You're using an outdated browser. Please upgrade to a modern browser for the best experience.
Submitted Successfully!
Thank you for your contribution! You can also upload a video entry or images related to this topic. For video creation, please contact our Academic Video Service.
Version Summary Created by Modification Content Size Created at Operation
1 Oana Mădălina Manole -- 1213 2022-05-30 08:24:00 |
2 format correct Nora Tang Meta information modification 1213 2022-05-30 09:49:57 |

Video Upload Options

We provide professional Academic Video Service to translate complex research into visually appealing presentations. Would you like to try it?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Manole, O.; , .; Gales, C.; Porumb- Andrese, E.; Obada, O. Replicative Cycle of HHV8. Encyclopedia. Available online: https://encyclopedia.pub/entry/23535 (accessed on 13 December 2025).
Manole O,  , Gales C, Porumb- Andrese E, Obada O. Replicative Cycle of HHV8. Encyclopedia. Available at: https://encyclopedia.pub/entry/23535. Accessed December 13, 2025.
Manole, Oana, , Cristina Gales, Elena Porumb- Andrese, Otilia Obada. "Replicative Cycle of HHV8" Encyclopedia, https://encyclopedia.pub/entry/23535 (accessed December 13, 2025).
Manole, O., , ., Gales, C., Porumb- Andrese, E., & Obada, O. (2022, May 30). Replicative Cycle of HHV8. In Encyclopedia. https://encyclopedia.pub/entry/23535
Manole, Oana, et al. "Replicative Cycle of HHV8." Encyclopedia. Web. 30 May, 2022.
Replicative Cycle of HHV8
Edit

Around 12% of all cancers worldwide are caused by oncogenic viruses. Among these, only Kaposi’s sarcoma-associated herpesvirus (KSHV) and the human papillomavirus are an absolute requirement of oncogenesis for both their respectively determined cancers, and both are direct carcinogens. KSHV, also known as the Human gammaherpesvirus 8 (HHV8), is a double-stranded DNA and a Rhadinovirus, the only one of the genus with human tropism. HHV8 is found in all types of Kaposi’s sarcoma, and is needed for Kaposi’s sarcoma to appear, although the infection by itself is not enough. 

Kaposi’s sarcoma immunosuppression human herpes virus 8 skin cancer angiogenesis

1. Latency Phase

During its latent phase, KSHV does not cause its host to exhibit any obvious signs of pathology [1]. After viral entry into the host’s cell, the latent phase starts and a very limited number of genes are expressed during this phase. The corresponding proteins of these genes are latency-associated nuclear antigen (LANA), viral interferon regulatory factor 3 (vIRF3/LANA2), vCyclin, viral FLICE inhibitory protein (vFLIP), kaposin and viral miRNAs [2][3][4]. They, along with their effects, are presented in Table 1 [2][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18].
Table 1. List of latent cycle expressed genes and their respective proteins.

2. Reactivation and Lytic Phase

The lytic reactivation represents another critical step in tumorigenesis, as demonstrated by the finding that inhibition of the lytic cycle using Ganciclovir reduced the risk of developing KS by 75% [19]. The lytic cycle is thought to provide signals that stimulate proliferation of latent cells, and thus of the tumor. This phase of viral infection represents the expression of viral proteins, replication of the genome, and assembly of new virions by the host cell, which exit the cell via budding. Stimuli that start off the lytic cycle are not well defined, but the process can be induced by substances such as 12-O-Tetradecanoyl-phorbol-13-acetate (TPA), sodium butyrate [20], ionomycin [21] (a calcium ionophore), epinephrine and norepinephrine at physiological concentrations, certain cellular factors (X-box binding protein 1 (XBP-1), CREB-binding protein (CBP), the SWI/SNF chromatin remodeling complex, the TRAP/Mediator complex, RBP-Jκ, human Notch intracellular domain, and High mobility group box 1 (HMGB1)) [22][23][24][25][26][27][28], autonomic nervous system activity within AIDS patients [29], hypoxia [30], and reactive oxygen species (ROS) [31]. Recently, it was also demonstrated that nitric oxide (NO) plays an important role in proliferation of KSHV associated tumors and is necessary for the lytic phase. According to Herrera-Ortíz et al., suppression of NO results in a reduced level of infectious virions, lytic transcripts and proteins [32]. SARS-CoV-2 viral proteins, namely the S and N proteins, have been noted to induce lytic reactivation of KSHV, thus accelerating the oncogenic process [33]. Moreover, in the same study, Chen et al. also reported that some anti-COVID-19 drugs used as of the date of their study, such as Azithromycin and Nafamostat mesylate, also contribute to the lytic reactivation of KSHV, and that AIDS-KS tissues have a higher ACE2 receptor expression, although a clear link between KSHV and the upregulation has not been established [33]. CD147, a multifunctional glycoprotein upregulated during KSHV de novo infection and in Kaposi sarcoma tissues [34][35] also represents one of the co-receptors for SARS-CoV2 entry into host cells [36]. Other viruses may also trigger the reactivation of KSHV lytic cycle, such as HIV, herpes simplex virus type 1 (HSV-1), HSV-2, human cytomegalovirus (HCMV), human herpesvirus-6 (HHV-6) and HHV-7 [37][38][39][40][41]. Spindle cells, with typical spindle-shaped morphology, which are the tumor cells of KS, tend to segregate the latent viral genomes and, as such, lytic reactivation of small populations of cells must occur to maintain viral presence and latency [42].
Genes that are expressed in the lytic cycle are divided into three groups: immediate early (IE), early (E) and late (L) genes. The lytic phase genes of the IE and E groups of most relevance to KS are summarized in Table 2. Late genes mostly comprise viral structural components [43].
Table 2. Major genes expressed during lytic cycle and their functions.
Gene—Protein Function
ORF45—ORF45 (IE) Inhibits p53 signaling and prevents interaction with USP7 (a deubiquitinase), which results in diminished transcriptional activity [44].
ORFK4.2—ORFK4.2 (IE) Plays a role in immune evasion, lowering antibody-mediated adaptive immune responses [45].
ORFK12—Kaposins (E) Kaposin B has been shown to contribute to angiogenesis, reprogramming of endothelial cells, which has a proinflammatory effect via citokine upregulation [46][47][48][49][50].
ORF57—ORF57 (E) Interacts directly with PYM to facilitate the efficient translation of intronless KSHV mRNA transcripts [51]. Protects viral products such as viral interleukin-6 (vIL-6) and IL-6 from miRNA degradation [52].
K-bZIP (ORF-K8) (E) Modulator of RTA activity. Inhibits RTA autoactivation and transactivation of ORF57 and ORF-K15 [53].
K2—vIL-6 (E) Increased vascular endothelial growth factor a (VEGF-a) secretion (angiogenesis), tumor growth and plasmocytosis in mice [54].
K5—ubiquitin E3 ligases (E) Disruption of endothelial cell adhesion via cadherin downregulation [55].
K14—vOX-2 (E) Stimulates productions of inflammatory cytokines and chemokines, such as IL-1β, IL-6, tumor necrosis factor α (ΤNF-α), and monocyte chemoattractant protein-1 (MCP-1) [56].
K15—K15 (E) Vascular endothelial growth factor receptor (VEGFR) independent angiogenesis stimulation [57]. Stimulates endothelial cell proliferation and migration [58].
ORF16—vBcl2 (E) Essential to KSHV replication [59][60]. Anti-apoptotic and anti-autophagy evasion functions [61][62][63][64][65].
K1—K1 (E) Activation of the Phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, which leads to upregulation of protein synthesis and survival, while also inhibiting apoptotic signaling [66].
ORF74—vGPCR (E) Transformative properties [66]. Expression of vGPCR leads to immortalization of endothelial via VEGF receptor-2/KDR (kinase insert domain receptor) [67]. Knockdown of vGPCR is documented to lead to decreased tumor growth and lower secretion of VEGF in a mouse model [68].

References

  1. Cordes, A.K.; Schulz, T.F. Kaposi’s Sarcoma-associated herpesvirus. In Encyclopedia of Virology, 4th ed.; Bamford, D.H., Zuckerman, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 2, pp. 598–607.
  2. Cai, X.; Lu, S.; Zhang, Z.; Gonzalez, C.M.; Damania, B.; Cullen, B.R. Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc. Natl. Acad. Sci. USA 2005, 102, 5570–5575.
  3. Sarid, R.; Flore, O.; Bohenzky, R.A.; Chang, Y.; Moore, P.S. Transcription Mapping of the Kaposi’s Sarcoma-Associated Herpesvirus (Human Herpesvirus 8) Genome in a Body Cavity-Based Lymphoma Cell Line (BC-1). J. Virol. 1998, 72, 1005–1012.
  4. Cesarman, E.; Damania, B.; Krown, S.E.; Martin, J.; Bower, M.; Whitby, D. Kaposi sarcoma. Nat. Rev. Dis. Prim. 2019, 5, 9.
  5. Samols, M.A.; Hu, J.; Skalsky, R.L.; Renne, R. Cloning and Identification of a MicroRNA Cluster within the Latency-Associated Region of Kaposi’s Sarcoma-Associated Herpesvirus. J. Virol. 2005, 79, 9301–9305.
  6. Pfeffer, S.; Sewer, A.; Lagos-Quintana, M.; Sheridan, R.; Sander, C.; Grässer, F.A.; van Dyk, L.; Ho, C.K.; Shuman, S.; Chien, M.; et al. Identification of microRNAs of the herpesvirus family. Nat. Methods 2005, 2, 269–276.
  7. Hansen, A.; Henderson, S.; Lagos, D.; Nikitenko, L.; Coulter, E.; Roberts, S.; Gratrix, F.; Plaisance, K.; Renne, R.; Bower, M.; et al. KSHV-encoded miRNAs target MAF to induce endothelial cell reprogramming. Genes Dev. 2010, 24, 195–205.
  8. Hu, M.; Wang, C.; Li, W.; Lu, W.; Bai, Z.; Qin, D.; Yan, Q.; Zhu, J.; Krueger, B.J.; Renne, R.; et al. A KSHV microRNA Directly Targets G Protein-Coupled Receptor Kinase 2 to Promote the Migration and Invasion of Endothelial Cells by Inducing CXCR2 and Activating AKT Signaling. PLoS Pathog. 2015, 11, e1005171.
  9. Samols, M.A.; Skalsky, R.L.; Maldonado, A.M.; Riva, A.; Lopez, M.C.; Baker, H.; Renne, R. Identification of Cellular Genes Targeted by KSHV-Encoded MicroRNAs. PLoS Pathog. 2007, 3, e65.
  10. Knight, J.S.; Ii, M.A.C.; Robertson, E.S. The Latency-associated Nuclear Antigen of Kaposi’s Sarcoma-associated Herpesvirus Transactivates the Telomerase Reverse Transcriptase Promoter. J. Biol. Chem. 2001, 276, 22971–22978.
  11. Verma, S.C.; Borah, S.; Robertson, E.S. Latency-Associated Nuclear Antigen of Kaposi’s Sarcoma-Associated Herpesvirus Up-Regulates Transcription of Human Telomerase Reverse Transcriptase Promoter through Interaction with Transcription Factor Sp1. J. Virol. 2004, 78, 10348–10359.
  12. Sarid, R.; Wiezorek, J.S.; Moore, P.S.; Chang, Y. Characterization and Cell Cycle Regulation of the Major Kaposi’s Sarcoma-Associated Herpesvirus (Human Herpesvirus 8) Latent Genes and Their Promoter. J. Virol. 1999, 73, 1438–1446.
  13. Dittmer, D.; Lagunoff, M.; Renne, R.; Staskus, K.; Haase, A.; Ganem, D. A Cluster of Latently Expressed Genes in Kaposi’s Sarcoma-Associated Herpesvirus. J. Virol. 1998, 72, 8309–8315.
  14. Rivas, C.; Thlick, A.-E.; Parravicini, C.; Moore, P.; Chang, Y. Kaposi’s Sarcoma-Associated Herpesvirus LANA2 Is a B-Cell-Specific Latent Viral Protein That Inhibits p53. J. Virol. 2001, 75, 429–438.
  15. Lubyova, B.; Pitha, P.M. Characterization of a Novel Human Herpesvirus 8-Encoded Protein, vIRF-3, That Shows Homology to Viral and Cellular Interferon Regulatory Factors. J. Virol. 2000, 74, 8194–8201.
  16. Munoz-Fontela, C.; Marcos-Villar, L.; Gallego, P.; Arroyo, J.; Da Costa, M.; Pomeranz, K.M.; Lam, E.; Rivas, C. Latent Protein LANA2 from Kaposi’s Sarcoma-Associated Herpesvirus Interacts with 14-3-3 Proteins and Inhibits FOXO3a Transcription Factor. J. Virol. 2007, 81, 1511–1516.
  17. Ueda, K. KSHV genome replication and maintenance in latency. Adv. Exp. Med. Biol. 2018, 1045, 299–320.
  18. Nachmani, D.; Stern-Ginossar, N.; Sarid, R.; Mandelboim, O. Diverse Herpesvirus MicroRNAs Target the Stress-Induced Immune Ligand MICB to Escape Recognition by Natural Killer Cells. Cell Host Microbe 2009, 5, 376–385.
  19. Martin, D.F.; Kuppermann, B.D.; Wolitz, R.A.; Palestine, A.G.; Li, H.; Robinson, C.A. Oral Ganciclovir for Patients with Cytomegalovirus Retinitis Treated with a Ganciclovir Implant. N. Engl. J. Med. 1999, 340, 1063–1070.
  20. Miller, G.; Heston, L.; Grogan, E.; Gradoville, L.; Rigsby, M.; Sun, R.; Shedd, D.; Kushnaryov, V.M.; Grossberg, S.; Chang, Y. Selective switch between latency and lytic replication of Kaposi’s sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. J. Virol. 1997, 71, 314–324.
  21. Chang, J.; Renne, R.; Dittmer, D.; Ganem, D. Inflammatory Cytokines and the Reactivation of Kaposi’s Sarcoma-Associated Herpesvirus Lytic Replication. Virology 2000, 266, 17–25.
  22. Liang, Y.; Chang, J.; Lynch, S.J.; Lukac, D.M.; Ganem, D. The lytic switch protein of KSHV activates gene expression via functional interaction with RBP-Jκ (CSL), the target of the Notch signaling pathway. Genes Dev. 2002, 16, 1977–1989.
  23. Gwack, Y.; Baek, H.J.; Nakamura, H.; Lee, S.H.; Meisterernst, M.; Roeder, R.G.; Jung, J.U. Principal Role of TRAP/Mediator and SWI/SNF Complexes in Kaposi’s Sarcoma-Associated Herpesvirus RTA-Mediated Lytic Reactivation. Mol. Cell. Biol. 2003, 23, 2055–2067.
  24. Wilson, S.; Tsao, E.H.; Webb, B.L.J.; Ye, H.; Dalton-Griffin, L.; Tsantoulas, C.; Gale, C.V.; Du, M.-Q.; Whitehouse, A.; Kellam, P. X Box Binding Protein XBP-1s Transactivates the Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) ORF50 Promoter, Linking Plasma Cell Differentiation to KSHV Reactivation from Latency. J. Virol. 2007, 81, 13578–13586.
  25. Yu, F.; Harada, J.N.; Brown, H.J.; Deng, H.; Song, M.J.; Wu, T.-T.; Kato-Stankiewicz, J.; Nelson, C.G.; Vieira, J.; Tamanoi, F.; et al. Systematic Identification of Cellular Signals Reactivating Kaposi Sarcoma–Associated Herpesvirus. PLoS Pathog. 2007, 3, e44.
  26. Harrison, S.M.; Whitehouse, A. Kaposi’s sarcoma-associated herpesvirus (KSHV) Rta and cellular HMGB1 proteins synergistically transactivate the KSHVORF50promoter. FEBS Lett. 2008, 582, 3080–3084.
  27. Xie, J.; Ajibade, A.O.; Ye, F.; Kuhne, K.; Gao, S.-J. Reactivation of Kaposi’s sarcoma-associated herpesvirus from latency requires MEK/ERK, JNK and p38 multiple mitogen-activated protein kinase pathways. Virology 2008, 371, 139–154.
  28. Aneja, K.K.; Yuan, Y. Reactivation and Lytic Replication of Kaposi’s Sarcoma-Associated Herpesvirus: An Update. Front. Microbiol. 2017, 8, 613.
  29. Cole, S.W.; Kemeny, M.E.; Fahey, J.L.; Zack, J.A.; Naliboff, B.D. Psychological risk factors for HIV pathogenesis: Mediation by the autonomic nervous system. Biol. Psychiatry 2003, 54, 1444–1456.
  30. Davis, D.A.; Rinderknecht, A.S.; Zoeteweij, J.P.; Aoki, Y.; Read-Connole, E.L.; Tosato, G.; Blauvelt, A.; Yarchoan, R. Hypoxia induces lytic replication of Kaposi sarcoma–associated herpesvirus. Blood 2001, 97, 3244–3250.
  31. Ye, F.; Zhou, F.; Bedolla, R.G.; Jones, T.; Lei, X.; Kang, T.; Guadalupe, M.; Gao, S.-J. Reactive Oxygen Species Hydrogen Peroxide Mediates Kaposi’s Sarcoma-Associated Herpesvirus Reactivation from Latency. PLoS Pathog. 2011, 7, e1002054.
  32. Herrera-Ortíz, A.; Meng, W.; Gao, S. Nitric oxide is induced and required for efficient Kaposi’s sarcoma-associated herpesvirus lytic replication. J. Med. Virol. 2021, 93, 6323–6332.
  33. Chen, J.; Dai, L.; Barrett, L.; James, J.; Plaisance-Bonstaff, K.; Post, S.R.; Qin, Z. SARS-CoV-2 proteins and anti-COVID-19 drugs induce lytic reactivation of an oncogenic virus. Commun. Biol. 2021, 4, 682.
  34. Qin, Z.; Dai, L.; Slomiany, M.G.; Toole, B.P.; Parsons, C. Direct Activation of Emmprin and Associated Pathogenesis by an Oncogenic Herpesvirus. Cancer Res. 2010, 70, 3884–3889.
  35. Dai, L.; Trillo-Tinoco, J.; Chen, Y.; Bonstaff, K.; Del Valle, L.; Parsons, C.; Ochoa, A.C.; Zabaleta, J.; Toole, B.P.; Qin, Z. CD147 and downstream ADAMTSs promote the tumorigenicity of Kaposi’s sarcoma-associated herpesvirus infected endothelial cells. Oncotarget 2015, 7, 3806–3818.
  36. Wang, K.; Chen, W.; Zhang, Z.; Deng, Y.; Lian, J.-Q.; Du, P.; Wei, D.; Zhang, Y.; Sun, X.-X.; Gong, L.; et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther. 2020, 5, 283.
  37. Varthakavi, V.; Browning, P.J.; Spearman, P. Human Immunodeficiency Virus Replication in a Primary Effusion Lymphoma Cell Line Stimulates Lytic-Phase Replication of Kaposi’s Sarcoma-Associated Herpesvirus. J. Virol. 1999, 73, 10329–10338.
  38. Zeng, Y.; Zhang, X.; Huang, Z.; Cheng, L.; Yao, S.; Qin, D.; Chen, X.; Tang, Q.; Lv, Z.; Zhang, L.; et al. Intracellular Tat of Human Immunodeficiency Virus Type 1 Activates Lytic Cycle Replication of Kaposi’s Sarcoma-Associated Herpesvirus: Role of JAK/STAT Signaling. J. Virol. 2007, 81, 2401–2417.
  39. Qin, D.; Zeng, Y.; Qian, C.; Huang, Z.; Lv, Z.; Cheng, L.; Yao, S.; Tang, Q.; Chen, X.; Lu, C. Induction of lytic cycle replication of Kaposi’s sarcoma-associated herpesvirus by herpes simplex virus type 1: Involvement of IL-10 and IL-4. Cell. Microbiol. 2007, 10, 713–728.
  40. Lu, C.; Zeng, Y.; Huang, Z.; Huang, L.; Qian, C.; Tang, G.; Qin, D. Human Herpesvirus 6 Activates Lytic Cycle Replication of Kaposi’s Sarcoma-Associated Herpesvirus. Am. J. Pathol. 2005, 166, 173–183.
  41. Tang, Q.; Qin, D.; Lv, Z.; Zhu, X.; Ma, X.; Yan, Q.; Zeng, Y.; Guo, Y.; Feng, N.; Lu, C. Herpes Simplex Virus Type 2 Triggers Reactivation of Kaposi’s Sarcoma-Associated Herpesvirus from Latency and Collaborates with HIV-1 Tat. PLoS ONE 2012, 7, e31652.
  42. Grundhoff, A.; Ganem, D. Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J. Clin. Investig. 2004, 113, 124–136.
  43. Yan, L.; Majerciak, V.; Zheng, Z.-M.; Lan, K. Towards Better Understanding of KSHV Life Cycle: From Transcription and Posttranscriptional Regulations to Pathogenesis. Virol. Sin. 2019, 34, 135–161.
  44. Alzhanova, D.; Meyo, J.O.; Juarez, A.; Dittmer, D.P. The ORF45 Protein of Kaposi Sarcoma-Associated Herpesvirus Is an Inhibitor of p53 Signaling during Viral Reactivation. J. Virol. 2021, 95.
  45. Wong, L.-Y.; Brulois, K.; Toth, Z.; Inn, K.-S.; Lee, S.-H.; O’Brien, K.; Lee, H.; Gao, S.-J.; Cesarman, E.; Ensser, A.; et al. The Product of Kaposi’s Sarcoma-Associated Herpesvirus Immediate Early Gene K4.2 Regulates Immunoglobulin Secretion and Calcium Homeostasis by Interacting with and Inhibiting pERP1. J. Virol. 2013, 87, 12069–12079.
  46. Schulz, T.F.; Cesarman, E. Kaposi Sarcoma-associated Herpesvirus: Mechanisms of oncogenesis. Curr. Opin. Virol. 2015, 14, 116–128.
  47. Corcoran, J.A.; Johnston, B.P.; McCormick, C. Viral Activation of MK2-hsp27-p115RhoGEF-RhoA Signaling Axis Causes Cytoskeletal Rearrangements, P-body Disruption and ARE-mRNA Stabilization. PLoS Pathog. 2015, 11, e1004597.
  48. King, C.A. Kaposi’s Sarcoma-Associated Herpesvirus Kaposin B Induces Unique Monophosphorylation of STAT3 at Serine 727 and MK2-Mediated Inactivation of the STAT3 Transcriptional Repressor TRIM28. J. Virol. 2013, 87, 8779–8791.
  49. McCormick, C.; Ganem, D. The Kaposin B Protein of KSHV Activates the p38/MK2 Pathway and Stabilizes Cytokine mRNAs. Science 2005, 307, 739–741.
  50. Yoo, J.; Kang, J.; Lee, H.N.; Aguilar, B.; Kafka, D.; Lee, S.; Choi, I.; Lee, J.; Ramu, S.; Haas, J.; et al. Kaposin-B Enhances the PROX1 mRNA Stability during Lymphatic Reprogramming of Vascular Endothelial Cells by Kaposi’s Sarcoma Herpes Virus. PLoS Pathog. 2010, 6, e1001046.
  51. Boyne, J.; Jackson, B.; Taylor, A.; Macnab, S.A.; Whitehouse, A. Kaposi’s sarcoma-associated herpesvirus ORF57 protein interacts with PYM to enhance translation of viral intronless mRNAs. EMBO J. 2010, 29, 1851–1864.
  52. Kang, J.-G.; Pripuzova, N.; Majerciak, V.; Kruhlak, M.; Le, S.-Y.; Zheng, Z.-M. Kaposi’s Sarcoma-Associated Herpesvirus ORF57 Promotes Escape of Viral and Human Interleukin-6 from MicroRNA-Mediated Suppression. J. Virol. 2011, 85, 2620–2630.
  53. Izumiya, Y.; Lin, S.-F.; Ellison, T.; Chen, L.-Y.; Izumiya, C.; Luciw, P.; Kung, H.-J. Kaposi’s Sarcoma-Associated Herpesvirus K-bZIP Is a Coregulator of K-Rta: Physical Association and Promoter-Dependent Transcriptional Repression. J. Virol. 2003, 77, 1441–1451.
  54. Aoki, Y.; Jaffe, E.S.; Chang, Y.; Jones, K.; Teruya-Feldstein, J.; Moore, P.S.; Tosato, G. Angiogenesis and Hematopoiesis Induced by Kaposi’s Sarcoma-Associated Herpesvirus-Encoded Interleukin-6: Presented in part at the 40th Annual American Society of Hematology Meeting, December 7, 1998 (Miami Beach, FL). Blood 1999, 93, 4034–4043.
  55. Mansouri, M.; Rose, P.P.; Moses, A.V.; Früh, K. Remodeling of Endothelial Adherens Junctions by Kaposi’s Sarcoma-Associated Herpesvirus. J. Virol. 2008, 82, 9615–9628.
  56. Chung, Y.-H.; Means, R.E.; Choi, J.-K.; Lee, B.-S.; Jung, J.U. Kaposi’s Sarcoma-Associated Herpesvirus OX2 Glycoprotein Activates Myeloid-Lineage Cells to Induce Inflammatory Cytokine Production. J. Virol. 2002, 76, 4688–4698.
  57. Bala, K.; Bosco, R.; Gramolelli, S.; Haas, D.; Kati, S.; Pietrek, M.; Hävemeier, A.; Yakushko, Y.; Singh, V.V.; Dittrich-Breiholz, O.; et al. Kaposi’s Sarcoma Herpesvirus K15 Protein Contributes to Virus-Induced Angiogenesis by Recruiting PLCγ1 and Activating NFAT1-dependent RCAN1 Expression. PLoS Pathog. 2012, 8, e1002927.
  58. Chen, W.; Xu, C.; Wang, L.; Shen, B.; Wang, L. K15 Protein of Kaposi’s Sarcoma Herpesviruses Increases Endothelial Cell Proliferation and Migration through Store-Operated Calcium Entry. Viruses 2018, 10, 282.
  59. Gallo, A.; Lampe, M.; Günther, T.; Brune, W. The Viral Bcl-2 Homologs of Kaposi’s Sarcoma-Associated Herpesvirus and Rhesus Rhadinovirus Share an Essential Role for Viral Replication. J. Virol. 2017, 91, e01875-16.
  60. Gelgor, A.; Kalt, I.; Bergson, S.; Brulois, K.F.; Jung, J.U.; Sarid, R. Viral Bcl-2 Encoded by the Kaposi’s Sarcoma-Associated Herpesvirus Is Vital for Virus Reactivation. J. Virol. 2015, 89, 5298–5307.
  61. Liang, C.; Feng, P.; Ku, B.; Dotan, I.; Canaani, D.; Oh, B.-H.; Jung, J.U. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat. Cell Biol. 2006, 8, 688–698.
  62. Pattingre, S.; Tassa, A.; Qu, X.; Garuti, R.; Liang, X.H.; Mizushima, N.; Packer, M.; Schneider, M.D.; Levine, B. Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-Dependent Autophagy. Cell 2005, 122, 927–939.
  63. Wei, Y.; Pattingre, S.; Sinha, S.; Bassik, M.; Levine, B. JNK1-Mediated Phosphorylation of Bcl-2 Regulates Starvation-Induced Autophagy. Mol. Cell 2008, 30, 678–688.
  64. Cheng, E.H.-Y.; Nicholas, J.; Bellows, D.S.; Hayward, G.S.; Guo, H.-G.; Reitz, M.S.; Hardwick, J.M. A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc. Natl. Acad. Sci. USA 1997, 94, 690–694.
  65. Sarid, R.; Sato, T.; Bohenzky, R.A.; Russo, J.J.; Chang, Y. Kaposi’s sarcoma-associated herpesvirus encodes a functional Bcl-2 homologue. Nat. Med. 1997, 3, 293–298.
  66. Bhatt, A.P.; Damania, B. AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV. Front. Immunol. 2013, 3, 401.
  67. Bais, C.; Van Geelen, A.; Eroles, P.; Mutlu, A.; Chiozzini, C.; Dias, S.; Silverstein, R.L.; Rafii, S.; Mesri, E.A. Kaposi’s sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/ KDR. Cancer Cell 2003, 3, 131–143.
  68. Mutlu, A.D.; Cavallin, L.E.; Vincent, L.; Chiozzini, C.; Eroles, P.; Duran, E.M.; Asgari, Z.; Hooper, A.T.; La Perle, K.M.; Hilsher, C.; et al. In Vivo-Restricted and Reversible Malignancy Induced by Human Herpesvirus-8 KSHV: A Cell and Animal Model of Virally Induced Kaposi’s Sarcoma. Cancer Cell 2007, 11, 245–258.
More
Upload a video for this entry
Information
Subjects: Others
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : Oana Manole , , Cristina Gales , Elena Porumb- Andrese , Otilia Obada
View Times: 677
Revisions: 2 times (View History)
Update Date: 30 May 2022
Notice
You are not a member of the advisory board for this topic. If you want to update advisory board member profile, please contact office@encyclopedia.pub.
OK
Confirm
Only members of the Encyclopedia advisory board for this topic are allowed to note entries. Would you like to become an advisory board member of the Encyclopedia?
Yes
No
${ textCharacter }/${ maxCharacter }
Submit
Cancel
There is no comment~
${ textCharacter }/${ maxCharacter }
Submit
Cancel
${ selectedItem.replyTextCharacter }/${ selectedItem.replyMaxCharacter }
Submit
Cancel
Confirm
Are you sure to Delete?
Yes No
Academic Video Service