Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 -- 2487 2022-04-25 14:03:14 |
2 format correct Meta information modification 2487 2022-04-26 04:21:07 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Lee, Y.S. Lessons from nc886. Encyclopedia. Available online: https://encyclopedia.pub/entry/22244 (accessed on 26 December 2024).
Lee YS. Lessons from nc886. Encyclopedia. Available at: https://encyclopedia.pub/entry/22244. Accessed December 26, 2024.
Lee, Yong Sun. "Lessons from nc886" Encyclopedia, https://encyclopedia.pub/entry/22244 (accessed December 26, 2024).
Lee, Y.S. (2022, April 25). Lessons from nc886. In Encyclopedia. https://encyclopedia.pub/entry/22244
Lee, Yong Sun. "Lessons from nc886." Encyclopedia. Web. 25 April, 2022.
Lessons from nc886
Edit

Non-coding RNAs (ncRNAs), such as microRNAs or long ncRNAs, have brought about a new paradigm in the regulation of gene expression. Sequencing technologies have detected transcripts with tremendous sensitivity and throughput and revealed that the majority of them lack protein-coding potential. Numerous papers on ncRNAs claim a role of ncRNAs they studied. However, it should be carefully evaluated whether the alleged role of an ncRNA is based on concrete data from correctly performed experiments. Here the story about a ncRNA, nc886, will provide lessons and guidelines to study an ncRNA.  

non-coding RNA nc886 overexpression knockdown

1. nc886 Had Been Misidentified

nc886 is a 101 nucleotide (nt) long ncRNA whose aliases include vault RNA2-1, pre-miR-886, etc. As one of its aliases indicates, nc886 was mis-annotated as an miRNA precursor, and its mature miRNAs, miR-886-5p and -3p, had been registered in the miRNA database. In fact, my initial interest in nc886 came from miRNA array data, which yielded miR-886-5p and -3p to be most differentially expressed between malignant and non-malignant cells [1]. However, experimental evidence from my laboratory led to a conclusion that nc886 is not an miRNA [1]. The issue of whether they are functional miRNAs is very important, because most papers on miR-886-5p and -3p employed miRNA study tools (to be elaborated later). If they are not miRNAs, those data should be reexamined.
miRNAs are defined to be ~21 nt-sized small RNAs that are produced from a hairpin precursor (pre-miRNA) by Dicer [2]. A long primary transcript is processed by Drosha to generate a pre-miRNA, which is cleaved by Dicer and is loaded to Argonaute (Ago) family proteins to suppress the expression of target mRNAs (reviewed in [3]). When recognizing target mRNAs, the critical sequence element of an miRNA is a so-called “seed sequence”, which is 6–8 nt at the 5′-side of an miRNA (position 1~2 to 7~8) (reviewed in [4]). Small RNA sequencing (small RNA-seq) by NGS captured RNA fragments corresponding to miR-886-5p and -3p sequences, providing evidence that they exist [5][6][7][8]. However, the existence of RNA fragments does not guarantee that they are real miRNAs, because there are various types of small RNAs and miRNA is one of them (reviewed in [9]). Currently available data, such as Northern blot and miRNA activity assays, unequivocally indicate that nc886 does not produce miR-886-5p or -3p at a level that could be significant as a functional miRNA [1][10][11][12][13][14][15]. Northern blot in all these papers failed to detect a ~21-nt band. Even when detected, the bands were extremely minute in quantity and appeared to be smeared [16][17], indicating that they are degradation products of nc886. In fact, the steady-state level of nc886 is very abundant, despite its short half-life [1][18], leading to an expectation that a significant amount of degradation products are continuously produced.
In conclusion, RNA fragments corresponding to miR-886-5p or -3p exist, but they are most likely to be degradation products whose level is negligible compared to the intact, 101 nt long nc886. Nonetheless, there are a number of papers about miR-886-5p or -3p (40 articles retrieved in the PubMed database when searched by “miR-886-3p OR miR-886-5p”). I will discuss here whether data in the literature could draw a conclusion that miR-886-5p or -3p are functional miRNAs.

2. What Is Measured versus What Really Exists; Are They the Same?

The majority of the papers on miR-886-5p or -3p came from an attempt to find an miRNA that played a role in a biological situation of their interest. miRNA study typically begins with array experiments to screen an miRNA whose expression levels are altered. In hybridization-based array platforms, probes for miR-886-5p or -3p will also detect nc886. PCR-based arrays, which usually employ the TaqMan PCR technique [19], cannot distinguish nc886 from miR-886-3p in principle, since they share an almost identical 3′-end. In agreement with this notion, a significant fraction of studies employing TaqMan array platforms claimed to preferentially detect miR-886-3p rather than -5p [20][21][22][23][24]. What they detected was probably nc886, as inferred from the aforementioned Northern blot results [1][10][11][12][13][14][15][16][17]. Hence, a positive signal in array platforms cannot prove the existence of miR-886-5p or -3p. This would be easily understandable if compared with conventional array experiments to measure gene expression. Array probes are an oligonucleotides complementary to the target mRNA. From the positive hybridization signal, everyone notices the mRNA expression level, but nobody would insist that an RNA fragment corresponding to the probe sequence exists naturally. In many cases of hybridization-based arrays, miR-886-5p and -3p exhibited a similar expression pattern [25][26][27][28]. These data strongly indicate that nc886 was what they detected, similar to the case of conventional arrays, where an mRNA is detected by multiple probes.

3. The Mistaken Identity Misleads Functional Approaches

When researchers have selected an miRNA of their interest, the next step is typically to examine cellular phenotypes and target mRNAs by performing overexpression or knockdown (KD) experiments. The most prevalent method is to transfect an miRNA mimic or inhibitor. Caution is required, especially when using an miRNA mimic. It should be noted that miRNA mimics are a chemically synthesized RNA duplex, whereas natural miRNAs are single-stranded.
To understand this discrepancy, a story about miRNA and RNA interference (RNAi) needs to be told (reviewed in [29]). In the RNAi pathway, long double-stranded RNA (dsRNA) is cleaved by Dicer to produce small interfering RNAs (siRNAs) that are a ~21 nt duplex with a 2 nt overhang at the 3′-ends. A duplex with such an end structure is exactly the Dicer/Drosha processing product in the miRNA pathway [3]. The miRNA and RNAi pathways merge at the Dicer step to produce miRNA and siRNA duplexes with nearly identical structure, and then both of them are loaded to Ago proteins to suppress target mRNAs. When loaded to Ago proteins, only one strand (called the “guide strand”) survives to recognize target mRNAs, but the other strand (the “passenger strand) is degraded. Once loaded on Ago proteins, it is not distinguishable whether the RNA was originally from an miRNA or an siRNA. This is the reason for an siRNA’s off-target effect, as first documented by the Dutta laboratory [30]. Although an siRNA is designed to be perfectly complementary to its target mRNA, it could suppress a number of unintended mRNAs (off-targets) with a complementary sequence to the seed region (positions 1~2 to 7~8 of an miRNA) via an miRNA mechanism [29]. Since the seed region is only 6–8 nt long, the probability of appearance is once per ~4 to 64 kb, which estimates more than several tens of thousands of target sites in the human genome sequence. This estimation, albeit a simple arithmetic calculation, indicates that any siRNA is likely to have a significant number of off-targets.
The above story provided a theoretical background to justify the use of an siRNA-like duplex as the functional mimic of a miRNA [31]. Although very briefly described above, there were a significant number of research endeavors to establish this miRNA overexpression method. In addition, the story gives an important note of strict warning that an siRNA-like duplex must be used only for bona fide miRNAs. If an siRNA-like duplex is used for overexpression of a small RNA which is not an miRNA, it will lead to suppression of off-target mRNAs, which is irrelevant to the small RNA’s genuine biological role. As a result, the experimental data will be entirely artifactual. miR-886-5p and -3p are such examples.
From overexpression data, several papers claimed that they found a cellular role of miR-886-5p or -3p and identified target mRNAs [7][8][16][32][33][34][35][36][37]. However, any experimental data obtained from the transfection of miR-886-5p or -3p mimics do not reflect their natural role nor prove their existence. For easy understanding, I want to present a suppositional situation that a researcher uses an siRNA against a gene, for example, TP53 (encoding p53, a tumor suppressor protein). Transfecting the siRNA will lead to KD of TP53 and other off-target genes to elicit a resultant phenotype. However, this does not prove their biological existence nor a natural role of “a small RNA antisense to TP53”. Nobody would be interested in it, either. Likewise, an miR-886-5p or 3p mimic is an siRNA-like synthetic duplex; thus, it will suppress some off-target genes to cause a certain phenotype, when transfected into cells. However, this cannot be evidence for the natural existence or role of miR-886-5p or -3p, as in the case of “a small RNA antisense to TP53”. Some studies imply that a phenotype resulting from the transfection of an miR-886-5p or -3p mimic represents the gain-of-function of nc886, because they claim that miR-886-5p or -3p is derived from nc886 [7][8]. However, an miR-886-5p or -3p mimic might lead to a loss-of-function by acting as an siRNA targeting nc886. In fact, one report used an siRNA for nc886 KD [38].

4. Features of ncRNA also Matter When Designing Gain-of-Function Experiments

Plasmid vectors are the most common tool for the ectopic expression of a gene. nc886 is silenced in a number of cancer cell lines. When attempting its ectopic expression in these cell lines, the vector-based method should certainly be the primary choice. In this strategy, knowledge of nc886 is needed for optimal experimental design.
nc886 is transcribed by RNA polymerase III (Pol III), but not by RNA polymerase II (Pol II) [17][18][39][40][41]. Genes transcribed by Pol III (shortly, “Pol III genes” or “Pol III transcripts”) are classified into three types, according to cis-acting promoter elements that determine which initiation subunits of the Pol III enzyme to be recruited (reviewed in [42]). Representative genes for type 1, 2, and 3 are 5S rRNA, tRNAs, and U6 snRNA, respectively. nc886 contains gene-internal promoter elements, A and B boxes, which resemble those of type 2. Some type 2 Pol III genes, such as vault RNAs (vtRNAs), 7SL RNA, and BC200, also require their 5′-upstream sequence, in addition to A and B boxes, and these genes are sub-classified as type 2H (reviewed in [43]). nc886 is a paralog of vtRNAs and is supposed to belong to the type 2H. Actually, in my unpublished data, nc886 was efficiently expressed from a plasmid devoid of a mammalian promoter only when > 200 nt at the 5′-upstream was inserted together with the nc886 RNA region. This was one way to construct an nc886-expressing plasmid. Another way was to insert the nc886 RNA region under the U6 or H1 promoter, which is a type 3 Pol III promoter. Plasmids constructed according to these two strategies expressed nc886 correctly, as indicated by a single band at the identical size of the endogenous nc886 in Northern blot [1][13][18][44]. Moreover, when stable cell lines expressing nc886 were made with these plasmids, the ectopic expression level of nc886 was comparable to the endogenous levels of cell lines naturally expressing nc886 [13]. These data ascertained the legitimacy of the ectopic expression and the reliability of the resultant phenotypes.
Commonly used expression vectors have a strong promoter, which is usually adopted from viruses such as cytomegalovirus (CMV) or simian virus 40 (SV40). A couple of studies employed these vectors to construct nc886-expression plasmids [36][45]. It should be pointed out that the CMV or SV40 promoter is for Pol II. Most likely, Pol II will ignore a TTTT sequence, the termination signal for Pol III transcription, at the 3′-end of nc886. It is also questionable whether the transcription driven by an entirely irrelevant promoter would start at the correct position. Consequently, those plasmids are presumed to yield longer transcripts harboring the nc886 sequence. These extended transcripts cannot be distinguished from the correct nc886 of 101 nt, if qRT-PCR is employed as a method to confirm overexpression. I do not rule out a possibility that those Pol II transcripts might be capable of mimicking nc886 functionally, because they contain the nc886 sequence. Nevertheless, certainly there exists a risk that it cannot present nc886′s function, for a number of plausible reasons. These long, Pol II transcripts are likely to undergo a path different from the Pol III-transcribed nc886. As a result, they might lack necessary post-transcriptional processing steps or be mis-localized within a cell. Appending sequences in the longer nc886 transcripts might interfere with the formation of the nc886′s correct secondary structure.
In one report, a sufficient length (>200 nt) of the 5′-upstream sequence, together with the nc886 RNA region (101 nt), was inserted downstream of a Pol II promoter [36]. Such a plasmid is expected to drive transcription of the correct nc886 RNA, in addition to long Pol II transcripts. Nonetheless, there are still concerns. A potent Pol II promoter might keep recruiting the Pol II enzyme complex, which competes with the Pol III enzyme complex for occupation on DNA, resulting in low-level expression of the correct nc886. Longer Pol II transcripts might inhibit the correct nc886 in a dominant-negative manner. These concerns indicate a need to conduct Northern blot or any functional assay to confirm whether the correct nc886 is expressed at a sufficient quantity.

5. Choosing a KD Method

RNAi-based methods and modified antisense oligonucleotides (ASO) are commonly used for KD of a gene (reviewed in [46]). RNAi-based KD is usually highly effective for protein-coding genes, but ineffective for some ncRNAs [47]. In addition, for nc886, RNAi-based method does not seem to be effective according to a report [38] in which they transfected an siRNA against nc886 and measured the activity of protein kinase R (PKR), a protein that nc886 normally suppresses [1][48][49][50]. PKR is typically activated by long dsRNAs (>55 nt) that are generated during viral infection. Since PKR should be autophosphorylated for its kinase activity, Western blot analysis of a phosphorylated form of PKR (phospho-PKR) is indicative of its activation [51]. The transfection of siRNA against nc886 led to an increase in phospho-PKR, indicating nc886 KD [38], but the fold-increase was very modest as compared to those in dsRNA or legitimate KD of nc886 (see below).
The standard method for nc886 KD in my laboratory is to transfect a 20 nt long ASO, having five 2′-O-methyl ribonucleotides at both ends [1]. The backbone is phosphorothioate-modified. This design is a DNA-RNA mixmer, based on RNaseH-mediated cleavage of the heteroduplex between a target RNA and the middle DNA portion of the ASO [52][53]. The transfection of this ASO into various cell lines led to efficient KD, as indicated by the measurement of the nc886 and phospho-PKR. In most cases, the 101 nt nc886 band was clearly decreased in Northern hybridization, and phospho-PKR was robustly increased to a comparable degree by its canonical activator dsRNA [1][10][11][13][54][55][56][57].
Because it was mis-identified as an miRNA, several papers intended the KD of miR-886-5p or -3p using commercially available miRNA inhibitors [16][32][35][58]. These inhibitors are also modified ASOs and thus, could have suppressed nc886. However, in these papers, nc886 was not their purpose and thus, was not measured. These miRNA inhibitor ASOs are worth considering for nc886 KD, although the DNA-RNA mixmer works well in most cell lines.

References

  1. Lee, K.; Kunkeaw, N.; Jeon, S.H.; Lee, I.; Johnson, B.H.; Kang, G.Y.; Bang, J.Y.; Park, H.S.; Leelayuwat, C.; Lee, Y.S. Precursor miR-886, a novel noncoding RNA repressed in cancer, associates with PKR and modulates its activity. RNA 2011, 17, 1076–1089.
  2. Ambros, V.; Bartel, B.; Bartel, D.P.; Burge, C.B.; Carrington, J.C.; Chen, X.; Dreyfuss, G.; Eddy, S.R.; Griffiths-Jones, S.; Marshall, M.; et al. A uniform system for microRNA annotation. RNA 2003, 9, 277–279.
  3. Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524.
  4. Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233.
  5. Landgraf, P.; Rusu, M.; Sheridan, R.; Sewer, A.; Iovino, N.; Aravin, A.; Pfeffer, S.; Rice, A.; Kamphorst, A.O.; Landthaler, M.; et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007, 129, 1401–1414.
  6. Yang, J.H.; Shao, P.; Zhou, H.; Chen, Y.Q.; Qu, L.H. deepBase: A database for deeply annotating and mining deep sequencing data. Nucleic Acids Res. 2010, 38, D123–D130.
  7. Minones-Moyano, E.; Friedlander, M.R.; Pallares, J.; Kagerbauer, B.; Porta, S.; Escaramis, G.; Ferrer, I.; Estivill, X.; Marti, E. Upregulation of a small vault RNA (svtRNA2-1a) is an early event in Parkinson disease and induces neuronal dysfunction. RNA Biol. 2013, 10, 1093–1106.
  8. Fort, R.S.; Garat, B.; Sotelo-Silveira, J.R.; Duhagon, M.A. vtRNA2-1/nc886 Produces a Small RNA That Contributes to Its Tumor Suppression Action through the microRNA Pathway in Prostate Cancer. Noncoding RNA 2020, 6, 7.
  9. Rigoutsos, I.; Londin, E.; Kirino, Y. Short RNA regulators: The past, the present, the future, and implications for precision medicine and health disparities. Curr. Opin. Biotechnol. 2019, 58, 202–210.
  10. Lee, K.S.; Park, J.L.; Lee, K.; Richardson, L.E.; Johnson, B.H.; Lee, H.S.; Lee, J.S.; Kim, S.B.; Kwon, O.H.; Song, K.S.; et al. nc886, a non-coding RNA of anti-proliferative role, is suppressed by CpG DNA methylation in human gastric cancer. Oncotarget 2014, 5, 3944–3955.
  11. Lee, H.S.; Lee, K.; Jang, H.J.; Lee, G.K.; Park, J.L.; Kim, S.Y.; Kim, S.B.; Johnson, B.H.; Zo, J.I.; Lee, J.S.; et al. Epigenetic silencing of the non-coding RNA nc886 provokes oncogenes during human esophageal tumorigenesis. Oncotarget 2014, 5, 3472–3481.
  12. Jang, H.J.; Lee, H.S.; Burt, B.M.; Lee, G.K.; Yoon, K.A.; Park, Y.Y.; Sohn, B.H.; Kim, S.B.; Kim, M.S.; Lee, J.M.; et al. Integrated genomic analysis of recurrence-associated small non-coding RNAs in oesophageal cancer. Gut 2016, 66, 215–225.
  13. Ahn, J.H.; Lee, H.S.; Lee, J.S.; Lee, Y.S.; Park, J.L.; Kim, S.Y.; Hwang, J.A.; Kunkeaw, N.; Jung, S.Y.; Kim, T.J.; et al. nc886 is induced by TGF-beta and suppresses the microRNA pathway in ovarian cancer. Nat. Commun. 2018, 9, 1166.
  14. Nandy, C.; Mrazek, J.; Stoiber, H.; Grasser, F.A.; Huttenhofer, A.; Polacek, N. Epstein-barr virus-induced expression of a novel human vault RNA. J. Mol. Biol. 2009, 388, 776–784.
  15. Kong, L.; Hao, Q.; Wang, Y.; Zhou, P.; Zou, B.; Zhang, Y.X. Regulation of p53 expression and apoptosis by vault RNA2-1-5p in cervical cancer cells. Oncotarget 2015, 6, 28371–28388.
  16. Pillai, M.M.; Yang, X.; Balakrishnan, I.; Bemis, L.; Torok-Storb, B. MiR-886-3p down regulates CXCL12 (SDF1) expression in human marrow stromal cells. PLoS ONE 2010, 5, e14304.
  17. Treppendahl, M.B.; Qiu, X.; Sogaard, A.; Yang, X.; Nandrup-Bus, C.; Hother, C.; Andersen, M.K.; Kjeldsen, L.; Mollgard, L.; Hellstrom-Lindberg, E.; et al. Allelic methylation levels of the noncoding VTRNA2-1 located on chromosome 5q31.1 predict outcome in AML. Blood 2012, 119, 206–216.
  18. Park, J.L.; Lee, Y.S.; Song, M.J.; Hong, S.H.; Ahn, J.H.; Seo, E.H.; Shin, S.P.; Lee, S.J.; Johnson, B.H.; Stampfer, M.R.; et al. Epigenetic regulation of RNA polymerase III transcription in early breast tumorigenesis. Oncogene 2017, 36, 6793–6804.
  19. Chen, C.; Ridzon, D.A.; Broomer, A.J.; Zhou, Z.; Lee, D.H.; Nguyen, J.T.; Barbisin, M.; Xu, N.L.; Mahuvakar, V.R.; Andersen, M.R.; et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005, 33, e179.
  20. Perfetti, A.; Greco, S.; Bugiardini, E.; Cardani, R.; Gaia, P.; Gaetano, C.; Meola, G.; Martelli, F. Plasma microRNAs as biomarkers for myotonic dystrophy type 1. Neuromuscul. Disord. 2014, 24, 509–515.
  21. Schou, J.V.; Rossi, S.; Jensen, B.V.; Nielsen, D.L.; Pfeiffer, P.; Hogdall, E.; Yilmaz, M.; Tejpar, S.; Delorenzi, M.; Kruhoffer, M.; et al. miR-345 in metastatic colorectal cancer: A non-invasive biomarker for clinical outcome in non-KRAS mutant patients treated with 3rd line cetuximab and irinotecan. PLoS ONE 2014, 9, e99886.
  22. Suojalehto, H.; Lindstrom, I.; Majuri, M.L.; Mitts, C.; Karjalainen, J.; Wolff, H.; Alenius, H. Altered microRNA expression of nasal mucosa in long-term asthma and allergic rhinitis. Int. Arch. Allergy Immunol. 2014, 163, 168–178.
  23. Dettmer, M.S.; Perren, A.; Moch, H.; Komminoth, P.; Nikiforov, Y.E.; Nikiforova, M.N. MicroRNA profile of poorly differentiated thyroid carcinomas: New diagnostic and prognostic insights. J. Mol. Endocrinol. 2014, 52, 181–189.
  24. Krintel, S.B.; Dehlendorff, C.; Hetland, M.L.; Horslev-Petersen, K.; Andersen, K.K.; Junker, P.; Podenphant, J.; Ellingsen, T.; Ahlquist, P.; Lindegaard, H.M.; et al. Prediction of treatment response to adalimumab: A double-blind placebo-controlled study of circulating microRNA in patients with early rheumatoid arthritis. Pharm. J. 2016, 16, 141–146.
  25. Gao, W.; Shen, H.; Liu, L.; Xu, J.; Shu, Y. MiR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J. Cancer Res. Clin. Oncol. 2011, 137, 557–566.
  26. Yu, X.F.; Zou, J.; Bao, Z.J.; Dong, J. miR-93 suppresses proliferation and colony formation of human colon cancer stem cells. World J. Gastroenterol. 2011, 17, 4711–4717.
  27. Xiao, W.; Bao, Z.X.; Zhang, C.Y.; Zhang, X.Y.; Shi, L.J.; Zhou, Z.T.; Jiang, W.W. Upregulation of miR-31* is negatively associated with recurrent/newly formed oral leukoplakia. PLoS ONE 2012, 7, e38648.
  28. Cui, F.M.; Li, J.X.; Chen, Q.; Du, H.B.; Zhang, S.Y.; Nie, J.H.; Cao, J.P.; Zhou, P.K.; Hei, T.K.; Tong, J. Radon-induced alterations in micro-RNA expression profiles in transformed BEAS2B cells. J. Toxicol. Environ. Health A 2013, 76, 107–119.
  29. Lam, J.K.; Chow, M.Y.; Zhang, Y.; Leung, S.W. siRNA Versus miRNA as Therapeutics for Gene Silencing. Mol. Ther. Nucleic Acids 2015, 4, e252.
  30. Saxena, S.; Jonsson, Z.O.; Dutta, A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J. Biol. Chem. 2003, 278, 44312–44319.
  31. Hutvagner, G.; Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002, 297, 2056–2060.
  32. Zhang, L.L.; Wu, J.; Liu, Q.; Zhang, Y.; Sun, Z.L.; Jing, H. MiR-886-5p inhibition inhibits growth and induces apoptosis of MCF7 cells. Asian Pac. J. Cancer Prev. 2014, 15, 1511–1515.
  33. Tahiri, A.; Leivonen, S.K.; Luders, T.; Steinfeld, I.; Ragle Aure, M.; Geisler, J.; Makela, R.; Nord, S.; Riis, M.L.; Yakhini, Z.; et al. Deregulation of cancer-related miRNAs is a common event in both benign and malignant human breast tumors. Carcinogenesis 2014, 35, 76–85.
  34. Xiong, Y.; Zhang, L.; Holloway, A.K.; Wu, X.; Su, L.; Kebebew, E. MiR-886-3p regulates cell proliferation and migration, and is dysregulated in familial non-medullary thyroid cancer. PLoS ONE 2011, 6, e24717.
  35. Nordentoft, I.; Birkenkamp-Demtroder, K.; Agerbaek, M.; Theodorescu, D.; Ostenfeld, M.S.; Hartmann, A.; Borre, M.; Orntoft, T.F.; Dyrskjot, L. miRNAs associated with chemo-sensitivity in cell lines and in advanced bladder cancer. BMC Med. Genom. 2012, 5, 40.
  36. Cao, J.; Song, Y.; Bi, N.; Shen, J.; Liu, W.; Fan, J.; Sun, G.; Tong, T.; He, J.; Shi, Y.; et al. DNA methylation-mediated repression of miR-886-3p predicts poor outcome of human small cell lung cancer. Cancer Res. 2013, 73, 3326–3335.
  37. Li, J.H.; Xiao, X.; Zhang, Y.N.; Wang, Y.M.; Feng, L.M.; Wu, Y.M.; Zhang, Y.X. MicroRNA miR-886-5p inhibits apoptosis by down-regulating Bax expression in human cervical carcinoma cells. Gynecol. Oncol. 2011, 120, 145–151.
  38. Hu, Z.; Zhang, H.; Tang, L.; Lou, M.; Geng, Y. Silencing nc886, a Non-Coding RNA, Induces Apoptosis of Human Endometrial Cancer Cells-1A In Vitro. Med. Sci. Monit. 2017, 23, 1317–1324.
  39. Oler, A.J.; Alla, R.K.; Roberts, D.N.; Wong, A.; Hollenhorst, P.C.; Chandler, K.J.; Cassiday, P.A.; Nelson, C.A.; Hagedorn, C.H.; Graves, B.J.; et al. Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat. Struct. Mol. Biol. 2010, 17, 620–628.
  40. Canella, D.; Praz, V.; Reina, J.H.; Cousin, P.; Hernandez, N. Defining the RNA polymerase III transcriptome: Genome-wide localization of the RNA polymerase III transcription machinery in human cells. Genome Res. 2010, 20, 710–721.
  41. Moqtaderi, Z.; Wang, J.; Raha, D.; White, R.J.; Snyder, M.; Weng, Z.; Struhl, K. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells. Nat. Struct. Mol. Biol. 2010, 17, 635–640.
  42. Schramm, L.; Hernandez, N. Recruitment of RNA polymerase III to its target promoters. Genes Dev. 2002, 16, 2593–2620.
  43. Kessler, A.C.; Maraia, R.J. The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance. Nucleic Acids Res. 2021, 49, 12017–12034.
  44. Li, F.; Chen, Y.; Zhang, Z.; Ouyang, J.; Wang, Y.; Yan, R.; Huang, S.; Gao, G.F.; Guo, G.; Chen, J.L. Robust expression of vault RNAs induced by influenza A virus plays a critical role in suppression of PKR-mediated innate immunity. Nucleic Acids Res. 2015, 43, 10321–10337.
  45. Fort, R.S.; Matho, C.; Geraldo, M.V.; Ottati, M.C.; Yamashita, A.S.; Saito, K.C.; Leite, K.R.M.; Mendez, M.; Maedo, N.; Mendez, L.; et al. Nc886 is epigenetically repressed in prostate cancer and acts as a tumor suppressor through the inhibition of cell growth. BMC Cancer 2018, 18, 127.
  46. Crooke, S.T.; Liang, X.H.; Baker, B.F.; Crooke, R.M. Antisense technology: A review. J. Biol. Chem. 2021, 296, 100416.
  47. Lennox, K.A.; Behlke, M.A. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res. 2016, 44, 863–877.
  48. Jeon, S.H.; Lee, K.; Lee, K.S.; Kunkeaw, N.; Johnson, B.H.; Holthauzen, L.M.; Gong, B.; Leelayuwat, C.; Lee, Y.S. Characterization of the direct physical interaction of nc886, a cellular non-coding RNA, and PKR. FEBS Lett. 2012, 586, 3477–3484.
  49. Calderon, B.M.; Conn, G.L. Human noncoding RNA 886 (nc886) adopts two structurally distinct conformers that are functionally opposing regulators of PKR. RNA 2017, 23, 557–566.
  50. Lee, Y.S.; Kunkeaw, N.; Lee, Y.S. Protein kinase R and its cellular regulators in cancer: An active player or a surveillant? Wiley Interdiscip. Rev. RNA 2020, 11, e1558.
  51. Cole, J.L. Activation of PKR: An open and shut case? Trends Biochem. Sci. 2007, 32, 57–62.
  52. Yoo, B.H.; Bochkareva, E.; Bochkarev, A.; Mou, T.C.; Gray, D.M. 2′-O-methyl-modified phosphorothioate antisense oligonucleotides have reduced non-specific effects in vitro. Nucleic Acids Res. 2004, 32, 2008–2016.
  53. Ideue, T.; Hino, K.; Kitao, S.; Yokoi, T.; Hirose, T. Efficient oligonucleotide-mediated degradation of nuclear noncoding RNAs in mammalian cultured cells. RNA 2009, 15, 1578–1587.
  54. Kunkeaw, N.; Jeon, S.H.; Lee, K.; Johnson, B.H.; Tanasanvimon, S.; Javle, M.; Pairojkul, C.; Chamgramol, Y.; Wongfieng, W.; Gong, B.; et al. Cell death/proliferation roles for nc886, a non-coding RNA, in the protein kinase R pathway in cholangiocarcinoma. Oncogene 2013, 32, 3722–3731.
  55. Lee, E.K.; Hong, S.H.; Shin, S.; Lee, H.S.; Lee, J.S.; Park, E.J.; Choi, S.S.; Min, J.W.; Park, D.; Hwang, J.A.; et al. nc886, a non-coding RNA and suppressor of PKR, exerts an oncogenic function in thyroid cancer. Oncotarget 2016, 7, 75000–75012.
  56. Kunkeaw, N.; Lee, Y.S.; Im, W.R.; Jang, J.J.; Song, M.J.; Yang, B.; Park, J.L.; Kim, S.Y.; Ku, Y.; Kim, Y.; et al. Mechanism mediated by a noncoding RNA, nc886, in the cytotoxicity of a DNA-reactive compound. Proc. Natl. Acad. Sci. USA 2019, 116, 8289–8294.
  57. Lee, Y.S.; Bao, X.; Lee, H.H.; Jang, J.J.; Saruuldalai, E.; Park, G.; Im, W.R.; Park, J.L.; Kim, S.Y.; Shin, S.; et al. Nc886, a Novel Suppressor of the Type I Interferon Response Upon Pathogen Intrusion. Int. J. Mol. Sci. 2021, 22, 2003.
  58. Mahishi, L.H.; Hart, R.P.; Lynch, D.R.; Ratan, R.R. miR-886-3p levels are elevated in Friedreich ataxia. J. Neurosci. 2012, 32, 9369–9373.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 314
Revisions: 2 times (View History)
Update Date: 26 Apr 2022
1000/1000
Video Production Service