Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 2144 2022-05-02 07:10:41 |
2 format correct -20 word(s) 2124 2022-05-05 08:02:18 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Bartiromo, L.; Schimberni, M.; Villanacci, R.; Mangili, G.; , .; Salmeri, N.; Dolci, C. Atypical Endometriosis-Associated Biomarkers. Encyclopedia. Available online: https://encyclopedia.pub/entry/22565 (accessed on 03 May 2024).
Bartiromo L, Schimberni M, Villanacci R, Mangili G,  , Salmeri N, et al. Atypical Endometriosis-Associated Biomarkers. Encyclopedia. Available at: https://encyclopedia.pub/entry/22565. Accessed May 03, 2024.
Bartiromo, Ludovica, Matteo Schimberni, Roberta Villanacci, Giorgia Mangili,  , Noemi Salmeri, Carolina Dolci. "Atypical Endometriosis-Associated Biomarkers" Encyclopedia, https://encyclopedia.pub/entry/22565 (accessed May 03, 2024).
Bartiromo, L., Schimberni, M., Villanacci, R., Mangili, G., , ., Salmeri, N., & Dolci, C. (2022, May 02). Atypical Endometriosis-Associated Biomarkers. In Encyclopedia. https://encyclopedia.pub/entry/22565
Bartiromo, Ludovica, et al. "Atypical Endometriosis-Associated Biomarkers." Encyclopedia. Web. 02 May, 2022.
Atypical Endometriosis-Associated Biomarkers
Edit

Ovarian endometriosis may increase the risk of malignancy. Several studies have suggested atypical endometriosis as the direct precursor of endometriosis-associated ovarian cancer. Atypical endometriosis can be a transitioning entity from endometriosis to endometriosis-associated ovarian cancers. 39 studies assessing numerous molecular targets of AE, such as immunohistochemical expression of BAF250, PIK3CA, PTEN, HNF-1beta, ER, and PR. Unfortunately, these molecular biomarkers of AE require expensive molecular analysis, histological examination is always needed, and none of them has such strong evidence to justify their systematic use in the management of the neoplastic risk of endometriosis. Further studies are needed to validate evidence on available biomarkers for the presence of AE, which is a high oncologic risk condition. Moreover, the introduction of novel serum biomarkers could be useful for the non-invasive diagnosis of AE.

endometriosis atypical atypical endometriosis marker biomarker atypia

1. Introduction

Endometriosis is a chronic, estrogen-dependent, progressive disease affecting approximately 10% of women of reproductive age [1]. Initially considered a benign disease, endometriosis, and particularly ovarian endometriosis (OMA), may increase the risk of developing malignancy. An association between endometriosis and ovarian cancer was initially proposed in 1925 by Sampson, describing endometrial carcinoma of the ovary arising in endometrial tissue [2]. Then, the transition from endometriosis to ovarian cancer was confirmed in 1953, when Scott wrote about malignant changes in endometriosis and pointed out that benign endometriosis might be observed in proximity to endometriosis-associated ovarian cancer (EAOC) [3].
It has been estimated that 0.5–1% of endometriosis cases are complicated by neoplasia, with a lifetime risk of about 1.9%, but it is relatively increased compared to the general population, having a lifetime risk of approximately 1.4% [4]. In a pooled meta-analysis of 13 case-control studies, the frequency of self-reported endometriosis was significantly higher in the ovarian cancer group (OR 1.46). The OR were significantly increased in the hystotypes: Clear cell ovarian carcinoma (CCC) (OR 3.05), Endometrioid ovarian carcinoma (EnOC) (2.04), and Low-grade serous ovarian carcinoma (OR 2.11) [5].
Several studies have reported that atypical endometriosis (AE) should be considered as the direct precursor of CCC and EnOC, as AE has been identified as contiguous with these tumor histotypes [6][7]. AE refers to two different histologic findings: cellular atypia, also known as cytologic atypia, and architectural atypia, commonly referred to as hyperplasia [8]. The “road” to malignant transformation is not well established, although several pathways leading to AE and finally to EAOC have been suggested: oxidative stress, cytokines, genetic mutations, and hyperestrogenic environment may have a role in the carcinogenesis from benign endometriosis (BE) to cancer. Two potential scenarios for ovarian endometrioma leading to EAOC have been proposed. The one involves extracellular hemoglobin, iron, and heme (from the repeated hemorrhages occurring in endometriosis), causing cellular oxidative damage via increased reactive oxygen species (ROS) with subsequent DNA damage and resulting mutations. The second involves the persistent production of antioxidants, which would favor a tumor-potentiating environment. Most CCC and EnOC are included in Type I ovarian tumors, since they develop from benign extraovarian lesions that implant on the ovary and can subsequently undergo malignant transformation (i.e., in endometriosis they arise within benign ovarian endometriotic cysts). Type I ovarian tumors are clinically indolent and usually present with low-grade carcinoma [9][10]. Indeed, AE and EAOC share common molecular/genetic alterations such as somatic ARID-1A [11][12] and Phosphatase and tensin homolog (PTEN) mutations [13], Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA) mutations [14], hepatocyte nuclear factor (HNF)-1b up-regulation [15], loss of estrogen receptor (ER) and progesterone receptor (PR) [16], and rarely P53 mutations [17]. These mutations exhibit the continuum of tumor progression between benign cystic neoplasms and the corresponding carcinomas, such as EnOC and CCC, often through precursor lesions, such as AE. These and other targets have been proposed for the early detection of endometriosis-related cancers, but the clinical application of these novel biomarkers may be difficult since they all need molecular analysis. To the best of our knowledge, this is the first study that systematically reviews the current literature focused on AE-associated biomarkers to offer a general view of available data.

2. Development and Findings

Atypical endometriosis has been observed in 12–35% of ovarian endometriosis, and it is estimated that around 60% to 80% of all EAOC occur in the presence of AE, often found in direct continuity with the tumor [18]. Evidence suggests that AE could be a transitioning entity from benign lesions to malignant variants. The pre-malignant, “atypical” lesions, are defined by several histologic criteria, including large nuclei with moderate to marked pleomorphism, increased nuclear-to-cytoplasmic ratio, cellular crowding, stratification, or tufting [18][19]. It has been reported that AE actually refers to two different histologic findings: cellular atypia, also known as cytologic atypia, and architectural atypia, commonly referred to as hyperplasia. The diagnosis of endometriosis with architectural atypia is important because patients with hyperplasia-type endometriosis may be at a higher risk of developing EAOC [20]. This variability in the incidence of the disease may be due to a difficult histological diagnosis, which is still far from being standardized among medical centers worldwide. Moreover, the new conceptualization of the histological pattern, and the differences that emerged in prognostic significance between cytological AE and hyperplastic AE should strongly encourage a revision of this classification in order to better understand which type of AE is actually to define a “high-risk” disease. Reflections can be made on the meaning of a “preneoplastic lesion”: determining whether the mere presence of endometrium at ectopic sites should be considered “per se” a premalignant condition seems crucial and constitutes the conceptual base of any strategy aimed at reducing EAOC mortality. Lesions are defined as “precancerous” based on definite epidemiologic, morphologic, molecular, and biologic criteria that imply the acquisition of genetic, karyotypic, structural, or functional changes in a cluster of cells that differentiate them from the surrounding normal tissue [21]. In other words, premalignant lesions such as AE should reflect an intermediate stage along the pathway leading to cancer. When enough genetic changes have occurred, modifications in appearance and function are observed but not yet associated with typical malignant behavior. In recent years, the literature has focused on the relationship between endometriosis and ovarian cancer. Indeed, sequencing and immunohistochemical studies have revealed that mutations found in endometriosis-associated cancers are found in adjacent endometriosis, supporting the theory of a clonal relationship between benign and malignant counterparts and confirming that the cancers have arisen from the endometriotic lesions probably through an “intermediate” premalignant step. In addition, gene encoding b-catenin (CTNNB1) mutations in 16–53.3%, PTEN mutations in 14–20%, and ARID1A mutations in 30–55% of cases were found in EnOC. PIK3CA mutations in 20–40% and ARID1A mutations in 46–57% of cases are found in ovarian CCC [22].
None of the above discussed biomarkers has such strong evidence that could justify their systematic clinical use in the management of endometriosis and AE. The most frequently detected mutations in AE are ARID1A, genes involved in PI3K pathway (i.e., PIK3CA), genes encoding for ER and PR, KRAS, and PTEN. Interestingly, somatic driven mutations in KRAS, PTEN, PIK3CA and ARID1A have been also observed in more than 26% of cases of deep infiltrating endometriosis lesions, which are associated with virtually no risk of malignant transformation [23]. Therefore, a specific role seems to be played by the ovarian microenvironment in increasing the risk of malignant derailment [24]. Karnezis concurs that the ovarian microenvironment seems to be essential for the malignant transformation of endometriosis because many endometriotic lesions are located outside the ovary, including the pelvic peritoneum, but carcinomas at such sites are rare [25]. Indeed, it was proposed for the endometrioma’s neoplastic transformation as a hypothetical model called the “two-hits” hypothesis [9]. Reactive oxygen species due to free heme and catalytic iron contained in the trapped blood in endometriomas may lead to increased oxidative stress and DNA damage in the epithelial layer of endometriomas. This may result in mutations and epigenetic changes, including mutations in the tumor suppressor gene ARID1A leading to AE. Possible second-hit mutations, as well as activation of the PI3K-AKT-mTOR pathway allow the mutated cell to escape apoptosis caused by increased oxidative stress. The accumulation of oncogenic mutations in AE may ultimately lead to the development of endometriosis-associated ovarian CCC and endometrioid carcinomas. ARID1A loss and activation of PI3K/AKT functionally cooperate in ovarian carcinogenesis and suggest that ARID1A-loss occurs early and that it may be “addicted” to PI3K/AKT oncogenic signaling [9]. In line with this hypothesis and with the reduction of the hormone dependency of CCC, oxidative stress has been shown to act as a physiological regulator of estrogen receptors. Contrary to CCC, EnOC is generally estrogen sensitive and associated with hormonal risk factors. ERa has been shown to represent an independent prognostic marker for EnOC, while nuclear ERa is barely detectable in CCC [26]. Inactivating ARID1A mutations are the most common molecular genetic alteration reported thus far in CCC and EnOC, but a higher frequency of ARID1A mutations has been detected in CCC (46–57%) compared with EnOC (30%). The fact that no differences in clinical behavior were observed comparing BAF250a-positive versus BAF250a-negative cancers may be the basis for supporting the idea of a marker for genomic instability without driving the phenotype: BAF250a appears to be an early event in most of these cases [27][28]. Based on results from the systematic review, there is a remarkable association between BAF250a loss in cases of AE and TE contiguous to BAF250a-deficient EAOC with a higher frequency of inactivating ARID1A mutations detected in CCC compared to EnOC [11][20][27][29][30][31][32][33]. Concordantly with these findings, also PI3K/Akt/mTOR molecular pathway seems to be altered in AE and in EAOC in all of the studies included, with a similar pattern between the two diseases [30][31][32][34][35][36][37][38][39][40][41][42]. Since ovarian cancer is considered a hormone-responsive cancer, its correlation to PR and ER immunoexpression has a major importance in clinic-pathological manifestations of ovarian carcinoma, including those associated with endometriosis [43][44]. Actions of estradiol are mediated by two isoforms of ERs (ERa and ERb) that differ in their tissue distributions, their ligand-binding specificity, and affinity: ERa has been shown to represent an independent prognostic marker for EnOC, while nuclear ERa was poorly detectable in CCC [26][45]. Since progesterone is modulated by the expression of both isoforms of the specific receptor (PR-A and PR-B), it is involved in the pathogenesis of endometriosis and EAOC [44]. Thus, from the results of the systematic review, it seems that alteration of steroid receptor immune expression is correlated to ovarian endometriosis and endometriosis-related carcinogenesis in a hormone-dependent manner with regards to EnOC and in a hormone-independent way concerning CCC.
Associated AE lesions seem to have the same biological expression as their adjacent Cancer histotypes [15][46][47][48][49][50][51][52][53][54]. Moreover, ER and PR expression seems to be higher in AE as compared to EAOC, and lower when compared to endometriosis. The gradual loss of ER and PR expression from endometriosis to EAOC carcinogenesis suggests that hormone receptor staining may be proposed as a marker for premalignant or malignant lesions in endometriosis. A reduced HNF 1-beta expression in AE as compared to EAOC, and in particular to CCC, and a higher HNF-1 beta expression in AE as compared to TE has also been reported. The main limit to the use of these molecular markers proposed for the early detection of endometriosis-preneoplastic lesions is that their clinical application may be difficult since they all need expensive molecular analyses. Moreover, strong evidence supporting their systematic use in clinical practice is still lacking. The presence of a serum non-invasive marker for the presence of AE could be more effective and easy to use. Inflammatory parameters, such as the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR), have been found altered in the peripheral blood in patients with endometriosis, thus suggesting that systemic perturbations may contribute to the pathogenetic process of the disease [55]. NLR and PLR have also gained more and more space in the diagnostic and prognostic management of ovarian carcinoma [56]. Indeed, systemic inflammation contributes to cancer initiation and progression by promoting cell proliferation, angiogenesis, and gene repair [57]. To the best of our knowledge, there are no studies in the literature evaluating the possible role of NLR and PLR in predicting AE and its risk of malignant transformation. According to the literature, women with endometriosis had a tripled and doubled risk for CCC and EnOC subtypes, and a more frequent localized form of the disease when cancer arises in endometriosis [58]. Even if cancer arising in endometriosis seems to be characterized by a better prognosis, the early detection of preneoplastic lesions could really impact the quality of life of women with endometriosis. There are some limitations: (1) The non-homogeneous definition of AE in the studies included in the systematic review; (2) Heterogeneity between studies (i.e., study design) included in the systematic review; and (3) Low number of studies included in the systematic review. These limitations suggest that the results should be interpreted with caution until validated by future research projects providing more detailed, well-designed, and standardized data collection.

References

  1. Parazzini, F.; Esposito, G.; Tozzi, L.; Noli, S.; Bianchi, S. Epidemiology of endometriosis and its comorbidities. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017, 209, 3–7.
  2. Sampson, J.A. Endometrial carcinoma of the ovary, arising in endometrial tissue in that organ. Arch. Surg. 1925, 10, 1–72.
  3. Scott, R.B. Malignant changes in endometriosis. Obstet. Gynecol. 1953, 2, 283–289.
  4. Matias-Guiu, X.; Stewart, C.J. Endometriosis-associated ovarian neoplasia. Pathology 2018, 50, 190–204.
  5. Pearce, C.L.; Templeman, C.; Rossing, M.A.; Lee, A.; Near, A.M.; Webb, P.M.; Nagle, C.M.; A Doherty, J.; Cushing-Haugen, K.L.; Wicklund, K.G.; et al. Association between endometriosis and risk of histological subtypes of ovarian cancer: A pooled analysis of case–control studies. Lancet Oncol. 2012, 13, 385–394.
  6. Anglesio, M.S.; Yong, P. Endometriosis-associated Ovarian Cancers. Clin. Obstet. Gynecol. 2017, 60, 711–727.
  7. Wilbur, M.A.; Shih, I.-M.; Segars, J.H.; Fader, A.N. Cancer Implications for Patients with Endometriosis. Semin. Reprod. Med. 2017, 35, 110–116.
  8. Mikami, Y. Endometriosis-related ovarian neoplasms: Pathogenesis and histopathologic features. Diagn. Histopathol. 2014, 20, 357–363.
  9. Králíčková, M.; Laganà, A.S.; Ghezzi, F.; Vetvicka, V. Endometriosis and risk of ovarian cancer: What do we know? Arch. Gynecol. Obstet. 2020, 301, 1–10.
  10. Vetvicka, V.; Fiala, L.; Garzon, S.; Buzzaccarini, G.; Terzic, M.; Laganà, A.S. Endometriosis and gynaecological cancers: Molecular insights behind a complex machinery. Prz. Menopauzalny 2021, 20, 201–206.
  11. Wiegand, K.C.; Shah, S.P.; Al-Agha, O.M.; Zhao, Y.; Tse, K.; Zeng, T.; Senz, J.; McConechy, M.K.; Anglesio, M.S.; Kalloger, S.E.; et al. ARID1AMutations in Endometriosis-Associated Ovarian Carcinomas. N. Engl. J. Med. 2010, 363, 1532–1543.
  12. Wiegand, K.C.; Lee, A.; Al-Agha, O.M.; Chow, C.; E Kalloger, S.; Scott, D.W.; Steidl, C.; Wiseman, S.M.; Gascoyne, R.D.; Gilks, B.; et al. Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J. Pathol. 2011, 224, 328–333.
  13. Sato, N.; Tsunoda, H.; Nishida, M.; Morishita, Y.; Takimoto, Y.; Kubo, T.; Noguchi, M. Loss of het- erozygosity on 10q23.3 and mutation of the tumor suppressor gene PTEN in benign endo- metrial cyst of the ovary: Possible sequence progression from benign endometrial cyst to endometrioid carcinoma and clear cell carcinoma of the ovary. Cancer Res. 2000, 60, 7052–7056.
  14. Yamamoto, S.; Tsuda, H.; Takano, M.; Iwaya, K.; Tamai, S.; Matsubara, O. PIK3CA mutation is an early event in the development of endometriosis-associated ovarian clear cell adenocarcinoma. J. Pathol. 2011, 225, 189–194.
  15. Kato, N.; Sasou, S.-I.; Motoyama, T. Expression of hepatocyte nuclear factor-1beta (HNF-1beta) in clear cell tumors and endometriosis of the ovary. Mod. Pathol. 2005, 19, 83–89.
  16. Fujimura, M.; Hidaka, T.; Kataoka, K.; Yamakawa, Y.; Akada, S.; Teranishi, A.; Saito, S. Absence of Estrogen Receptor-α Expression in Human Ovarian Clear Cell Adenocarcinoma Compared with Ovarian Serous, Endometrioid, and Mucinous Adenocarcinoma. Am. J. Surg. Pathol. 2001, 25, 667–672.
  17. Akahane, T.; Sekizawa, A.; Purwosunu, Y.; Nagatsuka, M.; Okai, T. The Role of p53 Mutation in the Carcinomas Arising from Endometriosis. Int. J. Gynecol. Pathol. 2007, 26, 345–351.
  18. Varma, R.; Rollason, T.; Gupta, J.K.; Maher, E.R. Endometriosis and the neoplastic process. Reproduction 2004, 127, 293–304.
  19. Fukunaga, M.; Nomura, K.; Ishikawa, E.; Ushigome, S. Ovarian atypical endometriosis: Its close association with malignant epithelial tumours. Histopathology 1997, 30, 249–255.
  20. Sevilla, I.; Linde, F.M.; Sánchez, M.D.P.M.; Arense, J.J.; Torroba, A.; Díaz, A.N.; Ferrer, M.L.S. Prognostic importance of atypical endometriosis with architectural hyperplasia versus cytologic atypia in endometriosis-associated ovarian cancer. J. Gynecol. Oncol. 2019, 30, e63.
  21. Berman, J.J.; Albores-Saavedra, J.; Bostwick, D.; DeLellis, R.; Eble, J.; Hamilton, S.R.; Hruban, R.H.; Mutter, G.L.; Page, D.; Rohan, T.; et al. Precancer: A conceptual working definition: Results of a Consensus Conference. Cancer Detect. Prev. 2006, 30, 387–394.
  22. Mikhaleva, L.M.; Davydov, A.; Patsap, O.I.; Mikhaylenko, E.V.; Nikolenko, V.; Neganova, M.E.; Klochkov, S.; Somasundaram, S.; Kirkland, C.E.; Aliev, G. Malignant Transformation and Associated Biomarkers of Ovarian Endometriosis: A Narrative Review. Adv. Ther. 2020, 37, 2580–2603.
  23. Anglesio, M.S.; Papadopoulos, N.; Ayhan, A.; Nazeran, T.M.; Noë, M.; Horlings, H.M.; Lum, A.; Jones, S.; Senz, J.; Seckin, T.; et al. Cancer-Associated Mutations in Endometriosis without Cancer. N. Engl. J. Med. 2017, 376, 1835–1848.
  24. Cochrane, D.R.; Tessier-Cloutier, B.; Lawrence, K.M.; Nazeran, T.; Karnezis, A.N.; Salamanca, C.; Cheng, A.S.; McAlpine, J.N.; Hoang, L.N.; Gilks, C.B.; et al. Clear cell and endometrioid carcinomas: Are their differences attributable to distinct cells of 772 origin? J. Pathol. 2017, 243, 26–36.
  25. Karnezis, A.N.; Cho, K.; Gilks, C.B.; Pearce, C.L.; Huntsman, D.G. The disparate origins of ovarian cancers: Pathogenesis and prevention strategies. Nat. Cancer 2016, 17, 65–74.
  26. Sieh, W.; Köbel, M.; A Longacre, T.; Bowtell, D.D.; Defazio, A.; Goodman, M.T.; Høgdall, E.; Deen, S.; Wentzensen, N.; Moysich, K.B.; et al. Hormone-receptor expression and ovarian cancer survival: An Ovarian Tumor Tissue Analysis consortium study. Lancet Oncol. 2013, 14, 853–862.
  27. Stamp, J.P.; Gilks, C.B.; Wesseling, M.; Eshragh, S.; Ceballos, K.; Anglesio, M.S.; Kwon, J.S.; Tone, A.; Huntsman, D.G.; Carey, M.S. BAF250a Expression in Atypical Endometriosis and Endometriosis-Associated Ovarian Cancer. Int. J. Gynecol. Cancer 2016, 26, 825–832.
  28. Lowery, W.J.; Schildkraut, J.M.; Akushevich, L.; Bentley, R.; Marks, J.R.; Huntsman, D.; Berchuck, A. Loss of ARID1A-Associated Protein Expression is a Frequent Event in Clear Cell and Endometrioid Ovarian Cancers. Int. J. Gynecol. Cancer 2012, 22, 9–14.
  29. Xiao, W.; Awadallah, A.; Xin, W. Loss of ARID1A/BAF250a expression in ovarian endometriosis and clear cell carcinoma. Int. J. Clin. Exp. Pathol. 2012, 5, 642–650.
  30. Yamamoto, S.; Tsuda, H.; Takano, M.; Tamai, S.; Matsubara, O. Loss of ARID1A protein expression occurs as an early event in ovarian clear-cell carcinoma development and frequently coexists with PIK3CA mutations. Mod. Pathol. 2011, 25, 615–624.
  31. Lai, C.-R.; Hsu, C.-Y.; Chen, Y.-J.; Yen, M.-S.; Chao, K.-C.; Li, A.F.-Y. Ovarian cancers arising from endometriosis: A microenvironmental biomarker study including ER, HNF1ß, p53, PTEN, BAF250a, and COX-2. J. Chin. Med. Assoc. 2013, 76, 629–634.
  32. Er, T.-K.; Su, Y.-F.; Wu, C.-C.; Chen, C.-C.; Wang, J.; Hsieh, T.-H.; Herreros-Villanueva, M.; Chen, W.-T.; Chen, Y.-T.; Liu, T.-C.; et al. Targeted next-generation sequencing for molecular diagnosis of endometriosis-associated ovarian cancer. J. Mol. Med. 2016, 94, 835–847.
  33. Kato, M.; Takano, M.; Miyamoto, M.; Sasaki, N.; Goto, T.; Suzuki, A.; Hirata, J.; Sasa, H.; Tsuda, H.; Furuya, K. Effect of ARID1A/BAF250a expression on carcinogenesis and clinicopathological factors in pure-type clear cell adenocarcinoma of the ovary. Mol. Clin. Oncol. 2016, 5, 395–401.
  34. Amemiya, S.; Sekizawa, A.; Otsuka, J.; Tachikawa, T.; Saito, H.; Okai, T. Malignant transformation of endometriosis and genetic alterations of K-ras and microsatellite instability. Int. J. Gynecol. Obstet. 2004, 86, 371–376.
  35. Ali-Fehmi, R.; Khalifeh, I.; Bandyopadhyay, S.; Lawrence, W.D.; Silva, E.; Liao, D.; Sarkar, F.H.; Munkarah, A.R. Patterns of Loss of Heterozygosity at 10q23.3 and Microsatellite Instability in Endometriosis, Atypical Endometriosis, and Ovarian Carcinoma Arising in Association with Endometriosis. Int. J. Gynecol. Pathol. 2006, 25, 223–229.
  36. Yamamoto, S.; Tsuda, H.; Miyai, K.; Takano, M.; Tamai, S.; Matsubara, O. Cumulative alterations of p27Kip1-related cell-cycle regulators in the development of endometriosis-associated ovarian clear cell adenocarcinoma. Histopathology 2010, 56, 740–749.
  37. Kato, M.; Yamamoto, S.; Takano, M.; Matsubara, O.; Furuya, K. Aberrant Expression of the Mammalian Target of Rapamycin, Hypoxia-inducible Factor-1α, and Glucose Transporter 1 in the Development of Ovarian Clear-cell Adenocarcinoma. Int. J. Gynecol. Pathol. 2012, 31, 254–263.
  38. Suryawanshi, S.; Huang, X.; Elishaev, E.; Budiu, R.A.; Zhang, L.; Kim, S.; Donnellan, N.; Mantia-Smaldone, G.; Ma, T.; Tseng, G.; et al. Complement Pathway Is Frequently Altered in Endometriosis and Endometriosis-Associated Ovarian Cancer. Clin. Cancer Res. 2014, 20, 6163–6174.
  39. Matsumoto, T.; Yamazaki, M.; Takahashi, H.; Kajita, S.; Suzuki, E.; Tsuruta, T.; Saegusa, M. Distinct β-Catenin and PIK3CA Mutation Profiles in Endometriosis-Associated Ovarian Endometrioid and Clear Cell Carcinomas. Am. J. Clin. Pathol. 2015, 144, 452–463.
  40. Ma, X.; Hui, Y.; Lin, L.; Wu, Y.; Zhang, X.; Qin, X. Possible relevance of tumor-related genes mutation to malignant transformation of endometriosis. Eur. J. Gynaecol. Oncol. 2016, 37, 89–94.
  41. Zhang, C.; Wang, X.; Anaya, Y.; Parodi, L.; Cheng, L.; Anderson, M.L.; Hawkins, S.M. Distinct molecular pathways in ovarian endometrioid adenocarcinoma with concurrent endometriosis. Int. J. Cancer 2018, 143, 2505–2515.
  42. Jiao, Y.; Lu, B. Poorly differentiated mucinous carcinoma with signet ring cells in an ovarian endometriotic cyst: A case report. Diagn. Pathol. 2019, 14, 73.
  43. Tkalia, I.G.; I Vorobyova, L.; Svintsitsky, V.S.; Nespryadko, S.V.; Goncharuk, I.V.; Lukyanova, N.Y.; Chekhun, V.F. Clinical significance of hormonal receptor status of malignant ovarian tumors. Exp. Oncol. 2014, 36, 125–133.
  44. Chen, S.; Dai, X.; Gao, Y.; Shen, F.; Ding, J.; Chen, Q. The positivity of estrogen receptor and progesterone receptor may not be associated with metastasis and recurrence in epithelial ovarian cancer. Sci. Rep. 2017, 7, 16922.
  45. Chan, K.K.L.; Siu, M.K.Y.; Jiang, Y.X.; Wang, J.J.; Wang, Y.; Leung, T.H.Y.; Liu, S.S.; Cheung, A.N.Y.; Ngan, H.Y.S. Differential expression of estrogen receptor subtypes and variants in ovarian cancer: Effects on cell invasion, proliferation and prognosis. BMC Cancer 2017, 17, 606.
  46. Jiang, X.; Morland, S.J.; Hitchcock, A.; Thomas, E.J.; Campbell, I.G. Allelo- typing of endometriosis with adjacent ovarian carcinoma reveals evidence of a common lineage. Cancer Res. 1998, 58, 1707–1712.
  47. Guan, B.; Rahmanto, Y.S.; Wu, R.-C.; Wang, Y.; Wang, Z.; Wang, T.-L.; Shih, I.-M. Roles of Deletion of Arid1a, a Tumor Suppressor, in Mouse Ovarian Tumorigenesis. JNCI J. Natl. Cancer Inst. 2014, 106, dju146.
  48. Ghai, V.; Jan, H.; Shakir, F.; Haines, P.; Kent, A. Diagnostic delay for superficial and deep endometriosis in the United Kingdom. J. Obstet. Gynaecol. 2020, 40, 83–89.
  49. Hudson, Q.J.; Ashjaei, K.; Perricos, A.; Kuessel, L.; Husslein, H.; Wenzl, R.; Yotova, I. Endometriosis Patients Show an Increased M2 Response in the Peritoneal CD14+low/CD68+low Macrophage Subpopulation Coupled with an Increase in the T-helper 2 and T-regulatory Cells. Reprod. Sci. 2020, 27, 1920–1931.
  50. Seckin, B.; Ates, M.C.; Kirbas, A.; Yesilyurt, H. Usefulness of hematological parameters for differential diagnosis of endometriomas in adolescents/young adults and older women. Int. J. Adolesc. Med. Health 2018, 33.
  51. Králíčková, M.; Vetvicka, V.; Fiala, L.; Laganà, A.S.; Garzon, S. The Search for Biomarkers in Endometriosis: A Long and Windy Road. Reprod. Sci. 2021, 1–7.
  52. Vanhie, A.; Dorien, O.; Peterse, D.; Beckers, A.; Cuéllar, A.; Fassbender, A.; Meuleman, C.; Mestdagh, P.; D’Hooghe, T. Plasma miRNAs as biomarkers for endometriosis. Hum. Reprod. 2019, 34, 1650–1660.
  53. ETIC Endometriosis Treatment Italian Club; Alio, L.; Angioni, S.; Arena, S.; Bartiromo, L.; Bergamini, V.; Berlanda, N.; Bonin, C.; Busacca, M.; Candiani, M.; et al. When more is not better: 10 ’don’ts’ in endometriosis management. An ETIC* position statement. Hum. Reprod. Open 2019, 2019, hoz009.
  54. Jing, X.; Li, C.; Sun, J.; Peng, J.; Dou, Y.; Xu, X.; Ma, C.; Dong, Z.; Liu, Y.; Zhang, H.; et al. Systemic Inflammatory Response Markers Associated with Infertility and Endometrioma or Uterine Leiomyoma in Endometriosis. Ther. Clin. Risk Manag. 2020, 16, 403–412.
  55. Ottolina, J.; Bartiromo, L.; Dolci, C.; Salmeri, N.; Schimberni, M.; Villanacci, R.; Viganò, P.; Candiani, M. Assessment of Coagulation Parameters in Women Affected by Endometriosis: Validation Study and Systematic Review of the Literature. Diagnostics 2020, 10, 567.
  56. Zhao, Z.; Zhao, X.; Lu, J.; Xue, J.; Liu, P.; Mao, H. Prognostic roles of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in ovarian cancer: A meta-analysis of retrospective studies. Arch. Gynecol. Obstet. 2018, 297, 849–857.
  57. Hainaut, P.; Plymoth, A. Targeting the hallmarks of can-cer: Towards a rational approach to next-generation cancer therapy. Curr Opin Oncol 2013, 25, 50–51.
  58. Kim, H.S.; Kim, T.H.; Chung, H.H.; Song, Y.S. Risk and prognosis of ovarian cancer in women with endometriosis: A meta-analysis. Br. J. Cancer 2014, 110, 1878–1890.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , , ,
View Times: 605
Revisions: 2 times (View History)
Update Date: 05 May 2022
1000/1000