease. Journal of the American College of Cardiology 2005, 45, 1622-1630, 10.1016/j.jacc.2005.02.047.
  20. Saravanakumar Murugesan; Hanna Hussey; Lakshmi Saravanakumar; Rachel G. Sinkey; Adam B. Sturdivant; Mark F. Powell; Dan E. Berkowitz; Extracellular Vesicles From Women With Severe Preeclampsia Impair Vascular Endothelial Function. Anesthesia & Analgesia 2021, 134, 713-723, 10.1213/ane.0000000000005812.
  21. Shosaku Nomura; Akira Shouzu; Seitarou Omoto; Mitsushige Nishikawa; Shirou Fukuhara; Toshiji Iwasaka; Losartan and Simvastatin Inhibit Platelet Activation in Hypertensive Patients. Journal of Thrombosis and Thrombolysis 2004, 18, 177-185, 10.1007/s11239-005-0343-8.
  22. Mohamed E.F. Ousmaal; Abderahim Gaceb; M'Hammed A. Khene; Lynda Ainouz; Jean Giaimis; Ramaroson Andriantsitohaina; M. Carmen Martínez; Ahsene Baz; Circulating microparticles released during dyslipidemia may exert deleterious effects on blood vessels and endothelial function. Journal of Diabetes and its Complications 2020, 34, 107683, 10.1016/j.jdiacomp.2020.107683.
  23. Richard A. Preston; Wenche Jy; Joaquin J. Jimenez; Lucia M. Mauro; Lawrence L. Horstman; Madelyn Valle; Gerard Aime; Yeon S. Ahn; Effects of Severe Hypertension on Endothelial and Platelet Microparticles. Hypertension 2003, 41, 211-217, 10.1161/01.hyp.0000049760.15764.2d.
  24. Florence Sabatier; Patrice Darmon; Benedicte Hugel; Valery Combes; Marielle Sanmarco; Jean-Gabriel Velut; Dominique Arnoux; Phillipe Charpiot; Jean-Marie Freyssinet; Charles Oliver; et al.Jose SampolFrancoise Dignat-George Type 1 And Type 2 Diabetic Patients Display Different Patterns of Cellular Microparticles. Diabetes 2002, 51, 2840-2845, 10.2337/diabetes.51.9.2840.
  25. Kelly Anne Stockelman; Jamie Graham Hijmans; Tyler D. Bammert; Jared Jjg Greiner; Brian L. Stauffer; Christopher A. DeSouza; Circulating endothelial cell derived microvesicles are elevated with hypertension and associated with endothelial dysfunction. Canadian Journal of Physiology and Pharmacology 2020, 98, 557-561, 10.1139/cjpp-2020-0044.
  26. Giulia Cesaroni; Francesco Forastiere; Massimo Stafoggia; Zorana Jovanovic Andersen; Chiara Badaloni; Rob Beelen; Barbara Caracciolo; Ulf De Faire; Raimund Erbel; Kirsten T Eriksen; et al.Laura FratiglioniClaudia GalassiRegina HampelMargit HeierFrauke HennigAgneta HildingBarbara HoffmannDanny HouthuijsKarl-Heinz JöckelMichal KorekTimo LankiKarin LeanderPatrik MagnussonEnrica MiglioreCaes-Göran OstensonKim OvervadNancy L PedersenJuha Pekkanen JJohanna PenellGöran PershagenAndrei PykoOle Raaschou-NielsenAndrea RanziFulvio RicceriCarlotta SacerdoteVeikko SalomaaWim SwartA. W. TurunenPaolo VineisGudrun WeinmayrKathrin WolfKees De HooghGerard HoekBert BrunekreefAnnette Peters Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ 2013, 348, f7412-f7412, 10.1136/bmj.f7412.
  27. Yongheng Gao; Qian Zhang; Jinbo Sun; Yuan Liang; Minlong Zhang; Mingxuan Zhao; Kailiang Zhang; Chuan Dong; Qiong Ma; Wei Liu; et al.Wangping LiYanwei ChenLuyao HanFaguang Jin Extracellular vesicles derived from PM2.5‐exposed alveolar epithelial cells mediate endothelial adhesion and atherosclerosis in ApoE −/− mice. The FASEB Journal 2022, 36, e22161, 10.1096/fj.202100927rr.
  28. Mona G. Alharbi; Seok Hee Lee; Aaser M. Abdelazim; Islam M. Saadeldin; Mosleh M. Abomughaid; Role of Extracellular Vesicles in Compromising Cellular Resilience to Environmental Stressors. BioMed Research International 2021, 2021, 1-15, 10.1155/2021/9912281.
  29. Federica Rota; Luca Ferrari; Mirjam Hoxha; Chiara Favero; Rita Antonioli; Laura Pergoli; Maria Francesca Greco; Jacopo Mariani; Lorenza Lazzari; Valentina Bollati; et al. Blood-derived extracellular vesicles isolated from healthy donors exposed to air pollution modulate in vitro endothelial cells behavior. Scientific Reports 2020, 10, 1-11, 10.1038/s41598-020-77097-9.
  30. Abdelali Agouni; Anne Hélène Lagrue-Lak-Hal; Pierre Henri Ducluzeau; Hadj Ahmed Mostefai; Catherine Draunet-Busson; Georges Leftheriotis; Christophe Heymes; Maria Carmen Martinez; Ramaroson Andriantsitohaina; Endothelial Dysfunction Caused by Circulating Microparticles from Patients with Metabolic Syndrome. The American Journal of Pathology 2008, 173, 1210-1219, 10.2353/ajpath.2008.080228.
  31. Chantal M. Boulanger; Alexandra Scoazec; Talin Ebrahimian; Patrick Henry; Eric Mathieu; Alain Tedgui; Ziad Mallat; Circulating Microparticles From Patients With Myocardial Infarction Cause Endothelial Dysfunction. Circulation 2001, 104, 2649-2652, 10.1161/hc4701.100516.
  32. Sergey V. Brodsky; Fan Zhang; Alberto Nasjletti; Michael S. Goligorsky; Endothelium-derived microparticles impair endothelial function in vitro. American Journal of Physiology-Heart and Circulatory Physiology 2004, 286, H1910-H1915, 10.1152/ajpheart.01172.2003.
  33. Felix Jansen; Xiaoyan Yang; Bernardo S. Franklin; Marion Hoelscher; Theresa Schmitz; Jörg Bedorf; Georg Nickenig; Nikos Werner; High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovascular Research 2013, 98, 94-106, 10.1093/cvr/cvt013.
  34. Sophie Martin; Angela Tesse; Bénédicte Hugel; M. Carmen Martínez; Olivier Morel; Jean-Marie Freyssinet; Ramaroson Andriantsitohaina; Shed Membrane Particles From T Lymphocytes Impair Endothelial Function and Regulate Endothelial Protein Expression. Circulation 2004, 109, 1653-1659, 10.1161/01.cir.0000124065.31211.6e.
  35. Nicolas Amabile; Alain P. Guérin; Aurelie Leroyer; Ziad Mallat; Clément Nguyen; Jacques Boddaert; Gérard M. London; Alain Tedgui; Chantal M. Boulanger; Circulating Endothelial Microparticles Are Associated with Vascular Dysfunction in Patients with End-Stage Renal Failure. Journal of the American Society of Nephrology 2005, 16, 3381-3388, 10.1681/asn.2005050535.
  36. Aisha Osman; Heba El-Gamal; Mazhar Pasha; Asad Zeidan; Hesham M. Korashy; Shahenda S. Abdelsalam; Maram Hasan; Tarek Benameur; Abdelali Agouni; Endoplasmic Reticulum (ER) Stress-Generated Extracellular Vesicles (Microparticles) Self-Perpetuate ER Stress and Mediate Endothelial Cell Dysfunction Independently of Cell Survival. Frontiers in Cardiovascular Medicine 2020, 7, 584791, 10.3389/fcvm.2020.584791.
  37. Ali El Habhab; Raed AlTamimy; Malak Abbas; Mohamad Kassem; Lamia Amoura; Abdul Wahid Qureshi; Hanine El Itawi; Guillaume Kreutter; Sonia Khemais‐Benkhiat; Fatiha Zobairi; et al.Valérie B. Schini‐KerthLaurence KesslerFlorence Toti Significance of neutrophil microparticles in ischaemia‐reperfusion: Pro‐inflammatory effectors of endothelial senescence and vascular dysfunction. Journal of Cellular and Molecular Medicine 2020, 24, 7266-7281, 10.1111/jcmm.15289.
  38. C. (Chenell) Donadee; N.J.H. (Nicolaas) Raat; Tamir Kanias; Jesus Tejero; Janet Lee; E.E. (Eric) Kelley; X. (Xuejun) Zhao; C. (Chen) Liu; H. (Hannah) Reynolds; Ivan Azarov; et al.S. (Sheila) FrizzellE.M. (Michael) MeyerA.D. (Albert) DonnenbergL. (Lirong) QuD. (Darrel) TriulziD.B. (Daniel) Kim-ShapiroM.T. (Mark) Gladwin Nitric Oxide Scavenging by Red Blood Cell Microparticles and Cell-Free Hemoglobin as a Mechanism for the Red Cell Storage Lesion. Circulation 2011, 124, 465-476, 10.1161/circulationaha.110.008698.
  39. Lu Peng; Yu Li; Xinwei Li; Yunhui Du; Linyi Li; Chaowei Hu; Jing Zhang; Yanwen Qin; Yongxiang Wei; Huina Zhang; et al. Extracellular Vesicles Derived from Intermittent Hypoxia–Treated Red Blood Cells Impair Endothelial Function Through Regulating eNOS Phosphorylation and ET-1 Expression. Cardiovascular Drugs and Therapy 2020, 35, 901-913, 10.1007/s10557-020-07117-3.
  40. L. Madden Brewster; Anthony R. Bain; Vinicius Pacheco Garcia; Hannah K. Fandl; Rachel Stone; Noah M. DeSouza; Jared J. Greiner; Michael M. Tymko; Gustavo A. Vizcardo-Galindo; Romulo J. Figueroa-Mujica; et al.Francisco C. VillafuertePhilip N. AinslieChristopher A. DeSouza Global REACH 2018: dysfunctional extracellular microvesicles in Andean highlander males with excessive erythrocytosis. American Journal of Physiology-Heart and Circulatory Physiology 2021, 320, H1851-H1861, 10.1152/ajpheart.00016.2021.
  41. Kumiko Taguchi; Nozomu Kaneko; Kanami Okudaira; Takayuki Matsumoto; Tsuneo Kobayashi; Endothelial dysfunction caused by circulating microparticles from diabetic mice is reduced by PD98059 through ERK and ICAM-1. European Journal of Pharmacology 2021, 913, 174630, 10.1016/j.ejphar.2021.174630.
  42. Malak Abbas; Laurence Jesel; Cyril Auger; Lamia Amoura; Nathan Messas; Guillaume Manin; Cordula Rumig; Antonio J. León-González; Thais P. Ribeiro; Grazielle C. Silva; et al.Raghida Abou-MerhiEva HamadeMarkus HeckerYannick GeorgNabil ChakfePatrick OhlmannValérie B. Schini-KerthFlorence TotiOlivier Morel Endothelial Microparticles From Acute Coronary Syndrome Patients Induce Premature Coronary Artery Endothelial Cell Aging and Thrombogenicity. Circulation 2017, 135, 280-296, 10.1161/circulationaha.116.017513.
  43. Victor Chatterjee; Xiaoyuan Yang; Yonggang Ma; Byeong Cha; Jamie E Meegan; Mack Wu; Sarah Y Yuan; Endothelial microvesicles carrying Src-rich cargo impair adherens junction integrity and cytoskeleton homeostasis. Cardiovascular Research 2019, 116, 1525-1538, 10.1093/cvr/cvz238.
  44. John C. Densmore; Paul R. Signorino; Jingsong Ou; Ossama A. Hatoum; J. Jordi Rowe; Yang Shi; Sushma Kaul; Deron W. Jones; Robert E. Sabina; Kirkwood A. Pritchard; et al.Karen S. GuiceKeith T. Oldham ENDOTHELIUM-DERIVED MICROPARTICLES INDUCE ENDOTHELIAL DYSFUNCTION AND ACUTE LUNG INJURY. Shock 2006, 26, 464-471, 10.1097/01.shk.0000228791.10550.36.
  45. L C Huber; A Jüngel; J H W Distler; F Moritz; R E Gay; B A Michel; D S Pisetsky; S Gay; O Distler; The role of membrane lipids in the induction of macrophage apoptosis by microparticles.. Apoptosis 1970, 12, 363-374, 10.5167/uzh-15998.
  46. Augueste Sturk; Chi M. Hau; Rienk Nieuwland; Mohammed N. Abid Hussein; Anita N. Böing; Inhibition of microparticle release triggers endothelial cell apoptosis and detachment. Thrombosis and Haemostasis 2007, 98, 1096-1107, 10.1160/th05-04-0231.
  47. Anita N. Böing; Chi M. Hau; Auguste Sturk; Rienk Nieuwland; Platelet microparticles contain active caspase 3. Platelets 2008, 19, 96-103, 10.1080/09537100701777295.
  48. Anasuya Sarkar; Srabani Mitra; Sonya Mehta; Raquel Raices; Mark D. Wewers; Monocyte Derived Microvesicles Deliver a Cell Death Message via Encapsulated Caspase-1. PLOS ONE 2009, 4, e7140, 10.1371/journal.pone.0007140.
  49. M. N. Abid Hussein; R. Nieuwland; C. M. Hau; L. M. Evers; E. W. Meesters; A. Sturk; Cell-derived microparticles contain caspase 3 in vitro and in vivo. Journal of Thrombosis and Haemostasis 2005, 3, 888-896, 10.1111/j.1538-7836.2005.01240.x.
  50. Felix Jansen; Xiaoyan Yang; Friedrich Felix Hoyer; Kathrin Paul; Nadine Heiermann; Marc Ulrich Becher; Nebal Abu Hussein; Moritz Kebschull; Jörg Bedorf; Bernardo S. Franklin; et al.Eicke LatzGeorg NickenigNikos Werner Endothelial Microparticle Uptake in Target Cells Is Annexin I/Phosphatidylserine Receptor Dependent and Prevents Apoptosis. Arteriosclerosis, Thrombosis, and Vascular Biology 2012, 32, 1925-1935, 10.1161/atvbaha.112.253229.
  51. Lin Li; Haining Wang; Jing Zhang; Xiao Chen; Zhongwang Zhang; Qiang Li; Effect of endothelial progenitor cell-derived extracellular vesicles on endothelial cell ferroptosis and atherosclerotic vascular endothelial injury. Cell Death Discovery 2021, 7, 1-11, 10.1038/s41420-021-00610-0.
  52. Han Bao; Yuan‐Xiu Chen; Kai Huang; Fei Zhuang; Min Bao; Yue Han; Xiao‐Hu Chen; Qian Shi; Qing‐Ping Yao; Ying‐Xin Qi; et al. Platelet‐derived microparticles promote endothelial cell proliferation in hypertension via miR‐142–3p. The FASEB Journal 2018, 32, 3912-3923, 10.1096/fj.201701073r.
  53. Lingyun Zu; Chuan Ren; Bing Pan; Boda Zhou; Enchen Zhou; Chenguang Niu; Xu Wang; Mingming Zhao; Wei Gao; Lijun Guo; et al.Lemin Zheng Endothelial microparticles after antihypertensive and lipid-lowering therapy inhibit the adhesion of monocytes to endothelial cells. International Journal of Cardiology 2016, 202, 756-759, 10.1016/j.ijcard.2015.10.035.
  54. Fatima Guerrero; Andres Carmona; Teresa Obrero; Maria Jose Jiménez; Sagrario Soriano; Juan Antonio Moreno; Alejandro Martín-Malo; Pedro Aljama; Role of endothelial microvesicles released by p-cresol on endothelial dysfunction. Scientific Reports 2020, 10, 1-10, 10.1038/s41598-020-67574-6.
  55. David Sanz-Rubio; Abdelnaby Khalyfa; Zhuanhong Qiao; Jorge Ullate; José Marin; Leila Kheirandish-Gozal; David Gozal; Cell-Selective Altered Cargo Properties of Extracellular Vesicles Following In Vitro Exposures to Intermittent Hypoxia. International Journal of Molecular Sciences 2021, 22, 5604, 10.3390/ijms22115604.
  56. Yu Li; Huina Zhang; Yunhui Du; Lu Peng; Yanwen Qin; Huirong Liu; Xinliang Ma; Yongxiang Wei; Extracellular vesicle microRNA cargoes from intermittent hypoxia-exposed cardiomyocytes and their effect on endothelium. Biochemical and Biophysical Research Communications 2021, 548, 182-188, 10.1016/j.bbrc.2021.02.034.
  57. Wanhao Gao; Xingchen Guo; Ying Wang; Dongdong Jian; MuWei Li; Monocyte-derived extracellular vesicles upon treated by palmitate promote endothelial migration and monocytes attachment to endothelial cells. Biochemical and Biophysical Research Communications 2020, 523, 685-691, 10.1016/j.bbrc.2019.12.095.
  58. Anjana Ajikumar; Merete B. Long; Paul R. Heath; Stephen B. Wharton; Paul G. Ince; Victoria C. Ridger; Julie E. Simpson; Neutrophil-Derived Microvesicle Induced Dysfunction of Brain Microvascular Endothelial Cells In Vitro. International Journal of Molecular Sciences 2019, 20, 5227, 10.3390/ijms20205227.
  59. Johan L.M. Björkegren; Aldons J. Lusis; Atherosclerosis: Recent developments. Cell 2022, 185, 1630-1645, 10.1016/j.cell.2022.04.004.
  60. M Mesri; D C Altieri; Endothelial cell activation by leukocyte microparticles.. The Journal of Immunology 1998, 161, 4382–4387.
  61. Mehdi Mesri; Dario C. Altieri; Leukocyte Microparticles Stimulate Endothelial Cell Cytokine Release and Tissue Factor Induction in a JNK1 Signaling Pathway. Journal of Biological Chemistry 1999, 274, 23111-23118, 10.1074/jbc.274.33.23111.
  62. Paul D. Robbins; Akaitz Dorronsoro; Cori N. Booker; Regulation of chronic inflammatory and immune processes by extracellular vesicles. Journal of Clinical Investigation 2016, 126, 1173-1180, 10.1172/jci81131.
  63. Dylan Burger; Maddison Turner; Fengxia Xiao; Mercedes N. Munkonda; Shareef Akbari; Kevin D. Burns; High glucose increases the formation and pro-oxidative activity of endothelial microparticles. Diabetologia 2017, 60, 1791-1800, 10.1007/s00125-017-4331-2.
  64. O P Barry; D Praticò; R C Savani; G A Fitzgerald; Modulation of monocyte-endothelial cell interactions by platelet microparticles.. Journal of Clinical Investigation 1998, 102, 136-144, 10.1172/jci2592.
  65. S Nomura; High-shear-stress-induced activation of platelets and microparticles enhances expression of cell adhesion molecules in THP-1 and endothelial cells. Atherosclerosis 2001, 158, 277-287, 10.1016/s0021-9150(01)00433-6.
  66. Stephen B. Forlow; Rodger P. McEver; Matthias U. Nollert; Leukocyte-leukocyte interactions mediated by platelet microparticles under flow. Blood 2000, 95, 1317-1323, 10.1182/blood.v95.4.1317.004k30_1317_1323.
  67. Sebastian F. Mause; Philipp von Hundelshausen; Alma Zernecke; Rory R. Koenen; Christian Weber; Platelet Microparticles. Arteriosclerosis, Thrombosis, and Vascular Biology 2005, 25, 1512-1518, 10.1161/01.atv.0000170133.43608.37.
  68. E. M. Vasina; S. Cauwenberghs; M. A. H. Feijge; J. W. M. Heemskerk; Christian Weber; Robert Ryan Koenen; Microparticles from apoptotic platelets promote resident macrophage differentiation. Cell Death & Disease 2011, 2, e211-e211, 10.1038/cddis.2011.94.
  69. Myriam Chimen; Aigli Evryviadou; Clare L. Box; Matthew J. Harrison; Jon Hazeldine; Lea H. Dib; Sahithi J. Kuravi; Holly Payne; Joshua M.J. Price; Dean Kavanagh; et al.Asif IqbalSian LaxNeena KaliaAlexander BrillSteven ThomasAntonio BelliNicholas CrombieRachel A. AdamsShelley-Ann EvansHans DeckmynJanet M. LordPaul HarrisonSteve P. WatsonGerard B. NashG. Ed Rainger Appropriation of GPIbα from platelet-derived extracellular vesicles supports monocyte recruitment in systemic inflammation. Haematologica 2019, 105, 1248-1261, 10.3324/haematol.2018.215145.
  70. Sebastian F. Mause; Elisabeth Ritzel; Elisa A. Liehn; Mihail Hristov; Kiril Bidzhekov; Gerhard Müller-Newen; Oliver Soehnlein; Christian Weber; Platelet Microparticles Enhance the Vasoregenerative Potential of Angiogenic Early Outgrowth Cells After Vascular Injury. Circulation 2010, 122, 495-506, 10.1161/circulationaha.109.909473.
  71. Rebecca M. Wadey; Katherine Connolly; Donna Mathew; Gareth Walters; D. Aled Rees; Philip E. James; Inflammatory adipocyte-derived extracellular vesicles promote leukocyte attachment to vascular endothelial cells. Atherosclerosis 2019, 283, 19-27, 10.1016/j.atherosclerosis.2019.01.013.
  72. Thassila Nogueira Pitanga; Luciana De Aragão França; Viviane Costa Junqueira Rocha; Thayna Meirelles; Valéria Matos Borges; Marilda Souza Gonçalves; Lain Carlos Pontes-De-Carvalho; Alberto Augusto Noronha-Dutra; Washington Luis Conrado Dos-Santos; Neutrophil-derived microparticles induce myeloperoxidase-mediated damage of vascular endothelial cells. BMC Cell Biology 2014, 15, 21-21, 10.1186/1471-2121-15-21.
  73. Jan Rossaint; Katharina Kühne; Jennifer Skupski; Hugo Van Aken; Mark R. Looney; Andres Hidalgo; Alexander Zarbock; Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nature Communications 2016, 7, 13464, 10.1038/ncomms13464.
  74. Ingrid Gomez; Ben Ward; Celine Souilhol; Chiara Recarti; Mark Ariaans; Jessica Johnston; Amanda Burnett; Marwa Mahmoud; Le Anh Luong; Laura West; et al.Merete LongSion ParryRachel WoodsCarl HulstonBirke BenedikterChiara NiespoloRohit BazazSheila FrancisEndre Kiss-TothMarc Van ZandvoortAndreas SchoberPaul HellewellPaul C. EvansVictoria Ridger Neutrophil microvesicles drive atherosclerosis by delivering miR-155 to atheroprone endothelium. Nature Communications 2020, 11, 1-18, 10.1038/s41467-019-14043-y.
  75. Norina Tang; Bing Sun; Archana Gupta; Hans Rempel; Lynn Pulliam; Monocyte exosomes induce adhesion molecules and cytokines via activation of NF‐κB in endothelial cells. The FASEB Journal 2016, 30, 3097-3106, 10.1096/fj.201600368rr.
  76. Jian-Guo Wang; Julie C. Williams; Beckley K. Davis; Ken Jacobson; Claire M. Doerschuk; Jenny P.-Y. Ting; Nigel Mackman; Monocytic microparticles activate endothelial cells in an IL-1β–dependent manner. Blood 2011, 118, 2366-2374, 10.1182/blood-2011-01-330878.
  77. Evanna L. Mills; Beth Kelly; Angela Logan; Ana S.H. Costa; Mukund Varma; Clare E. Bryant; Panagiotis Tourlomousis; J. Henry M. Däbritz; Eyal Gottlieb; Isabel Latorre; et al.Sinéad C. CorrGavin McManusDylan RyanHoward T. JacobsMarten SziborRamnik J. XavierThomas BraunChristian FrezzaMichael P. MurphyLuke A. O’Neill Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell 2016, 167, 457-470.e13, 10.1016/j.cell.2016.08.064.
  78. A. Phillip West; Gerald S. Shadel; Mitochondrial DNA in innate immune responses and inflammatory pathology. Nature Reviews Immunology 2017, 17, 363-375, 10.1038/nri.2017.21.
  79. Dmitri V. Krysko; Patrizia Agostinis; Olga Krysko; Abhishek D. Garg; Claus Bachert; Bart N. Lambrecht; Peter Vandenabeele; Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends in Immunology 2011, 32, 157-164, 10.1016/j.it.2011.01.005.
  80. Qin Zhang; Mustafa Raoof; Yu Chen; Yuka Sumi; Tolga Sursal; Wolfgang Junger; Karim Brohi; Kiyoshi Itagaki; Carl J. Hauser; Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010, 464, 104-107, 10.1038/nature08780.
  81. Irma Garcia-Martinez; Nicola Santoro; Yonglin Chen; Rafaz Hoque; Xinshou Ouyang; Sonia Caprio; Mark J. Shlomchik; Robert Lee Coffman; Albert Candia; Wajahat Zafar Mehal; et al. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. Journal of Clinical Investigation 2016, 126, 859-864, 10.1172/jci83885.
  82. Vincent Soubannier; Peter Rippstein; Brett A. Kaufman; Eric A. Shoubridge; Heidi M. McBride; Reconstitution of Mitochondria Derived Vesicle Formation Demonstrates Selective Enrichment of Oxidized Cargo. PLOS ONE 2012, 7, e52830, 10.1371/journal.pone.0052830.
  83. Florian Puhm; Taras Afonyushkin; Ulrike Resch; Georg Obermayer; Manfred Rohde; Thomas Penz; Michael Schuster; Gabriel Wagner; André Rendeiro; Imene Melki; et al.Christoph KaunJohann WojtaChristoph BockBernd JilmaNigel MackmanEric BoilardChristoph J. Binder Mitochondria Are a Subset of Extracellular Vesicles Released by Activated Monocytes and Induce Type I IFN and TNF Responses in Endothelial Cells. Circulation Research 2019, 125, 43-52, 10.1161/circresaha.118.314601.
  84. Paul Holvoet; Maarten Vanhaverbeke; Katarzyna Bloch; Pieter Baatsen; Peter Sinnaeve; Stefan Janssens; Low MT‐CO1 in Monocytes and Microvesicles Is Associated With Outcome in Patients With Coronary Artery Disease. Journal of the American Heart Association 2016, 5, e004207, 10.1161/jaha.116.004207.
  85. Luc H. Boudreau; Anne-Claire Duchez; Nathalie Cloutier; Denis Soulet; Nicolas Martin; James Bollinger; Alexandre Paré; Matthieu Rousseau; Gajendra S. Naika; Tania Lévesque; et al.Cynthia LaflammeGeneviève MarcouxGérard LambeauRichard W. FarndaleMarc PouliotHind Hamzeh-CognasseFabrice CognasseOlivier GarraudPeter A. NigrovicHelga GuderleySteve LacroixLouis ThibaultJohn W. SempleMichael H. GelbEric Boilard Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood 2014, 124, 2173-2183, 10.1182/blood-2014-05-573543.
  86. S. He; C. Wu; J. Xiao; D. Li; Z. Sun; M. Li; Endothelial extracellular vesicles modulate the macrophage phenotype: Potential implications in atherosclerosis. Scandinavian Journal of Immunology 2018, 87, e12648, 10.1111/sji.12648.
  87. Yangyang Liu; Qian Li; Mohammed Rabiul Hosen; Andreas Zietzer; Anna Flender; Paula Levermann; Theresa Schmitz; Daniel Jw Frühwald; Philip Roger Goody; Georg Nickenig; et al.Nikos WernerFelix Jansen Atherosclerotic Conditions Promote the Packaging of Functional MicroRNA-92a-3p Into Endothelial Microvesicles. Circulation Research 2019, 124, 575-587, 10.1161/circresaha.118.314010.
  88. Man Yang; Sierra A. Walker; Jesús S. Aguilar Díaz de León; Irina Davidovich; Kelly Broad; Yeshayahu Talmon; Chad R. Borges; Joy Wolfram; Extracellular vesicle glucose transporter-1 and glycan features in monocyte-endothelial inflammatory interactions. Nanomedicine: Nanotechnology, Biology and Medicine 2022, 42, 102515, 10.1016/j.nano.2022.102515.
  89. Margarita Pérez-Casal; Colin Downey; Beatriz Cutillas-Moreno; Mirko Zuzel; Kenji Fukudome; Cheng Hock Toh; Microparticle-associated endothelial protein C receptor and the induction of cytoprotective and anti-inflammatory effects. Haematologica 2009, 94, 387-394, 10.3324/haematol.13547.
  90. Aureli Luquero; Gemma Vilahur; Javier Crespo; Lina Badimon; Maria Borrell‐Pages; Microvesicles carrying LRP5 induce macrophage polarization to an anti‐inflammatory phenotype. Journal of Cellular and Molecular Medicine 2021, 25, 7935-7947, 10.1111/jcmm.16723.
  91. Eduard Hergenreider; Susanne Heydt; Karine Tréguer; Thomas Boettger; Anton J. G. Horrevoets; Andreas M. Zeiher; Margot P. Scheffer; Achilleas S. Frangakis; Xiaoke Yin; Manuel Mayr; et al.Thomas BraunCarmen UrbichReinier BoonStefanie Dimmeler Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nature Cell Biology 2012, 14, 249-256, 10.1038/ncb2441.
  92. Olivier Gasser; Jürg A. Schifferli; Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 2004, 104, 2543-2548, 10.1182/blood-2004-01-0361.
  93. Jesmond Dalli; Lucy V. Norling; Derek Renshaw; Dianne Cooper; Kit-Yi Leung; Mauro Perretti; Annexin 1 mediates the rapid anti-inflammatory effects of neutrophil-derived microparticles. Blood 2008, 112, 2512-2519, 10.1182/blood-2008-02-140533.
  94. Felix Jansen; Xiaoyan Yang; Katharina Baumann; David Przybilla; Theresa Schmitz; Anna Flender; Kathrin Paul; Adil Alhusseiny; Georg Nickenig; Nikos Werner; et al. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism. Journal of Cellular and Molecular Medicine 2015, 19, 2202-2214, 10.1111/jcmm.12607.
  95. Makon-Sébastien Njock; Henry Cheng; Lan Thi Hoang Dang; Maliheh Nazari-Jahantigh; Andrew C. Lau; Emilie Boudreau; Mark Roufaiel; Myron Cybulsky; Andreas Schober; Jason E. Fish; et al. Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood 2015, 125, 3202-3212, 10.1182/blood-2014-11-611046.
  96. Barbara Köppler; Clemens Cohen; Detlef Schlöndorff; Matthias Mack; Differential mechanisms of microparticle transfer toB cells and monocytes: anti-inflammatory propertiesof microparticles. European Journal of Immunology 2006, 36, 648-660, 10.1002/eji.200535435.
  97. Baharak Hosseinkhani; Sören Kuypers; Nynke M. S. Van Den Akker; Daniel G. M. Molin; Luc Michiels; Extracellular Vesicles Work as a Functional Inflammatory Mediator Between Vascular Endothelial Cells and Immune Cells. Frontiers in Immunology 2018, 9, 1789, 10.3389/fimmu.2018.01789.
  98. Baharak Hosseinkhani; Nynke M.S. Van Den Akker; Daniel G.M. Molin; Luc Michiels; (Sub)populations of extracellular vesicles released by TNF‐α –triggered human endothelial cells promote vascular inflammation and monocyte migration. Journal of Extracellular Vesicles 2020, 9, 1801153, 10.1080/20013078.2020.1801153.
  99. Hamidreza Edrissi; Sarah C. Schock; Antoine M. Hakim; Charlie S. Thompson; Microparticles generated during chronic cerebral ischemia increase the permeability of microvascular endothelial barriers in vitro. Brain Research 2015, 1634, 83-93, 10.1016/j.brainres.2015.12.032.
  100. Beatriz Marcos-Ramiro; Pedro Oliva Nacarino; Esther Serrano-Pertierra; Miguel Ángel Blanco-Gelaz; Babette B Weksler; Ignacio A Romero; Pierre O Couraud; Alberto Tuñón; Carlos López-Larrea; Jaime Millán; et al.Eva Cernuda-Morollón Microparticles in multiple sclerosis and clinically isolated syndrome: effect on endothelial barrier function. BMC Neuroscience 2014, 15, 1-14, 10.1186/1471-2202-15-110.
  101. Gabrielle Lapping-Carr; Joanna Gemel; Yifan Mao; Gianna Sparks; Margaret Harrington; Radhika Peddinti; Eric C. Beyer; Insights image for “Circulating extracellular vesicles from patients with acute chest syndrome disrupt adherens junctions between endothelial cells”. Pediatric Research 2021, 89, 1036-1036, 10.1038/s41390-020-01288-3.
  102. Joakim Huber; Anja Vales; Goran Mitulović; Michael Blumer; Rainer Schmid; Joseph L. Witztum; Bernd R. Binder; Norbert Leitinger; Oxidized Membrane Vesicles and Blebs From Apoptotic Cells Contain Biologically Active Oxidized Phospholipids That Induce Monocyte-Endothelial Interactions. Arteriosclerosis, Thrombosis, and Vascular Biology 2002, 22, 101-107, 10.1161/hq0102.101525.
  103. Katrin Fink; Monica Moebes; Caroline Vetter; Natascha Bourgeois; Bonaventura Schmid; Christoph Bode; Thomas Helbing; Hans-Jörg Busch; Selenium prevents microparticle-induced endothelial inflammation in patients after cardiopulmonary resuscitation. Critical Care 2015, 19, 58-58, 10.1186/s13054-015-0774-3.
  104. Yongqi Wang; Biao Han; Yingbin Wang; Chunai Wang; Hong Zhang; Jianjun Xue; Xiaoqing Wang; Tingting Niu; Zhen Niu; Yuhe Chen; et al. Mesenchymal stem cell–secreted extracellular vesicles carrying TGF‐β1 up‐regulate miR‐132 and promote mouse M2 macrophage polarization. Journal of Cellular and Molecular Medicine 2020, 24, 12750-12764, 10.1111/jcmm.15860.
  105. Pierre-Emmanuel Rautou; Aurélie S. Leroyer; Bhama Ramkhelawon; Cécile Devue; Dominique Duflaut; Anne-Clémence Vion; Gilles Nalbone; Yves Castier; Guy Leseche; Stéphanie Lehoux; et al.Alain TedguiChantal M. Boulanger Microparticles From Human Atherosclerotic Plaques Promote Endothelial ICAM-1–Dependent Monocyte Adhesion and Transendothelial Migration. Circulation Research 2011, 108, 335-343, 10.1161/circresaha.110.237420.
  106. María Belen Sánchez-Rodríguez; Érica Téllez; Mireia Casulleras; Francesc E. Borràs; Vicente Arroyo; Joan Clària; Maria-Rosa Sarrias; Reduced Plasma Extracellular Vesicle CD5L Content in Patients With Acute-On-Chronic Liver Failure: Interplay With Specialized Pro-Resolving Lipid Mediators. Frontiers in Immunology 2022, 13, 842996, 10.3389/fimmu.2022.842996.
  107. Stephen Fitzsimons; Silvia Oggero; Robyn Bruen; Cathal McCarthy; Moritz J. Strowitzki; Niall G. Mahon; Nicola Ryan; Eoin P. Brennan; Mary Barry; Mauro Perretti; et al.Orina Belton microRNA-155 Is Decreased During Atherosclerosis Regression and Is Increased in Urinary Extracellular Vesicles During Atherosclerosis Progression. Frontiers in Immunology 2020, 11, 576516, 10.3389/fimmu.2020.576516.
  108. My-Anh Nguyen; Denuja Karunakaran; Michèle Geoffrion; Henry S. Cheng; Kristofferson Tandoc; Ljubica Perisic Matic; Ulf Hedin; Lars Maegdefessel; Jason E. Fish; Katey J. Rayner; et al. Extracellular Vesicles Secreted by Atherogenic Macrophages Transfer MicroRNA to Inhibit Cell Migration. Arteriosclerosis, Thrombosis, and Vascular Biology 2018, 38, 49-63, 10.1161/atvbaha.117.309795.
  109. Ming-Lin Liu; Rosario Scalia; Jawahar L. Mehta; Kevin Jon Williams; Cholesterol-Induced Membrane Microvesicles As Novel Carriers of Damage–Associated Molecular Patterns. Arteriosclerosis, Thrombosis, and Vascular Biology 2012, 32, 2113-2121, 10.1161/atvbaha.112.255471.
  110. Friedrich Felix Hoyer; Meike Kristin Giesen; Carolina Nunes França; Dieter Lütjohann; Georg Nickenig; Nikos Werner; Monocytic microparticles promote atherogenesis by modulating inflammatory cells in mice. Journal of Cellular and Molecular Medicine 2012, 16, 2777-2788, 10.1111/j.1582-4934.2012.01595.x.
  111. Noura Ismail; Yijie Wang; Duaa Dakhlallah; Leni Moldovan; Kitty Agarwal; Kara Batte; Prexy Shah; Jon Wisler; Tim D. Eubank; Susheela Tridandapani; et al.Michael E. PaulaitisMelissa G. PiperClay B. Marsh Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood 2013, 121, 984-995, 10.1182/blood-2011-08-374793.
  112. Ya-Ju Chang; Yi-Shuan Li; Chia-Ching Wu; Kuei-Chun Wang; Tzu-Chieh Huang; Zhen Chen; Shu Chien; Extracellular MicroRNA-92a Mediates Endothelial Cell–Macrophage Communication. Arteriosclerosis, Thrombosis, and Vascular Biology 2019, 39, 2492-2504, 10.1161/atvbaha.119.312707.
  113. Can Feng; Qi Chen; Min Fan; Jun Guo; Yu Liu; Tao Ji; Jiaqi Zhu; Xianxian Zhao; Platelet-derived microparticles promote phagocytosis of oxidized low-density lipoprotein by macrophages, potentially enhancing foam cell formation. Annals of Translational Medicine 2019, 7, 477-477, 10.21037/atm.2019.08.06.
  114. J. H. W. Distler; L. C. Huber; A. J. Hueber; C. F. Reich; S. Gay; O. Distler; D. S. Pisetsky; The release of microparticles by apoptotic cells and their effects on macrophages. Apoptosis 2005, 10, 731-741, 10.1007/s10495-005-2941-5.
  115. Cinzia Pizzirani; Davide Ferrari; Paola Chiozzi; Elena Adinolfi; Dorianna Sandonà; Erika Savaglio; Francesco Di Virgilio; Stimulation of P2 receptors causes release of IL-1β–loaded microvesicles from human dendritic cells. Blood 2006, 109, 3856-3864, 10.1182/blood-2005-06-031377.
  116. Dimitrios Tsiantoulas; Thomas Perkmann; Taras Afonyushkin; Andreas Mangold; Thomas Prohaska; Nikolina Papac-Milicevic; Vincent Millischer; Caroline Bartel; Sohvi Hörkkö; Chantal M. Boulanger; et al.Sotirios TsimikasMichael B. FischerJoseph L. WitztumIrene M. LangChristoph J. Binder Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. Journal of Lipid Research 2015, 56, 440-448, 10.1194/jlr.p054569.
  117. Georg Obermayer; Taras Afonyushkin; Laura Goederle; Florian Puhm; Waltraud C. Schrottmaier; Soreen Taqi; Michael Schwameis; Cihan Ay; Ingrid Pabinger; Bernd Jilma; et al.Alice AssingerNigel MackmanChristoph J. Binder Natural IgM antibodies inhibit microvesicle-driven coagulation and thrombosis. Blood 2021, 137, 1406-1415, 10.1182/blood.2020007155.
  118. Tanja Vajen; Birke J. Benedikter; Alexandra C. A. Heinzmann; Elena M. Vasina; Yvonne Henskens; Martin Parsons; Patricia B. Maguire; Frank R. Stassen; Johan W. M. Heemskerk; Leon J. Schurgers; et al.Rory R. Koenen Platelet extracellular vesicles induce a pro-inflammatory smooth muscle cell phenotype. Journal of Extracellular Vesicles 2017, 6, 1322454-1322454, 10.1080/20013078.2017.1322454.
  119. Chenguang Niu; Xu Wang; Mingming Zhao; Tanxi Cai; Peibin Liu; Jizhao Li; Belinda Willard; Lingyun Zu; Enchen Zhou; Yufeng Li; et al.Bing PanFuquan YangLemin Zheng Macrophage Foam Cell–Derived Extracellular Vesicles Promote Vascular Smooth Muscle Cell Migration and Adhesion. Journal of the American Heart Association 2016, 5, e004099, 10.1161/jaha.116.004099.
  120. Rajbabu Pakala; Seung-Woon Rha; Pramod Kumar Kuchulakanti; Edouard Cheneau; Richard Baffour; Ron Waksman; Peroxisome proliferator-activated receptor γ. Cardiovascular Radiation Medicine 2004, 5, 44-48, 10.1016/j.carrad.2004.04.001.
  121. Artur-Aron Weber; Karsten Schrör; The significance of platelet-derived growth factors for proliferation of vascular smooth muscle cells. Platelets 1999, 10, 77-96, 10.1080/09537109976130.
  122. Shan-Shan Li; Shuang Gao; Yi Chen; Han Bao; Zi-Tong Li; Qing-Ping Yao; Ji-Ting Liu; Yingxiao Wang; Ying-Xin Qi; Platelet-derived microvesicles induce calcium oscillations and promote VSMC migration via TRPV4. Theranostics 2021, 11, 2410-2423, 10.7150/thno.47182.
  123. Cuiwen He; Xuchen Hu; Thomas A. Weston; Rachel S. Jung; Jaspreet Sandhu; Song Huang; Patrick Heizer; Jason Kim; Rochelle Ellison; Jiake Xu; et al.Matthew KilburnSteven J. BensingerHoward RiezmanPeter TontonozLoren G. FongHaibo JiangStephen G. Young Macrophages release plasma membrane-derived particles rich in accessible cholesterol. Proceedings of the National Academy of Sciences 2018, 115, 201810724-E8508, 10.1073/pnas.1810724115.
  124. Qingshan Wang; Yuandi Dong; Haiyang Wang; microRNA‐19b‐3p‐containing extracellular vesicles derived from macrophages promote the development of atherosclerosis by targeting JAZF1. Journal of Cellular and Molecular Medicine 2021, 26, 48-59, 10.1111/jcmm.16938.
  125. Catherine Brousseau; Guillaume Morissette; Jean-Philippe Fortin; François Marceau; Eric Petitclerc; Tumor cells expressing tissue factor influence the migration of smooth muscle cells in a catalytic activity-dependent way. Canadian Journal of Physiology and Pharmacology 2009, 87, 694-701, 10.1139/y09-063.
  126. Keshav Raj Paudel; Min-Ho Oak; Dong-Wook Kim; Smooth Muscle Cell Derived Microparticles Acts as Autocrine Activation of Smooth Muscle Cell Proliferation by Mitogen Associated Protein Kinase Upregulation.. Journal of Nanoscience and Nanotechnology 2020, 20, 5746-5750, 10.1166/jnn.2020.17661.
  127. Liliana Perdomo; Xavier Vidal-Gómez; Raffaella Soleti; Luisa Vergori; Lucie Duluc; Maggy Chwastyniak; Malik Bisserier; Soazig Le Lay; Alexandre Villard; Gilles Simard; et al.Olivier MeilhacFrank Lezoualc’HIlya KhantalinReuben VeerapenSéverine DuboisJérôme BoursierSamir HenniFrédéric GagnadouxFlorence PinetRamaroson AndriantsitohainaM. Carmen Martínezon behalf of Metabol study Group Large Extracellular Vesicle-Associated Rap1 Accumulates in Atherosclerotic Plaques, Correlates With Vascular Risks and Is Involved in Atherosclerosis. Circulation Research 2020, 127, 747-760, 10.1161/circresaha.120.317086.
  128. Xiao-Fei Gao; Zhi-Mei Wang; Ai-Qun Chen; Feng Wang; Shuai Luo; Yue Gu; Xiang-Quan Kong; Guang-Feng Zuo; Xiao-Min Jiang; Guan-Wen Ding; et al.Yan ChenZhen GeJun-Jie ZhangShao-Liang Chen Plasma Small Extracellular Vesicle-Carried miRNA-501-5p Promotes Vascular Smooth Muscle Cell Phenotypic Modulation-Mediated In-Stent Restenosis. Oxidative Medicine and Cellular Longevity 2021, 2021, 1-20, 10.1155/2021/6644970.
  129. Zhen Shan; Shanshan Qin; Wen Li; Weibin Wu; Jian Yang; Maoping Chu; Xiaokun Li; Yuqing Huo; Gary L. Schaer; Shenming Wang; et al.Chunxiang Zhang An Endocrine Genetic Signal Between Blood Cells and Vascular Smooth Muscle Cells. Journal of the American College of Cardiology 2015, 65, 2526-2537, 10.1016/j.jacc.2015.03.570.
  130. Yuquan Wang; Zhengmin Xu; Xiaoli Wang; Jiankang Zheng; Lihan Peng; Yunfei Zhou; Yongyan Song; Zhan Lu; Extracellular-vesicle containing miRNA-503-5p released by macrophages contributes to atherosclerosis. Aging 2021, 13, 12239-12257, 10.18632/aging.103855.
  131. Rong Liu; Hong Shen; Jian Ma; Leiqing Sun; Meng Wei; Extracellular Vesicles Derived from Adipose Mesenchymal Stem Cells Regulate the Phenotype of Smooth Muscle Cells to Limit Intimal Hyperplasia. Cardiovascular Drugs and Therapy 2015, 30, 111-118, 10.1007/s10557-015-6630-5.
  132. Cristina Mas-Bargues; Consuelo Borrás; Matilde Alique; The Contribution of Extracellular Vesicles From Senescent Endothelial and Vascular Smooth Muscle Cells to Vascular Calcification. Frontiers in Cardiovascular Medicine 2022, 9, 854726, 10.3389/fcvm.2022.854726.
  133. Matilde Alique; María Piedad Ruíz-Torres; Guillermo Bodega; María Victoria Noci; Nuria Troyano; Lourdes Bohórquez; Carlos Luna; Rafael Luque; Andrés Carmona; Julia Carracedo; et al.Rafael Ramírez Microvesicles from the plasma of elderly subjects and from senescent endothelial cells promote vascular calcification. Aging 2017, 9, 778-789, 10.18632/aging.101191.
  134. Leon J. Schurgers; Asim C. Akbulut; Dawid M. Kaczor; Maurice Halder; Rory R. Koenen; Rafael Kramann; Initiation and Propagation of Vascular Calcification Is Regulated by a Concert of Platelet- and Smooth Muscle Cell-Derived Extracellular Vesicles. Frontiers in Cardiovascular Medicine 2018, 5, 36, 10.3389/fcvm.2018.00036.
  135. Joshua D. Hutcheson; Claudia Goettsch; Sergio Bertazzo; Natalia Maldonado; Jessica L. Ruiz; Wilson Goh; Katsumi Yabusaki; Tyler Faits; Carlijn Bouten; Gregory Franck; et al.Thibaut QuillardPeter LibbyMasanori AikawaSheldon WeinbaumElena Aikawa Genesis and growth of extracellular-vesicle-derived microcalcification in atherosclerotic plaques. Nature Materials 2016, 15, 335-343, 10.1038/nmat4519.
  136. Sophie E. P. New; Claudia Goettsch; Masanori Aikawa; Julio Marchini; Manabu Shibasaki; Katsumi Yabusaki; Peter Libby; Catherine Shanahan; Kevin Croce; Elena Aikawa; et al. Macrophage-Derived Matrix Vesicles. Circulation Research 2013, 113, 72-77, 10.1161/circresaha.113.301036.
  137. Sophie E. P. New; Elena Aikawa; Role of Extracellular Vesicles in De Novo Mineralization. Arteriosclerosis, Thrombosis, and Vascular Biology 2013, 33, 1753-1758, 10.1161/atvbaha.112.300128.
  138. JoAnne L. Reynolds; Alexis J. Joannides; Jeremy N. Skepper; Rosamund McNair; Leon J. Schurgers; Diane Proudfoot; Willi Jahnen-Dechent; Peter L. Weissberg; Catherine M. Shanahan; Human Vascular Smooth Muscle Cells Undergo Vesicle-Mediated Calcification in Response to Changes in Extracellular Calcium and Phosphate Concentrations: A Potential Mechanism for Accelerated Vascular Calcification in ESRD. Journal of the American Society of Nephrology 2004, 15, 2857-2867, 10.1097/01.asn.0000141960.01035.28.
  139. Paula Buendía; Addy Montes de Oca; Juan Antonio Madueño; Ana Merino; Alejandro Martín‐Malo; Pedro Aljama; Rafael Ramírez; Mariano Rodríguez; Julia Carracedo; Endothelial microparticles mediate inflammation‐induced vascular calcification. The FASEB Journal 2014, 29, 173-181, 10.1096/fj.14-249706.
  140. Matilde Alique; Guillermo Bodega; Elena Corchete; Estefanya García-Menéndez; Patricia de Sequera; Rafael Luque; Daily Rodríguez-Padrón; María Marqués; José Portolés; Julia Carracedo; et al.Rafael Ramírez Microvesicles from indoxyl sulfate-treated endothelial cells induce vascular calcification in vitro. Computational and Structural Biotechnology Journal 2020, 18, 953-966, 10.1016/j.csbj.2020.04.006.
  141. Claudia Goettsch; Joshua D. Hutcheson; Masanori Aikawa; Hiroshi Iwata; Tan Pham; Anders Nykjaer; Mads Kjolby; Maximillian Rogers; Thomas Michel; Manabu Shibasaki; et al.Sumihiko HagitaRafael Johannes Thomas KramannDaniel J. RaderPeter LibbySasha A. SinghElena Aikawa Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. Journal of Clinical Investigation 2016, 126, 1323-1336, 10.1172/jci80851.
  142. Christian Freise; Uwe Querfeld; Antje Ludwig; Bernd Hamm; Jörg Schnorr; Matthias Taupitz; Uraemic extracellular vesicles augment osteogenic transdifferentiation of vascular smooth muscle cells via enhanced AKT signalling and PiT‐1 expression. Journal of Cellular and Molecular Medicine 2021, 25, 5602-5614, 10.1111/jcmm.16572.
  143. Malgorzata Furmanik; Martijn Chatrou; Rick H Van Gorp; Asim Akbulut; Brecht Willems; Harald Hhw Schmidt; Guillaume Van Eys; Marie-Luce Bochaton-Piallat; Diane Proudfoot; Erik Al Biessen; et al.Ulf HedinLjubica PerisicBarend MeesCatherine M ShanahanChris ReutelingspergerLeon J Schurgers Reactive Oxygen-Forming Nox5 Links Vascular Smooth Muscle Cell Phenotypic Switching and Extracellular Vesicle-Mediated Vascular Calcification. Circulation Research 2020, 127, 911-927, 10.1161/circresaha.119.316159.
  144. Ziad Mallat; Bénédicte Hugel; Jeanny Ohan; Guy Lesèche; Jean-Marie Freyssinet; Alain Tedgui; Shed Membrane Microparticles With Procoagulant Potential in Human Atherosclerotic Plaques. Circulation 1999, 99, 348-353, 10.1161/01.cir.99.3.348.
  145. Patrick R Lawler; Deepak L Bhatt; Lucas C Godoy; Thomas F Lüscher; Robert O Bonow; Subodh Verma; Paul M Ridker; Targeting cardiovascular inflammation: next steps in clinical translation. European Heart Journal 2020, 42, 113–131, 10.1093/eurheartj/ehaa099.
  146. Konstantin Stark; Steffen Massberg; Interplay between inflammation and thrombosis in cardiovascular pathology. Nature Reviews Cardiology 2021, 18, 666-682, 10.1038/s41569-021-00552-1.
  147. Daniel G. Sedding; Erin C. Boyle; Jasper A. F. Demandt; Judith Sluimer; Jochen Dutzmann; Axel Haverich; Johann Bauersachs; Vasa Vasorum Angiogenesis: Key Player in the Initiation and Progression of Atherosclerosis and Potential Target for the Treatment of Cardiovascular Disease. Frontiers in Immunology 2018, 9, 706, 10.3389/fimmu.2018.00706.
  148. Jean-Baptiste Michel; Renu Virmani; Eloïsa Arbustini; Gerard Pasterkamp; Intraplaque haemorrhages as the trigger of plaque vulnerability. European Heart Journal 2011, 32, 1977-1985, 10.1093/eurheartj/ehr054.
  149. Raffaella Soleti; Tarek Benameur; Chiara Porro; Maria Antonietta Panaro; Ramaroson Andriantsitohaina; Maria Carmen Martínez; Microparticles harboring Sonic Hedgehog promote angiogenesis through the upregulation of adhesion proteins and proangiogenic factors. Carcinogenesis 2009, 30, 580-588, 10.1093/carcin/bgp030.
  150. Alexandre Mezentsev; Roeland Merks; Edmond O'riordan; Jun Chen; Natalia Mendelev; Michael S. Goligorsky; Sergey V. Brodsky; Endothelial microparticles affect angiogenesis in vitro: role of oxidative stress. American Journal of Physiology-Heart and Circulatory Physiology 2005, 289, H1106-H1114, 10.1152/ajpheart.00265.2005.
  151. Maria Chiara Deregibus; Vincenzo Cantaluppi; Raffaele Calogero; Marco Lo Iacono; Ciro Tetta; Luigi Biancone; Stefania Bruno; Benedetta Bussolati; Giovanni Camussi; Endothelial progenitor cell–derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 2007, 110, 2440-2448, 10.1182/blood-2007-03-078709.
  152. Seiji Yamamoto; Shumpei Niida; Erika Azuma; Tsutomu Yanagibashi; Masashi Muramatsu; Ting Ting Huang; Hiroshi Sagara; Sayuri Higaki; Masashi Ikutani; Yoshinori Nagai; et al.Kiyoshi TakatsuKenji MiyazakiTakeru HamashimaHidetoshi MoriNaoyuki MatsudaYoko IshiiMasakiyo Sasahara Inflammation-induced endothelial cell-derived extracellular vesicles modulate the cellular status of pericytes. Scientific Reports 2015, 5, 8505, 10.1038/srep08505.
  153. Naveed Akbar; Janet E. Digby; Thomas J. Cahill; Abhijeet N. Tavare; Alastair L. Corbin; Sushant Saluja; Sam Dawkins; Laurienne Edgar; Nadiia Rawlings; Klemen Ziberna; et al.Eileen McNeillErrin JohnsonAlaa A. AljabaliRebecca A. DragovicMala RohlingT. Grant BelgardIrina UdalovaDavid R. GreavesKeith M. ChannonPaul R. RileyDaniel AnthonyRobin P. Choudhury Endothelium-derived extracellular vesicles promote splenic monocyte mobilization in myocardial infarction. JCI Insight 2017, 2, e93344, 10.1172/jci.insight.93344.
  154. Gemma Arderiu; Esther Peña; Lina Badimon; Ischaemic tissue released microvesicles induce monocyte reprogramming and increase tissue repair by a tissue factor-dependent mechanism. Cardiovascular Research 2021, 18, cvab266, 10.1093/cvr/cvab266.
  155. Gemma Arderiu; Esther Peña; Anna Civit-Urgell; Lina Badimon; Endothelium-Released Microvesicles Transport miR-126 That Induces Proangiogenic Reprogramming in Monocytes. Frontiers in Immunology 2022, 13, 836662, 10.3389/fimmu.2022.836662.
  156. Gemma Arderiu; Esther Peña; Lina Badimon; Angiogenic Microvascular Endothelial Cells Release Microparticles Rich in Tissue Factor That Promotes Postischemic Collateral Vessel Formation. Arteriosclerosis, Thrombosis, and Vascular Biology 2015, 35, 348-357, 10.1161/atvbaha.114.303927.
  157. Aurélie S. Leroyer; Pierre-Emmanuel Rautou; Jean-Sébastien Silvestre; Yves Castier; Guy Lesèche; Cécile Devue; Micheline Duriez; Ralf P. Brandes; Esther Lutgens; Alain Tedgui; et al.Chantal M. Boulanger CD40 Ligand+ Microparticles From Human Atherosclerotic Plaques Stimulate Endothelial Proliferation and Angiogenesis: A Potential Mechanism for Intraplaque Neovascularization. Journal of the American College of Cardiology 2008, 52, 1302-1311, 10.1016/j.jacc.2008.07.032.
  158. Aurelie Leroyer; Téni G. Ebrahimian; Clément Cochain; Alice Recalde; Olivier Blanc-Brude; Barend Mees; Jose Vilar; Alain Tedgui; Bernard I. Levy; Giovanna Chimini; et al.Chantal M. BoulangerJean-Sebastien Silvestre Microparticles From Ischemic Muscle Promotes Postnatal Vasculogenesis. Circulation 2009, 119, 2808-2817, 10.1161/circulationaha.108.816710.
  159. Romaric Lacroix; Florence Sabatier; Agnès Mialhe; Agnès Basire; Ralph Pannell; Hélène Borghi; Stephane Robert; Edouard Lamy; Laurent Plawinski; Laurence Camoin-Jau; et al.Victor GurewichEduardo Angles-CanoFrançoise Dignat-George Activation of plasminogen into plasmin at the surface of endothelial microparticles: a mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro. Blood 2007, 110, 2432-2439, 10.1182/blood-2007-02-069997.
  160. Xavier Loyer; Ivana Zlatanova; Cecile Devue; Min Yin; Kiave-Yune Howangyin; Phatchanat Klaihmon; Coralie L. Guerin; Marouane Kheloufi; Jose Vilar; Konstantinos Zannis; et al.Bernd K. FleischmannDo Won HwangJongmin ParkHakho LeePhilippe MenaschéJean-Sébastien SilvestreChantal M. Boulanger Intra-Cardiac Release of Extracellular Vesicles Shapes Inflammation Following Myocardial Infarction. Circulation Research 2018, 123, 100-106, 10.1161/circresaha.117.311326.
  161. Teresa M Ribeiro-Rodrigues; Tiago Laundos; Rita Carvalho; Daniela Almeida; Ricardo Pereira; Vanessa Coelho-Santos; Ana Paula Silva; Rosa Fernandes; Monica Zuzarte; Francisco J. Enguita; et al.Marina CostaPerpetua Pinto-Do-ÓMarta PintoPedro GouveiaLino FerreiraJustin MasonPaulo PereiraBrenda KwakDiana NascimentoHenrique Girão Exosomes secreted by cardiomyocytes subjected to ischaemia promote cardiac angiogenesis. Cardiovascular Research 2017, 113, 1338-1350, 10.1093/cvr/cvx118.
  162. Y. V. Bobryshev; M. C. Killingsworth; R. S. A. Lord; A. J. Grabs; Matrix vesicles in the fibrous cap of atherosclerotic plaque: possible contribution to plaque rupture. Journal of Cellular and Molecular Medicine 2008, 12, 2073-2082, 10.1111/j.1582-4934.2008.00230.x.
  163. Thomas P. Lozito; Rocky S. Tuan; Endothelial cell microparticles act as centers of matrix metalloproteinsase-2 (MMP-2) activation and vascular matrix remodeling. Journal of Cellular Physiology 2011, 227, 534-549, 10.1002/jcp.22744.
  164. Sara Martínez de Lizarrondo; Carmen Roncal; Olivier Calvayrac; Cristina Rodríguez; Nerea Varo; Ana Purroy; Leonardo Lorente; José A. Rodríguez; Loïc Doeuvre; Sandra Hervás-Stubbs; et al.Eduardo Angles-CanoJosé A. PáramoJosé Martínez-GonzálezJosune Orbe Synergistic Effect of Thrombin and CD40 Ligand on Endothelial Matrix Metalloproteinase-10 Expression and Microparticle Generation In Vitro and In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology 2012, 32, 1477-1487, 10.1161/atvbaha.112.248773.
  165. Giulia Taraboletti; Sandra D'Ascenzo; Patrizia Borsotti; Raffaella Giavazzi; Antonio Pavan; Vincenza Dolo; Shedding of the Matrix Metalloproteinases MMP-2, MMP-9, and MT1-MMP as Membrane Vesicle-Associated Components by Endothelial Cells. The American Journal of Pathology 2002, 160, 673-680, 10.1016/s0002-9440(10)64887-0.
  166. Chun-Jun Li; Yu Liu; Yan Chen; Demin Yu; Kevin Jon Williams; Ming-Lin Liu; Novel Proteolytic Microvesicles Released from Human Macrophages after Exposure to Tobacco Smoke. The American Journal of Pathology 2013, 182, 1552-1562, 10.1016/j.ajpath.2013.01.035.
  167. Chunjun Li; Siw Frebelius; Jesper Swedenborg; Dick Wågsäter; Kevin Jon Williams; Per Eriksson; Maggie Folkesson; Joy Roy; Ming-Lin Liu; Proteolytically active ADAM10 and ADAM17 carried on membrane microvesicles in human abdominal aortic aneurysms. Thrombosis and Haemostasis 2015, 114, 1165-1174, 10.1160/th14-10-0899.
  168. Olivier Gasser; Christoph Hess; Sylvie Miot; Catherine Deon; Jean-Charles Sanchez; J.ürg A Schifferli; Characterisation and properties of ectosomes released by human polymorphonuclear neutrophils. Experimental Cell Research 2003, 285, 243-257, 10.1016/s0014-4827(03)00055-7.
  169. Shahrokh Falati; Peter Gross; Glenn Merrill-Skoloff; Barbara C. Furie; Bruce Furie; Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nature Medicine 2002, 8, 1175-1180, 10.1038/nm782.
  170. Silvia Oggero; Monica de Gaetano; Simone Marcone; Stephen Fitzsimons; Andreia L. Pinto; Dinara Ikramova; Mary Barry; David Burke; Trinidad Montero‐Melendez; Dianne Cooper; et al.Thomas BurgoyneOrina BeltonLucy V. NorlingEoin P. BrennanCatherine GodsonMauro Perretti Extracellular vesicles from monocyte/platelet aggregates modulate human atherosclerotic plaque reactivity. Journal of Extracellular Vesicles 2021, 10, 12084, 10.1002/jev2.12084.
  171. Julia K. Böhm; Nadine Schäfer; Marc Maegele; Birgit Stümpges; Ursula Bauerfeind; Michael Caspers; Plasmatic and cell-based enhancement by microparticles originated from platelets and endothelial cells under simulated in vitro conditions of a dilutional coagulopathy. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 2021, 29, 1-12, 10.1186/s13049-021-00847-9.
  172. Tal Tamari; Benjamin Brenner; Anat Aharon; Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells. Thrombosis and Haemostasis 2008, 100, 878-885, 10.1160/th07-11-0691.
  173. Romaric Lacroix; Laurent Plawinski; Stéphane Robert; Loïc Doeuvre; Florence Sabatier; Sara Martinez De Lizarrondo; Anna Mezzapesa; Francine Anfosso; Aurelie Leroyer; Pascale Poullin; et al.Noémie JourdeMakon-Sébastien NjockChantal M. BoulangerEduardo Anglés-CanoFrançoise Dignat-George Leukocyte- and endothelial-derived microparticles: a circulating source for fibrinolysis. Haematologica 2012, 97, 1864-1872, 10.3324/haematol.2012.066167.
  174. Birgit Steppich; Christoph Mattisek; Dean Sobczyk; Adnan Kastrati; Albert Schömig; Ilka Ott; Tissue factor pathway inhibitor on circulating microparticles in acute myocardial infarction. Thrombosis and Haemostasis 2005, 93, 35-39, 10.1160/th04-06-0393.
  175. E. Biro; K. N. Sturk-Maquelin; G. M. T. Vogel; D. G. Meuleman; M. J. Smit; C. E. Hack; A. Sturk; R. Nieuwland; Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. Journal of Thrombosis and Haemostasis 2003, 1, 2561-2568, 10.1046/j.1538-7836.2003.00456.x.
  176. P. E. J. VAN DER Meijden; M. VAN Schilfgaarde; R. VAN Oerle; T. Renné; H. Ten Cate; H. M. H. Spronk; Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. Journal of Thrombosis and Haemostasis 2012, 10, 1355-1362, 10.1111/j.1538-7836.2012.04758.x.
  177. Janet Chou; Nigel Mackman; Glenn Merrill-Skoloff; Brian Pedersen; Barbara C. Furie; Bruce Furie; Hematopoietic cell-derived microparticle tissue factor contributes to fibrin formation during thrombus propagation. Blood 2004, 104, 3190-3197, 10.1182/blood-2004-03-0935.
  178. Bénédicte Hugel; Gérard Socié; Thi Vu; Florence Toti; Eliane Gluckman; Jean-Marie Freyssinet; Marie-Lorraine Scrobohaci; Elevated Levels of Circulating Procoagulant Microparticles in Patients With Paroxysmal Nocturnal Hemoglobinuria and Aplastic Anemia. Blood 1999, 93, 3451-3456, 10.1182/blood.v93.10.3451.410k27_3451_3456.
  179. E. J. van Beers; M. C.L. Schaap; R. J. Berckmans; R. Nieuwland; A. Sturk; F. F. van Doormaal; J. C.M. Meijers; B. J. Biemond; on behalf of the CURAMA study group; Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica 2009, 94, 1513-1519, 10.3324/haematol.2009.008938.
  180. Rosa Suades; Teresa Padró; Gemma Vilahur; Lina Badimon; Circulating and platelet-derived microparticles in human blood enhance thrombosis on atherosclerotic plaques. Thrombosis and Haemostasis 2012, 108, 1208-1219, 10.1160/th12-07-0486.
  181. Carla Tripisciano; René Weiss; Tanja Eichhorn; Andreas Spittler; Thomas Heuser; Michael Bernhard Fischer; Viktoria Weber; Different Potential of Extracellular Vesicles to Support Thrombin Generation: Contributions of Phosphatidylserine, Tissue Factor, and Cellular Origin. Scientific Reports 2017, 7, 1-11, 10.1038/s41598-017-03262-2.
  182. R. Suades; T. Padró; G. Vilahur; V. Martin-Yuste; M. Sabaté; J. Sans-Roselló; A. Sionis; L. Badimon; Growing thrombi release increased levels of CD235a+ microparticles and decreased levels of activated platelet-derived microparticles. Validation in ST-elevation myocardial infarction patients. Journal of Thrombosis and Haemostasis 2015, 13, 1776-1786, 10.1111/jth.13065.
  183. Ingrid Müller; Antje Klocke; Meike Alex; Matthias Kotzsch; Thomas Luther; Eberhard Morgenstern; Susanne Zieseniss; Stefan Zahler; Klaus Preissner; Bernd Engelmann; et al. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. The FASEB Journal 2003, 17, 1-20, 10.1096/fj.02-0574fje.
  184. Julia E. Geddings; Yohei Hisada; Yacine Boulaftali; Todd M. Getz; Matthew F Whelihan; Rudy Fuentes; Rachel Dee; Brian C. Cooley; Nigel S. Key; Alisa S. Wolberg; et al.Wolfgang BergmeierNigel Mackman Tissue factor-positive tumor microvesicles activate platelets and enhance thrombosis in mice. Journal of Thrombosis and Haemostasis 2015, 14, 153-166, 10.1111/jth.13181.
  185. Jeffrey I. Zwicker; Cameron C. TrenorIII; Barbara C. Furie; Bruce Furie; Tissue Factor–Bearing Microparticles and Thrombus Formation. Arteriosclerosis, Thrombosis, and Vascular Biology 2011, 31, 728-733, 10.1161/atvbaha.109.200964.
  186. Thomas Scholz; Uta Temmler; Siegfried Krause; Stan Heptinstall; Wolfgang Lösche; Transfer of tissue factor from platelets to monocytes: role of platelet-derived microvesicles and CD62P.. Thrombosis and Haemostasis 2002, 88, 1033–1038, 10.1267/th02121033.
  187. Mary E. W. Collier; Camille Ettelaie; Benjamin T. Goult; Anthony Maraveyas; Alison H. Goodall; Investigation of the Filamin A–Dependent Mechanisms of Tissue Factor Incorporation into Microvesicles. Thrombosis and Haemostasis 2017, 117, 2034-2044, 10.1160/th17-01-0009.
  188. Stefan Stojkovic; Åsa Thulin; Lena Hell; Barbara Thaler; Sabine Rauscher; Johanna Baumgartner; Marion Gröger; Cihan Ay; Svitlana Demyanets; Christoph Neumayer; et al.Ihor HukAndreas SpittlerKurt HuberJohann WojtaAgneta SiegbahnMikael Åberg IL-33 stimulates the release of procoagulant microvesicles from human monocytes and differentially increases tissue factor in human monocyte subsets. Thrombosis and Haemostasis 2017, 117, 1379-1390, 10.1160/th16-10-0784.
  189. Florence Sabatier; Veronique Roux; Francine Anfosso; Laurence Camoin; José Sampol; Françoise Dignat-George; Interaction of endothelial microparticles with monocytic cells in vitro induces tissue factor–dependent procoagulant activity. Blood 2002, 99, 3962-3970, 10.1182/blood.v99.11.3962.
  190. Ian Del Conde; Corie N. Shrimpton; Perumal Thiagarajan; José A. López; Tissue-factor–bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 2005, 106, 1604-1611, 10.1182/blood-2004-03-1095.
  191. Irene Lopez-Vilchez; Maribel Diaz-Ricart; Berta Fuste; Ana M. Galan; James G. White; Gines Escolar; Tissue factor-enriched vesicles are taken up by platelets and induce platelet aggregation in the presence of factor VIIa. Thrombosis and Haemostasis 2007, 97, 202-211, 10.1160/th06-04-0216.
  192. Peter L. Gross; Barbara C. Furie; Glenn Merrill-Skoloff; Janet Chou; Bruce Furie; Leukocyte-versus microparticle-mediated tissue factor transfer during arteriolar thrombus development. Journal of Leukocyte Biology 2005, 78, 1318-1326, 10.1189/jlb.0405193.
  193. Elena I Sinauridze; Dmitry A Kireev; Nadezhda Y Popenko; Aleksei V Pichugin; Mikhail A Panteleev; Olga V Krymskaya; Fazoil I Ataullakhanov; Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets.. Thrombosis and Haemostasis 2007, 97, 425–434.
  194. R J Berckmans; R Nieuwland; A N Böing; F P Romijn; C E Hack; A Sturk; Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation.. Thrombosis and Haemostasis 2001, 85, 639–646.
  195. Liangliang Zhao; Yayan Bi; Junjie Kou; Jialan Shi; Daxun Piao; Phosphatidylserine exposing-platelets and microparticles promote procoagulant activity in colon cancer patients. Journal of Experimental & Clinical Cancer Research 2016, 35, 1-12, 10.1186/s13046-016-0328-9.
  196. Shahrokh Falati; Qingde Liu; Peter Gross; Glenn Merrill-Skoloff; Janet Chou; Erik Vandendries; Alessandro Celi; Kevin Croce; Barbara C. Furie; Bruce Furie; et al. Accumulation of Tissue Factor into Developing Thrombi In Vivo Is Dependent upon Microparticle P-Selectin Glycoprotein Ligand 1 and Platelet P-Selectin. Journal of Experimental Medicine 2003, 197, 1585-1598, 10.1084/jem.20021868.
  197. J. F. W. Keuren; E. J. P Magdeleyns; A. Bennaghmouch; E. M. Bevers; J. Curvers; T. Lindhout; Microparticles adhere to collagen type I, fibrinogen, von Willebrand factor and surface immobilised platelets at physiological shear rates. British Journal of Haematology 2007, 138, 527-533, 10.1111/j.1365-2141.2007.06650.x.
  198. Pia Siljander; O Carpen; R Lassila; Platelet-derived microparticles associate with fibrin during thrombosis. Blood 1996, 87, 4651-4663, 10.1182/blood.v87.11.4651.bloodjournal87114651.
  199. Michael Merten; Rajbabu Pakala; Perumal Thiagarajan; Claude R. Benedict; Platelet Microparticles Promote Platelet Interaction With Subendothelial Matrix in a Glycoprotein IIb/IIIa–Dependent Mechanism. Circulation 1999, 99, 2577-2582, 10.1161/01.cir.99.19.2577.
  200. Arun Raturi; Shane Miersch; John W. Hudson; Bulent Mutus; Platelet microparticle-associated protein disulfide isomerase promotes platelet aggregation and inactivates insulin. Biochimica et Biophysica Acta (BBA) - Biomembranes 2008, 1778, 2790-2796, 10.1016/j.bbamem.2008.07.003.
  201. P J Sims; Elena Maria Faioni; T Wiedmer; S J Shattil; Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity.. Journal of Biological Chemistry 1988, 263, 18205-18212, 10.1016/s0021-9258(19)81346-7.
  202. S Nomura; Y Komiyama; T Murakami; A Funatsu; T Kokawa; T Sugo; M Matsuda; K Yasunaga; Flow cytometric analysis of surface membrane proteins on activated platelets and platelet-derived microparticles from healthy and thrombasthenic individuals.. International Journal of Hematology 1993, 58, 203–212.
  203. O. P. Barry; D. Pratico; J. A. Lawson; G. A. Fitzgerald; Transcellular activation of platelets and endothelial cells by bioactive lipids in platelet microparticles.. Journal of Clinical Investigation 1997, 99, 2118-2127, 10.1172/jci119385.
  204. Mingyi Qu; Xiaojing Zou; Fang Fang; Shouye Wang; Lei Xu; Quan Zeng; Zeng Fan; Lin Chen; Wen Yue; Xiaoyan Xie; et al.Xuetao Pei Platelet-derived microparticles enhance megakaryocyte differentiation and platelet generation via miR-1915-3p. Nature Communications 2020, 11, 1-15, 10.1038/s41467-020-18802-0.
  205. Rosa Suades; Teresa Padró; Gemma Vilahur; Lina Badimon; Platelet-released extracellular vesicles: the effects of thrombin activation. Cellular and Molecular Life Sciences 2022, 79, 1-16, 10.1007/s00018-022-04222-4.
  206. Cristina Banfi; Maura Brioschi; Robin Wait; Shajna Begum; Elisabetta Gianazza; Angela Pirillo; Luciana Mussoni; Elena Tremoli; Proteome of endothelial cell-derived procoagulant microparticles. PROTEOMICS 2005, 5, 4443-4455, 10.1002/pmic.200402017.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , ,
View Times: 574
Revisions: 2 times (View History)
Update Date: 24 Jun 2022
1000/1000