Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 Terrigenous input proxies from XRF (ln Ti/Ca and ln K/Ca) detect three drier periods (i.e., before ~17, ~15–13.5, and 7–3 ka BP) and three wetter periods (i.e., ~17–15, ~13.5–7, and after ~3 ka BP) which represent the AISM rainfall changes. + 991 word(s) 991 2020-09-11 11:59:22 |
2 update layout Meta information modification 991 2020-09-15 12:05:11 | |
3 update type + 780 word(s) 1771 2020-11-09 09:27:49 |

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Ardi, R.D.W.; Aswan, .; Maryunani, K.A.; Yulianto, E.; Putra, P.S.; Nugroho, S.H.; Istiana, I. Last Deglaciation Rainfall Changes. Encyclopedia. Available online: (accessed on 24 June 2024).
Ardi RDW, Aswan , Maryunani KA, Yulianto E, Putra PS, Nugroho SH, et al. Last Deglaciation Rainfall Changes. Encyclopedia. Available at: Accessed June 24, 2024.
Ardi, Ryan Dwi Wahyu, Aswan, Khoiril Anwar Maryunani, Eko Yulianto, Purna Sulastya Putra, Septriono Hari Nugroho, Istiana Istiana. "Last Deglaciation Rainfall Changes" Encyclopedia, (accessed June 24, 2024).
Ardi, R.D.W., Aswan, ., Maryunani, K.A., Yulianto, E., Putra, P.S., Nugroho, S.H., & Istiana, I. (2020, September 15). Last Deglaciation Rainfall Changes. In Encyclopedia.
Ardi, Ryan Dwi Wahyu, et al. "Last Deglaciation Rainfall Changes." Encyclopedia. Web. 15 September, 2020.
Last Deglaciation Rainfall Changes

Three drier periods (lower rainfall) (i.e., before ~17, ~1513.5, and 7–3 ka BP) and three wetter periods (higher rainfall) (i.e., ~17–15, ~13.5–7, and after ~3 ka BP) were detected on Southern Indonesia (off southwest Sumba) based on geochemical element (terrigenous input) proxies (ln Ti/Ca and K/Ca). During the Last Deglaciation, AISM rainfall responded to high latitude climatic events related to the latitudinal shifts of the austral summer ITCZ. Sea level rise, solar activity, and orbitally-induced insolation were most likely the primary driver of AISM rainfall changes during the Holocene, but the driving mechanisms behind the latitudinal shifts of the austral summer ITCZ during this period are not yet understood.

paleoclimate Australian-Indonesian monsoon elemental ratio Southern Indonesia

1. Introduction

Despite its importance to the livelihood of people in the densely populated Southern Indonesia region, Australian-Indonesian monsoon (AIM) rainfall is still poorly understood [1][2]. A study on AIM past changes is significant to generate robust analogs as the basis to predict and model AIM rainfall future changes [3][4]. Previous studies from both marine and non-marine proxies in the AIM region (Southern Indonesia and Northern Australia) suggested millennial – multi-millennial scale changes of AIM during the Last Glacial Maximum (LGM)—Holocene [1][5][6][7][8][9][10]. Based on modern conditions as analog, drier (wetter), or lower (higher) rainfall conditions characterizes the Australian-Indonesian winter (summer) monsoon intensification [2][11]. In general, drier condition was inferred at Last Glacial while wetter condition characterized the Holocene [1][7][8][11][12][13]. Throughout the Last Deglaciation, wetter and drier periods on a millennial-scale which corresponded to the high latitude climatic events (i.e., Heinrich Stadial 1, Antarctic Cold Reversal, Bølling-Allerød Interstadial, and Younger Dryas) were inferred [1][8][9][10][14]. This indicates the importance of atmospheric-oceanic interhemispheric teleconnection on past AIM changes [1][4][15]. Wetter and drier periods on millennial scales were also inferred throughout the Holocene [1][2][8][10]. The Early Holocene (~11–7 ka BP) was characterized by wetter conditions [6][7][16] while Mid and Late Holocene were marked by the contrast condition between Southern Indonesia (drier Mid Holocene and wetter Late Holocene) [1][5][7][16] and Northern Australia (wetter Mid Holocene and drier Late Holocene) [13][17][18][19].

Orbital-induced insolation, solar forcing, glacial-interglacial changes in climatic and oceanographic conditions (i.e., surface temperature and eustatic sea level), and the high latitude climatic events (caused by the gradual melting of northern high latitude ice sheets) were most likely the driving mechanisms of AIM variability during the Last Glacial—Holocene which resulted in the changes of AIM rainfall [1][2][7][8][11]. The orbital forcing variability affects the insolation changes on a multi-millennial scale [15][20][21][22]. In the case of AIM, the rising (decreasing) in southern hemisphere (SH) insolation results in a stronger (weaker) Australian-Indonesian summer monsoon (AISM) [4]. Variability of solar forcing induces the earth’s surface temperature, which affects the quantity of atmospheric water vapor from seawater evaporation [23]. The rise and fall of eustatic sea levels are related to the changes in polar ice volume, which are induced by the changes in surface temperature [4][24]. Gradual melting of the northern high latitude ice sheets was responsible for the changes of Atlantic Meridional Ocean Circulation (AMOC), which resulted in the high latitude climatic events throughout the Last Deglaciation [15]. Although the past AMOC changes were induced by events in the North Atlantic, their effects could have extended to the SH through the “bipolar seesaw mechanism” [25][26]. This mechanism can be depicted by the co-occurrence of Bølling-Allerød Interstadial (B-A) (warm event) in the northern hemisphere (NH) and Antarctic Cold Reversal (ACR) (cold event) in SH ~15–13.5-kilo annum (ka) Before Present (BP) [15].

Southern Indonesia is an ideal region to investigate the past AIM changes as the contrast rainfall between the AIWM (lower) and AISM (higher) monsoon is detected here, which indicates AIM as the principal driver of rainfall [27]. While most of the previous studies in this region inferred a similar trend in AIM rainfall since the LGM [1][2][6][7][10][16], a discrepancy has been inferred between marine records on the sea around Sumba Island [5][28]. A marine record on off northwest Sumba inferred drier (wetter) condition on Mid (Late) Holocene [2] while the opposite condition was detected on the southwestern Savu Sea [28] (Figure 1) which corresponds to Mid–Late Holocene AIM rainfall in Northern Australia [13][17][18][19].

This research used the logarithmic values of elemental ratios (ln Ti/Ca and ln K/Ca) which are suggested to reflect the river runoff (terrigenous input) [1][5][8][10]. These proxies are widely applied to infer the past changes in AIM rainfall linked to the strengthening and the weakening of AISM [1][5][8][10][29]. The elemental data was obtained from X-Ray Fluorescence (XRF). XRF’s main advantage lies in the direct acquisition of elemental data without complicated sample preparation, which will shorten the analysis time, even if a higher resolution is desired [30][31]. The elemental data obtained from XRF analysis are semi-quantitative and require conversion before its application to quantitative analysis [30]. The conversion of XRF-determined elemental data, which involves mass-balance and flux calculations, tends to be biased due to elemental interactions, the effect of specimen inhomogeneities, the variety of water content, and the lack of control on geometric measurements [30][32][33]. The application of elemental ratios (presented in logarithmic values) instead of single element data is suggested and proven efficient by many authors in minimizing the semi-quantitative factors of XRF analysis [32][33][34][35].

The palynological proxies (pollen and spores), which indicated climatic-induced vegetation changes [36][37][38][39][40], were also employed. Rainfall, as one of the paleoclimate parameters, can be reflected too by the abundance of pollen and spores (e.g., Poaceae and Pteridophyta) recorded in marine sediments [36][38][39]. For Southern Indonesia, the inferred rainfall is most likely AIM rainfall [28].

2. Palynological Proxies

During the Last Deglaciation, the rainfall changes were most likely connected to the high latitude climate events, i.e., early stage of Deglaciation (ED) (before ~17 ka BP), HS1 (~17–15 ka BP), ACR (~15–13.5 ka BP), and Younger Dryas (~13.5–11 ka BP) (Figure 1). Wetter periods coincided with the NH cold events (i.e., HS1 and YD) while drier periods indicated NH warm events (ED) and southern hemisphere (SH) cold events (ACR). Higher rainfall during HS1 and YD might be induced by the southward shift of the austral summer ITCZ while lower rainfall during ED and ACR were linked to the northward shift of the austral summer ITCZ [41][42] (Figure 2). The NH cooling (during HS1 and YD) enhanced the boreal winter cold surges, which pushed the ITCZ southward [41]. This mechanism also resulted in a southward shift of the boreal summer ITCZ, indicated by the lower EASM rainfall [43][44]. The lower rainfall during ACR could be explained by its co-occurrence with B-A [45] hence the northward shift of austral summer ITCZ was most likely linked to the NH warming (during ED and B-A) [41][46]. The Last Deglaciation rainfall records of ST08 were similar to d18O records from Bali Gown Cave (Northwestern Australia) [47] (Figure 1), indicating the southern boundary of the austral summer ITCZ during wetter periods (HS1 and YD) [41] (Figure 2). On the other hand, D18O (d18OGs.ruber−d18OG.bulloides) records (which indicated AIWM changes) from off south Java [41]and terrigenous input proxies (ln Ti/Ca) from off southwest Java [48] showed the opposite rainfall changes during the ACR (Figure 1). This indicated that the records from Java region responded to B-A instead, so they hinted a considerable influence of NH cross-equatorial moisture transport and the southern boundary of the austral summer ITCZ [48] (Figure 2).

Figure 1. Drier (yellow highlight) and wetter (green highlight) periods inferred from terrigenous input proxies (a,b)[49]. Other paleoclimate records are presented for comparison: (c). Terrigenous input proxy (ln Ti/Ca) record of GeoB10043-3 [48], (d). Terrigenous input proxy (ln Ti/Ca) record of GeoB10065-7 [50], (e). d18O record of stalagmites from Bali Gown cave (Northwestern Australia) [47], (f). d18O Globigerinides (Gs.) ruber–d18O Globigerina (G.) bulloides (D18O) record of GeoB10053-7 [51], (g). C30 n-alkanoic fatty acids d13C (d13CFA) record of GeoB10069-3 [52], (h). d18O record of Antarctic (EPICA Dronning Maud Land/EDML) ice core [53], (i). d18O record of Greenland (GISP2) ice core [54], (j). Reconstructed relative sea level from d18O of Red sea benthic foraminifera [55] [56], (k). 10-years averaged reconstructed sunspot numbers [57], and (l). 20° S Dec. (austral summer) insolation (red) and 30° N Jun. (boreal summer) (blue) [58]. Data are plotted against the mean ages obtained from the age model. Black curves indicate smoothed values (exponential smoothing, df: damping factor).

Figure 2. The southern limit of the austral summer ITCZ during the drier (lower rainfall) periods (red dashed line) and during the wetter (higher) rainfall periods (blue dashed line) as suggested by this study and other previous studies [41][42][49][59][60]. Numbers show the location of ST08 ((a), this study) and other studies used for comparison i.e., GeoB10043-3 (b) [48], GeoB10053-7 (c) [51], GeoB10065-7 (d) [50], Liang Luar cave (Flores) (e) [60], GeoB10069-3 (f) [52], and Bali Gown cave (Northwestern Australia) (g) [46].

The YD wetter period continued until Early Holocene (EH). The abrupt rainfall increase in EH, which was inferred in off southwest Java [48], not detected on ST08. This could be linked to the relatively constant terrigenous input in off southwest Sumba due to the considerable distance from the recently drowned-Sunda Shelf, as opposed to off southwest Java [48]. δ18O records on off south Java, which changes closely followed boreal summer insolation, increased during YD–EH [41] (Figure 1). This indicated the simultaneous increase of AISM and AIWM, but the effect of the strengthening AIWM and lower austral summer insolation (which should result in AISM weakening) was most likely distressed by the enhanced moisture supply related to abrupt sea-level rise [48][51][61](Figure 1).

During Mid-Holocene, the rainfall records of ST08 were similar to the ln Ti/Ca records from off northwest Sumba, which inferred drier (wetter) Mid (Late) Holocene [50] (Figure 1). Lower rainfall during the Mid Holocene (MH) (~7–3 ka BP) was most likely linked to the decrease in solar activity (hence lower sunspot numbers) [42][60], which suppressed the effect of increasing austral summer insolation [50][57]. During the Late Holocene (LH) (after ~3 ka BP), an increase in austral summer insolation and solar activity resulted in the enhancement of rainfall [50][58][57]. The southern boundary of the austral summer ITCZ during MH was most likely located around its position during ED and ACR [1,19,20] and shifted southward during LH to around its position during HS1, YD, and EH [41][50][59] (Figure 2), but their relation to solar activity and orbitally-induced austral summer insolation is still not understood [61]. The carbon isotope composition of the C30 n-alkanoic fatty acids (d13CFA) records from the southwestern Savu Sea [52] showed contradictive rainfall records (Figure 1). This contradiction might be related to the differences in climate signals recorded on terrigenous input and d13CFA proxies. d13CFA reflects the dry season (AIWM) water stress connected to the amount of rainfall during AIWM (AIWM rainfall) [52]. We suggest a joint analysis of terrigenous input and d13CFA proxies from the same site in future studies to reconstruct the past changes of both AISM and AIWM rainfall, so more robust AIM rainfall records are produced.


  1. Mohtadi, M.; Oppo, D.W.; Steinke, S.; Stuut, J.B.W.; De Pol-Holz, R.; Hebbeln, D.; Lückge, A. Glacial to Holocene swings of the Australian-Indonesian monsoon. Nat. Geosci. 2011, 4, 540–544, doi:10.1038/ngeo1209.
  2. Steinke, S.; Mohtadi, M.; Prange, M.; Varma, V.; Pittauerova, D.; Fischer, H.W. Mid-to late-Holocene australian-indonesian summer monsoon variability. Quat. Sci. Rev. 2014, 93, 142–154, doi:10.1016/j.quascirev.2014.04.006.
  3. Wicaksono, S.A.; Russell, J.M.; Holbourn, A.; Kuhnt, W. Hydrological and vegetation shifts in the Wallacean region of central Indonesia since the Last Glacial Maximum. Quat. Sci. Rev. 2017, 157, 152–163, doi:10.1016/j.quascirev.2016.12.006.
  4. Mohtadi, M.; Prange, M.; Steinke, S. Palaeoclimatic insights into forcing and response of monsoon rainfall. Nature 2016, 533, 191–199, doi:10.1038/nature17450.
  5. Steinke, S.; Prange, M.; Feist, C.; Groeneveld, J.; Mohtadi, M. Upwelling variability off southern Indonesia over the past two millennia. Geophys. Res. Lett. 2014, 41, 7684–7693, doi:10.1002/2014GL061450.
  6. Griffiths, M.L.; Drysdale, R.N.; Gagan, M.K.; Frisia, S.; Zhao, J.X.; Ayliffe, L.K.; Hantoro, W.S.; Hellstrom, J.C.; Fischer, M.J.; Feng, Y.X.; et al. Evidence for Holocene changes in australian-indonesian monsoon rainfall from stalagmite trace element and stable isotope ratios. Earth Planet. Sci. Lett. 2010, 292, 27–38, doi:10.1016/j.epsl.2010.01.002.
  7. Griffiths, M.L.; Drysdale, R.N.; Gagan, M.K.; Zhao, J.X.; Ayliffe, L.K.; Hellstrom, J.C.; Hantoro, W.S.; Frisia, S.; Feng, Y.X.; Cartwright, I.; et al. Increasing australian-indonesian monsoon rainfall linked to early Holocene sea-level rise. Nat. Geosci. 2009, 2, 636–639, doi:10.1038/ngeo605.
  8. Kuhnt, W.; Holbourn, A.; Xu, J.; Opdyke, B.; Deckker, P. De; Mudelsee, M. Southern hemisphere control on australian monsoon variability during the late deglaciation and Holocene. Nat. Commun. 2015, doi:10.1038/ncomms6916.
  9. Liu, S.; Zhang, H.; Shi, X.; Chen, M.; Cao, P.; Li, Z.; Troa, R.A.; Zuraida, R.; Triarso, E.; Marfasran, H. Reconstruction of monsoon evolution in southernmost Sumatra over the past 35 kyr and its response to northern hemisphere climate changes. Prog. Earth Planet. Sci. 2020, 7, 30, doi:10.1186/s40645-020-00349-9.
  10. Setiawan, R.Y.; Mohtadi, M.; Southon, J.; Groeneveld, J.; Steinke, S.; Hebbeln, D. The consequences of opening the Sunda Strait on the hydrography of the eastern tropical Indian Ocean. Paleoceanography 2015, 30, 1358–1372, doi:10.1002/2015PA002802.
  11. Ding, X.; Bassinot, F.; Guichard, F.; Fang, N.Q. Indonesian Throughflow and monsoon activity records in the Timor Sea since the last glacial maximum. Mar. Micropaleontol. 2013, 101, 115–126, doi:10.1016/j.marmicro.2013.02.003.
  12. Spooner, M.I.; Barrows, T.T.; De Deckker, P.; Paterne, M. Palaeoceanography of the Banda Sea, and Late Pleistocene initiation of the Northwest Monsoon. Glob. Planet. Chang. 2005, 49, 28–46, doi:10.1016/j.gloplacha.2005.05.002.
  13. Wyrwoll, K.H.; Miller, G.H. Initiation of the Australian summer monsoon 14,000 years ago. Quat. Int. 2001, 82, 119–128, doi:10.1016/S1040-6182(01)00034-9.
  14. Denniston, R.F.; Wyrwoll, K.H.; Asmerom, Y.; Polyak, V.J.; Humphreys, W.F.; Cugley, J.; Woods, D.; LaPointe, Z.; Peota, J.; Greaves, E. North Atlantic forcing of millennial-scale indo-australian monsoon dynamics during the Last Glacial period. Quat. Sci. Rev. 2013, 72, 159–168, doi:10.1016/j.quascirev.2013.04.012.
  15. Wang, P.X.; Wang, B.; Cheng, H.; Fasullo, J.; Guo, Z.; Kiefer, T. The global monsoon across time scales: Mechanisms and outstanding issues. Earth Sci. Rev. 2017, 174, 84–121, doi:10.1016/j.earscirev.2017.07.006.
  16. Ayliffe, L.K.; Gagan, M.K.; Zhao, J.; Drysdale, R.N.; Hellstrom, J.C.; Hantoro, W.S.; Griffiths, M.L.; Scott-gagan, H.; Pierre, E.S.; Cowley, J.A.; et al. Australasian monsoon during the last deglaciation. Nat. Commun. 2013, 4, 1–6, doi:10.1038/ncomms3908.
  17. Magee, J.W.; Miller, G.H.; Spooner, N.A.; Questiaux, D. Continuous 150 k.y. monsoon record from Lake Eyre, Australia: Insolation-forcing implications and unexpected Holocene failure. Geology 2004, 32, 885–888, doi:10.1130/G20672.1.
  18. Nott, J.; Price, D. Plunge pools and paleoprecipitation. Geology 1994, 22, 1047–1050, doi:10.1130/0091-7613(1994)022<1047:PPAP>2.3.CO;2.
  19. Denniston, R.F.; Wyrwoll, K.; Polyak, V.J.; Brown, J.R.; Asmerom, Y.; Wanamaker, A.D.; Lapointe, Z.; Ellerbroek, R.; Barthelmes, M.; Cleary, D.; et al. A stalagmite record of Holocene indonesian e australian summer monsoon variability from the australian tropics. Quat. Sci. Rev. 2013, 78, 155–168, doi:10.1016/j.quascirev.2013.08.004.
  20. Solanki, S.K.; Usoskin, I.G.; Kromer, B.; Schüssler, M.; Beer, J. Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 2004, 431, 1084–1087, doi:10.1038/nature02995.
  21. Berger, A.L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 1978, 35, 2361–2367, doi:10.1175/1520-0469(1978)035<2362:ltvodi>;2.
  22. Berger, A.; Loutre, M.F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 1991, 10, 297–317, doi:10.1016/0277-3791(91)90033-Q.
  23. Meehl, G.A.; Washington, W.M.; Wigley, T.M.L.; Arblaster, J.M.; Dai, A. Solar and greenhouse gas forcing and climate response in the twentieth century. J. Clim. 2003, 16, 426–444, doi:10.1175/1520-0442(2003)016<0426:SAGGFA>2.0.CO;2.
  24. Hanebuth, T.J.J.; Voris, H.K.; Yokoyama, Y.; Saito, Y.; Okuno, J. Formation and fate of sedimentary depocentres on southeast Asia’s Sunda Shelf over the past sea-level cycle and biogeographic implications. Earth Sci. Rev. 2011, 104, 92–110, doi:10.1016/j.earscirev.2010.09.006.
  25. Broecker, W.S. Paleocean circulation during the last deglaciation: A bipolar seesaw? Paleoceanography 1998, 13, 119–121, doi:10.1029/97PA03707.
  26. Stocker, T.F.; Johnsen, S.J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 2003, 18, 1–9, doi:10.1029/2003PA000920.
  27. Aldrian, E.; Susanto, R.D. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. Int. J. Climatol. 2003, 23, 1435–1452, doi:10.1002/joc.950.
  28. Dubois, N.; Oppo, D.W.; Galy, V.V; Mohtadi, M.; Van Der Kaars, S.; Tierney, J.E.; Rosenthal, Y.; Eglinton, T.I.; Lückge, A.; Linsley, B.K. Indonesian vegetation response to changes in rainfall seasonality over the past 25,000 years. Nat. Geosci. 2014, 7, 513–517, doi:10.1038/ngeo2182.
  29. Rixen, T.; Ittekkot, V.; Herunadi, B.; Wetzel, P.; Maier-Reimer, E.; Gaye-Haake, B. ENSO-driven carbon see saw in the Indo-Pacific. Geophys. Res. Lett. 2006, 33, L07606, doi:10.1029/2005GL024965.
  30. Weltje, G.J.; Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 2008, 274, 423–438, doi:10.1016/j.epsl.2008.07.054.
  31. Calvert, S.E.; Pedersen, T.F. Elemental proxies for Palaeoclimatic and Palaeoceanographic variability in marine sediments: Interpretation and application. In Developments in Marine Geology; Elsevier: Amsterdam, The Netherlands, 2007; Volume 1, pp. 567–644, ISBN 9780444527554.
  32. Croudace, I.W.; Rindby, A.; Rothwell, R.G. ITRAX: Description and evaluation of a new multi-function X-ray core scanner. Geol. Soc. Spec. Publ. 2006, 267, 51–63, doi:10.1144/GSL.SP.2006.267.01.04.
  33. Richter, T.O.; Van Der Gaast, S.; Koster, B.; Vaars, A.; Gieles, R.; De Stigter, H.C.; De Haas, H.; Van Weering, T.C.E. The Avaatech XRF Core scanner: Technical description and applications to NE Atlantic sediments. Geol. Soc. Spec. Publ. 2006, 267, 39–50, doi:10.1144/GSL.SP.2006.267.01.03.
  34. Dypvik, H.; Harris, N.B. Geochemical facies analysis of fine-grained siliciclastics using Th/U, Zr/Rb and (Zr + Rb)/Sr ratios. Chem. Geol. 2001, 181, 131–146, doi:10.1016/S0009-2541(01)00278-9.
  35. Aitchison, J. The Statistical Analysis of Compositional Data. J. R. Stat. Soc. Ser. B 1982, 44, 139–160, doi:10.1111/j.2517-6161.1982.tb01195.x.
  36. van der Kaars, W.A. Palynology of eastern indonesian marine piston-cores: A late Quaternary vegetational and climatic record for Australasia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1991, 85, doi:10.1016/0031-0182(91)90163-L.
  37. Wang, X.; Van Der Kaars, S.; Kershaw, P.; Bird, M.; Jansen, F. A record of fire, vegetation and climate through the last three glacial cycles from Lombok Ridge core G6-4, eastern Indian Ocean, Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 147, 241–256, doi:10.1016/S0031-0182(98)00169-2.
  38. Van Der Kaars, S.; Wang, X.; Kershaw, P.; Guichard, F.; Setiabudi, D.A. A late Quaternary palaeoecological record from the Banda Sea, Indonesia: Patterns of vegetation, climate and biomass burning in Indonesia and northern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 155, 135–143, doi:10.1016/S0031-0182(99)00098-X.
  39. Barmawidjaja, B.M.; Rohling, E.J.; van der Kaars, W.A.; Vergnaud Grazzini, C.; Zachariasse, W.J. Glacial conditions in the northern Molucca Sea region (Indonesia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 1993, 101, 147–167, doi:10.1016/0031-0182(93)90157-E.
  40. Yulianto, E.; Rahardjo, A.T.; Noeradi, D.; Siregar, D.A.; Hirakawa, K. A Holocene pollen record of vegetation and coastal environmental changes in the coastal swamp forest at Batulicin, South Kalimantan, Indonesia. J. Asian Earth Sci. 2005, 25, 1–8, doi:10.1016/j.jseaes.2004.01.005.
  41. Wolfgang Kuhnt; Ann Holbourn; Jian Xu; Bradley Opdyke; Patrick De Deckker; Ursula Röhl; Manfred Mudelsee; Southern Hemisphere control on Australian monsoon variability during the late deglaciation and Holocene. Nature Communications 2015, 6, 5916, 10.1038/ncomms6916.
  42. Xuan Ding; F. Bassinot; F. Guichard; N.Q. Fang; Indonesian Throughflow and monsoon activity records in the Timor Sea since the last glacial maximum. Marine Micropaleontology 2013, 101, 115-126, 10.1016/j.marmicro.2013.02.003.
  43. Huayu Lu; Shuangwen Yi; Zhengyu Liu; Joseph A. Mason; Dabang Jiang; Jun Cheng; Thomas Stevens; Zhiwei Xu; Enlou Zhang; Liya Jin; et al.Zhaohui ZhangZhengtang GuoYi WangBette Otto-Bliesner Variation of East Asian monsoon precipitation during the past 21 k.y. and potential CO2 forcing. Geology 2013, 41, 1023-1026, 10.1130/g34488.1.
  44. H.N. Wu; Y.Z. Ma; Z.-D. Feng; A.Z. Sun; C.J. Zhang; F. Li; J. Kuang; A high resolution record of vegetation and environmental variation through the last ∼25,000 years in the western part of the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 2009, 273, 191-199, 10.1016/j.palaeo.2008.12.023.
  45. Morgan. V.I.. Antarctic Cold Reversal In Encyclopedia of Paleoclimatology and Ancient Environments; Springer Netherlands: Dordrecht, 2009; pp. 22 - 24.
  46. R.F Denniston; Karl-Heinz Wyrwoll; Victor J. Polyak; Josephine R. Brown; Yemane Asmerom; Alan D. Wanamaker; Zachary Lapointe; Rebecca Ellerbroek; Michael Barthelmes; Daniel M. Cleary; et al.John CugleyDavid WoodsWilliam F. Humphreys A Stalagmite record of Holocene Indonesian–Australian summer monsoon variability from the Australian tropics. Quaternary Science Reviews 2013, 78, 155-168, 10.1016/j.quascirev.2013.08.004.
  47. R.F Denniston; Karl-Heinz Wyrwoll; Yemane Asmerom; Victor J. Polyak; William F. Humphreys; John Cugley; David Woods; Zachary Lapointe; Julian Peota; Elizabeth Greaves; et al. North Atlantic forcing of millennial-scale Indo-Australian monsoon dynamics during the Last Glacial period. Quaternary Science Reviews 2013, 72, 159-168, 10.1016/j.quascirev.2013.04.012.
  48. R. Y. Setiawan; Mayhar Mohtadi; John Southon; Jeroen Groeneveld; Stephan Steinke; Dierk Hebbeln; The consequences of opening the Sunda Strait on the hydrography of the eastern tropical Indian Ocean. Paleoceanography 2015, 30, 1358-1372, 10.1002/2015pa002802.
  49. Ryan Dwi Wahyu Ardi; Aswan; Khoiril Anwar Maryunani; Eko Yulianto; Purna Sulastya Putra; Septriono Hari Nugroho; Istiana; Last Deglaciation—Holocene Australian-Indonesian Monsoon Rainfall Changes Off Southwest Sumba, Indonesia. Atmosphere 2020, 11, 932, 10.3390/atmos11090932.
  50. Stephan Steinke; Mayhar Mohtadi; Matthias Prange; Vidya Varma; Daniela Pittauerova; Helmut W. Fischer; Daniela Pittauer; Mid- to Late-Holocene Australian–Indonesian summer monsoon variability. Quaternary Science Reviews 2014, 93, 142-154, 10.1016/j.quascirev.2014.04.006.
  51. Mayhar Mohtadi; Delia W. Oppo; Stephan Steinke; Jan-Berend W. Stuut; Ricardo De Pol-Holz; Dierk Hebbeln; Andreas Lückge; Glacial to Holocene swings of the Australian–Indonesian monsoon. Nature Geoscience 2011, 4, 540-544, 10.1038/ngeo1209.
  52. Nathalie Dubois; Delia W. Oppo; Valier Galy; Mayhar Mohtadi; Sander Van Der Kaars; Jessica E. Tierney; Yair Rosenthal; Timothy I. Eglinton; Andreas Lückge; Braddock K. Linsley; et al. Indonesian vegetation response to changes in rainfall seasonality over the past 25,000 years. Nature Geoscience 2014, 7, 513-517, 10.1038/ngeo2182.
  53. EPICA Community Members; C. Barbante; J.-M. Barnola; Silvia Becagli; J. Beer; M. Bigler; C. Boutron; T. Blunier; E. Castellano; O. Cattani; et al.J. ChappellazDorthe Dahl-JensenMaxime DebretBarbara DelmonteD. DickS. FalourdSérgio Henrique FariaU. FedererHubertus FischerJ. FreitagA. FrenzelDiedrich FritzscheF. FundelP. GabrielliV. GaspariR. GersondeW. GrafD. GrigorievI. HamannM. HanssonG. HoffmannM. A. HutterliPhilippe HuybrechtsE. IsakssonS. JohnsenJ. JouzelM. KaczmarskaT. KarlinP. KaufmannS. KipfstuhlM. KohnoFabrice LambertAnja LambrechtAstrid LambrechtAmaelle LandaisG. LawerMarkus LeuenbergerG. LittotL. LoulergueD. LüthiValter MaggiF. MarinoValérie Masson-DelmotteHanno MeyerH. MillerR. MulvaneyB. NarcisiJ. OerlemansH. OerterF. ParreninJ.-R. PetitG. RaisbeckD. RaynaudR. RöthlisbergerU. RuthO. RybakM. SeveriJochen SchmittJ. SchwanderU. SiegenthalerM.-L. Siggaard-AndersenR. SpahniJørgen Peder SteffensenB. StenniT. F. StockerJean-Louis TisonRita TraversiR. UdistiF. Valero-DelgadoM. R. Van Den BroekeR. S. W. Van De WalD. WagenbachA. WegnerK. WeilerF. WilhelmsJ.-G. WintherEric W. Wolff One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 2006, 444, 195-198, 10.1038/nature05301.
  54. P. M. Grootes; M. Stuiver; Oxygen 18/16 variability in Greenland snow and ice with 10−3- to 105-year time resolution. Journal of Geophysical Research: Atmospheres 1997, 102, 26455-26470, 10.1029/97jc00880.
  55. Helge W. Arz; Frank Lamy; Andrey Ganopolski; Norbert Nowaczyk; Jürgen Pätzold; Dominant Northern Hemisphere climate control over millennial-scale glacial sea-level variability. Quaternary Science Reviews 2007, 26, 312-321, 10.1016/j.quascirev.2006.07.016.
  56. M. Siddall; Eelco J. Rohling; A. Almogi-Labin; Ch. Hemleben; D. Meischner; I. Schmelzer; David A. Smeed; Sea-level fluctuations during the last glacial cycle. Nature 2003, 423, 853-858, 10.1038/nature01690.
  57. Sami K. Solanki; I. G. Usoskin; B. Kromer; M. Schüssler; J. Beer; Unusual activity of the Sun during recent decades compared to the previous 11,000 years. Nature 2004, 431, 1084-1087, 10.1038/nature02995.
  58. Andrél. Berger; Long-Term Variations of Daily Insolation and Quaternary Climatic Changes. Journal of the Atmospheric Sciences 1978, 35, 2362-2367, 10.1175/1520-0469(1978)035<2362:ltvodi>;2.
  59. Takeshige Ishiwa; Yusuke Yokoyama; Lars Reuning; Cecilia M. McHugh; David De Vleeschouwer; Stephen J. Gallagher; Australian Summer Monsoon variability in the past 14,000 years revealed by IODP Expedition 356 sediments. Progress in Earth and Planetary Science 2019, 6, 17, 10.1186/s40645-019-0262-5.
  60. Linda K. Ayliffe; Michael K. Gagan; Jian-Xin Zhao; Russell Drysdale; John Hellstrom; Wahyoe S. Hantoro; Michael L. Griffiths; Heather Scott-Gagan; Emma St Pierre; Joan A. Cowley; et al.Bambang W. Suwargadi Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation. Nature Communications 2013, 4, 2908, 10.1038/ncomms3908.
  61. Stephan Steinke; Matthias Prange; Christin Feist; Jeroen Groeneveld; Mayhar Mohtadi; Upwelling variability off southern Indonesia over the past two millennia. Geophysical Research Letters 2014, 41, 7684-7693, 10.1002/2014gl061450.
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to : , , , , , ,
View Times: 708
Revisions: 3 times (View History)
Update Date: 27 Jan 2022
Video Production Service