Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 In present times, there is an increased frequency of resistance for conventional drugs. This fact necessitates the focus of drug research to be shifted toward a new era where bioactives like TBPs are developed with novel mechanisms of action. + 1476 word(s) 1476 2020-09-10 08:05:54 |
2 In present times, there is an increased frequency of resistance for conventional drugs. This fact necessitates the focus of drug research to be shifted toward a new era where bioactives like TBPs are developed with novel mechanisms of action. Meta information modification 1476 2020-09-14 10:55:41 | |
3 format change Meta information modification 1476 2020-09-22 04:22:59 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Dahiya, R.; Dahiya, S.; Fuloria, N.K.; Kumar, S.; Mourya, R.; Chennupati, S.V.; Jankie, S.; Gautam, H.; Singh, S.; Karan, S.K.; et al. Thiazole-Based Peptides. Encyclopedia. Available online: https://encyclopedia.pub/entry/2014 (accessed on 29 March 2024).
Dahiya R, Dahiya S, Fuloria NK, Kumar S, Mourya R, Chennupati SV, et al. Thiazole-Based Peptides. Encyclopedia. Available at: https://encyclopedia.pub/entry/2014. Accessed March 29, 2024.
Dahiya, Rajiv, Sunita Dahiya, Neeraj Kumar Fuloria, Suresh Kumar, Rita Mourya, Suresh V. Chennupati, Satish Jankie, Hemendra Gautam, Sunil Singh, Sanjay Kumar Karan, et al. "Thiazole-Based Peptides" Encyclopedia, https://encyclopedia.pub/entry/2014 (accessed March 29, 2024).
Dahiya, R., Dahiya, S., Fuloria, N.K., Kumar, S., Mourya, R., Chennupati, S.V., Jankie, S., Gautam, H., Singh, S., Karan, S.K., Maharaj, S., Fuloria, S., Shrivastava, J., Agarwal, A., Singh, S., Kishor, A., Jadon, G., & Sharma, A. (2020, September 14). Thiazole-Based Peptides. In Encyclopedia. https://encyclopedia.pub/entry/2014
Dahiya, Rajiv, et al. "Thiazole-Based Peptides." Encyclopedia. Web. 14 September, 2020.
Thiazole-Based Peptides
Edit

Peptides are distinctive biomacromolecules that demonstrate potential cytotoxicity and diversified bioactivities against a variety of microorganisms including bacteria, mycobacteria, and fungi via their unique mechanisms of action. Among broad-ranging pharmacologically active peptides, natural marine-originated thiazole-based oligopeptides possess peculiar structural features along with a wide spectrum of exceptional and potent bioproperties. Because of their complex nature and size divergence, thiazole-based peptides (TBPs) bestow a pivotal chemical platform in drug discovery processes to generate competent scaffolds for regulating allosteric binding sites and peptide–peptide interactions. The present study dissertates on the natural reservoirs and exclusive structural components of marine-originated TBPs, with a special focus on their most pertinent pharmacological profiles, which may impart vital resources for the development of novel peptide-based therapeutic agents.

azole-based peptide marine sponge peptide synthesis thiazole cytotoxicity cyanobacteria bioactivity

1. Introduction

Thiazole-based peptides (TBPs) are obtained from diverse resources, primarily from cyanobacteria, sponges, and tunicates. A thiazole ring can be part of a cyclic structure or connected in a linear chain of peptides either alone or with other heterocycles like oxazole (e.g., thiopeptide antibiotics), imidazole, and indole (in the forms of histidine and tryptophan), thiazoline, oxazoline, etc. Cyclic peptides have an advantage over their linear counterparts as cyclization offers a reduction in conformational freedom, resulting in higher receptor-binding affinities. Understanding the structure–activity relationship (SAR), different modes of action, and routes of synthesis as tools are of vital significance for the study of complex molecules like heterocyclic bioactive peptides, which have a broad spectrum of pharmacological activities associated with them. Further, the sudden increase in the number of peptide drug products is another good reason to study this particular category of compounds on a priority basis.

2. Resources

Various natural sources of TBPs and other heterocyclic rings containing cyclopolypeptides comprise cyanobacteria[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28][29][30][31][32][33], ascidians[34][35][36][37][38][39][40][41][42][43][44][45][46][47][48][49][50][51][52][53][54][55], marine sponges[56][57][58][59][60][61][62][63], and sea slugs[64][65][66]. Moreover, actinomycetes, sea hare, red alga, and higher plants[67][68][69][70][71][72][73] were found to be other potential resources of TBPs.

3. Biological Activity

Although thiazole-containing cyclopolypeptides of marine origin are associated with a number of bioactivities including antitubercular, antibacterial, antifungal, and inhibitory activity against serine protease enzymes chymotrypsin and elastase; anti-HIV activity; antiproliferative activity; antimalarial activity; and inhibitory activity against the transcription factor activator protein-1, the majority of them were found to exhibit anticancer activity. Various pharmacological activity-associated marine-derived Tzl-containing cyclopolypeptides along with susceptible cell line/organism with minimum inhibitory concentration are tabulated in Table 1.

Table 1. Heterocyclic Tzl-based peptides (TBPs) with diverse pharmacological activities.

TBPs

Resource

Bioactivity

Susceptibilty

MICa Value

Haligramide A[56]

marine sponge

Haliclona nigra

Cytotoxicity against A-549 (lung),

HCT-15 (colon), SF-539 (CNSb), and SNB-19 (CNS) human tumor cell lines

5.17–15.62

μg/mL

Haligramide B[56]

marine sponge

Haliclona nigra

Cytotoxicity against A-549 (lung),

HCT-15 (colon), SF-539 (CNS), and SNB-19 (CNS) human tumor cells

3.89–8.82 μg/mL

Scleritodermin A[57]

marine sponge

Scleritoderma nodosum

Cytotoxicity against colon HCT116, ovarian A2780, and breast SKBR3 cell lines

0.67–1.9 μM

Obyanamide[5]

marine cyanobacterium

Lyngbya confervoides

Cytotoxicity against KBc and LoVo cells

0.58 and 3.14 µg/mL

Waiakeamide[59]

marine sponge

Ircinia dendroides

Anti-TB activity against Mycobacterium tuberculosis

7.8 μg/mL

Ulongamide A[6]

marine cyanobacterium

Lyngbya sp.

Cytotoxicity against KB and LoVo cells

1 and 5 µM

Guineamide B[7]

marine cyanobacterium

Lyngbya majuscula

Cytotoxicity against mouse neuroblastoma  cell line

15 µM

Calyxamide A[74]

marine sponge

Discodermia calyx

Cytotoxicity against P388 murine

leukemia cells

3.9 and 0.9 μM

Bistratamide J[43]

marine ascidian

Lissoclinum bistratum

Cytotoxic activity against the human colon tumor (HCT-116) cell line

1.0 µg/mL

Didmolamide A

and B[41]

marine tunicate

Didemnum molle

Cytotoxicity against several

cultured tumor cell lines (A549, HT29, and MEL28)

10–20 µg/mL

Aeruginazole A[75]

freshwater cyanobacterium

Microcystis sp.

Antibacterial activity againt

B. subtilis and S. albus

Cytotoxicity against MOLT-4 human leukemia cell line and peripheral blood lymphocytes

2.2 and 8.7 μM

 

 41 and 22.5 μM

Cyclotheonellazole A, B and C[61]

marine sponge

Theonella aff. swinhoei

Inhibitory activity against serine protease enzyme chymotrypsin

Inhibitory activity against serine protease enzyme elastase

0.62, 2.8, and

2.3 nM

0.034, 0.10, and 0.099 nM

Microcyclamide MZ602[11]

cyanobacterium

Microcystis sp.

Inhibition activity of

chymotrypsin

75 μM

Dolastatin 3[2]

marine cyanobacterium

Lyngbya majuscula

Inhibition of HIV-1 integrase (for the terminal-cleavage and strand-

transfer reactions)

5 mM

and 4.1 mM

Lyngbyabellin A[20]

marine cyanobacterium

Lyngbya majuscula

Cytotoxicity against KB cells (human nasopharyngeal carcinoma cell line) and LoVo cells (human colon adenocarcinoma cell line)

Cytotoxicity against HT29 colorectal adenocarcinoma and HeLa cervical carcinoma cells

Cytoskeletal-disrupting effects

 in A-10 cells

0.03 and 0.50 μg/mL

 

 

1.1 and 0.71 μM

 

0.01–5.0 μg/mL

Lyngbyabellin B[76]

marine cyanobacterium

Lyngbya majuscula

Toxicity to brine shrimp (Artemia salina)

Antifungal activity against Candida albicans (ATCC 14053) in a disk diffusion assay

Cytotoxicity against HT29 colorectal adenocarcinoma and HeLa cervical carcinoma cells

3.0 ppm

100 μg/disk

 

 

 

1.1 and 0.71 μM

Lyngbyabellin E[21]

 

marine cyanobacterium Lyngbya majuscula

Cytotoxicity against NCI-H460 human lung tumor and neuro-2a mouse neuroblastoma cells

Cytoskeletal-disrupting effects in A-10 cells

0.4 and 1.2 μM

 

 

0.01–6.0 μM

Lyngbyabellin H[21]

marine cyanobacterium

Lyngbya majuscula

Cytotoxicity against NCI-H460 human lung tumor and neuro-2a mouse neuroblastoma cells

0.2 and 1.4 μM

Lyngbyabellin N[22]

marine cyanobacterium

Moorea bouilloni

Cytotoxic activity against HCT116 colon cancer cell line

40.9 nM

27-Deoxy-

lyngbyabellin A[23]

marine cyanobacterium

Lyngbya bouillonii

Cytotoxicity against HT29 colorectal adenocarcinoma and HeLa cervical carcinoma cells

0.012 and 0.0073 μM

Lyngbyabellin J[23]

marine cyanobacterium

Lyngbya bouillonii

Cytotoxicity against HT29 colorectal adenocarcinoma and HeLa cervical carcinoma cells

0.054 and 0.041 μM

Raocyclamide A[25]

filamentous cyanobacterium

Oscillatoria raoi

Cytotoxicity against embryos of sea urchin Paracentrotus lividus

30 μg/mL (ED100)d

Tenuecyclamide A, C and D[77]

cultured cyanobacterium

Nostoc spongiaeforme

var. tenue

Cytotoxicity against embryos of sea urchin Paracentrotus lividus

10.8, 9.0, and 19.1 μM (ED100)

Dolastatin I[68]

sea hare

Dolabella auricularia

Cytotoxicity against HeLa S3 cells

12 μg/mL

Marthiapeptide A[67]

marine actinomycete

Marinactinospora thermotolerans SCSIO 00652

Antibacterial activities against Micrococcus luteus, Staphylococcus aureus, Bacillus subtilis, and Bacillus thuringiensis

Cytotoxicity against SF-268 (human glioblastoma) cell line, MCF-7 (human breast adenocarcinoma) cell line, NCI-H460 (human lung carcinoma) cell line, and HepG2 (human hepatocarcinoma) cancer cell line

2.0, 8.0, 4.0, and 2.0 μg/mL

 

 

 

0.38, 0.43, 0.47, and 0.52 μM

 

Keramamide G, H

and J[60]

marine sponge

Theonella sp.

Cytotoxicity against L1210 murine leukemia cells and KB human

epidermoid carcinoma cells

10 µg/mL

Keramamide K[78]

marine sponge

Theonella sp.

Cytotoxicity against L1210 murine leukemia cells and KB human

epidermoid carcinoma cells

0.72 and 0.42 µg/mL

Lissoclinamide 8[48]

sea squirt

Lissoclinum patella

Cytotoxicity against T24 (bladder carcinoma cells), MRC5CV1 (fibroblasts), and lymphocytes

6, 1, and 8 μg/mL

Mechercharmycin A[72]

marine bacterium

Thermoactinomyces sp. YM3-251

Cytotoxic activity against A549 (human lung cancer) cells and Jurkat cells (human leukemia)

4.0 ´ 10−8 M and 4.6 ´ 10−8 M

Leucamide A[63]

marine sponge

Leucetta microraphis

Cytotoxicity against HM02, HepG2, and Huh7 tumor cell lines

5.2, 5.9, and 5.1 μg/mL

Bistratamide H[47]

marine ascidian

Lissoclinum bistratum

Cytotoxic activity against the human colon tumor (HCT-116) cell line

1.7 µg/mL

Patellamide E[51]

marine ascidian

Lissoclinum patella

Cytotoxicity against human colon tumor cells in vitro

 

125 µg/mL

Microcyclamide[28]

cultured cyanobacterium

Microcystis aeruginosa

Cytotoxicity against

P388 murine leukemia cells

1.2 µg/mL

Dolastatin E[69]

sea hare

Dolabella auricularia

Cytotoxicity against HeLa-S3 cells

22–40 μg/mL

Aerucyclamide A[31]

freshwater cyanobacterium

Microcystis aeruginosa PCC 7806

Antiparasite activity against Plasmodium falciparum K1 and Trypanosoma brucei rhodesiense

STIB 900

5.0 and 56.3 μM

Aerucyclamide B[31]

freshwater cyanobacterium

Microcystis aeruginosa PCC 7806

Antiparasite activity against Plasmodium falciparum K1 and Trypanosoma brucei rhodesiense

STIB 900

0.7 and 15.9 μM

Aerucyclamide C[31]

freshwater cyanobacterium

Microcystis aeruginosa PCC 7806

Antiparasite activity against Plasmodium falciparum K1 and Trypanosoma brucei rhodesiense STIB 900

2.3 and 9.2 μM

Aerucyclamide D[31]

freshwater cyanobacterium

Microcystis aeruginosa PCC 7806

Antiparasite activity against Plasmodium falciparum K1 and Trypanosoma brucei rhodesiense STIB 900

6.3 and 50.1 μM

Aerucyclamide A, B and C[30][31]

freshwater cyanobacterium

Microcystis aeruginosa PCC 7806

Grazer toxicity

against the freshwater crustacean Thamnocephalus platyurus

30.5, 33.8, and 70.5 μM

Aerucyclamide B and C[31]

freshwater cyanobacterium

Microcystis aeruginosa PCC 7806

Cytotoxic activity against Rat

Myoblast L6 cells

120 and 106 μM

Urukthapelstatin A[71]

marine-derived bacterium

Mechercharimyces asporophorigenens YM11-542

Cytotoxicity against A549 human lung cancer cells

12 nM

Mechercharmycin A[72]

marine-derived bacterium

Thermoactinomyces sp.

Cytotoxicity against A549 human lung cancer cells and Jurkat cells

4.0 ´ 10-8 M and 4.6 ´ 10-8 M

Ulithiacyclamide[49][79]

marine tunicate

Lissoclinum patella

Cytotoxic activity against L1210, MRC5CV1, T24, and CEM cell lines (continuous exposure)

0.35, 0.04, 0.10, and 0.01 μg/mL

Ulicyclamide[79]

marine tunicate

Lissoclinum patella

Cytotoxic activity against L1210 murine leukemia cells

7.2 μg/mL

Patellamide A[79]

marine tunicate

Lissoclinum patella

Cytotoxic activity against L1210 murine leukemia and human ALL cell line (CEM)

3.9 and 0.028 μg/mL

Patellamide B, C[79]

marine tunicate

Lissoclinum patella

Cytotoxic activity against L1210 murine leukemia cells

2.0 and 3.2 μg/mL

Venturamide A[27]

marine

cyanobacterium

Oscillatoria sp.

Antiparasitic activity against Plasmodium falciparum, Trypanasoma cruzi

Cytotoxicity against mammalian Vero cells and MCF-7 cancer cells

8.2 and 14.6 μM

 

86 and 13.1 μM

Venturamide B[27]

marine

cyanobacterium

Oscillatoria sp.

Antiparasitic activity against Plasmodium falciparum, Trypanasoma cruzi

Cytotoxicity against mammalian Vero cells

5.2 and 15.8 μM

 

56 μM

Bistratamides A and B[53]

aplousobranch

ascidian

Lissoclinum bistratum

Cytotoxicity against MRC5CV1 fibroblasts and T24 bladder carcinoma cells

50 and 100 µg/mL

Bistratamide M[54]

marine ascidian

Lissoclinum bistratum

Cytotoxicity against breast, colon, lung, and pancreas cell lines

18, 16, 9.1, and 9.8 μM

Balgacyclamide A[26]

freshwater cyanobacterium

Microcystis aeruguinosa EAWAG 251

Antimalarial activity against Plasmodium falciparum K1

9 and 59 μM

Balgacyclamide B[26]

freshwater cyanobacterium

Microcystis aeruguinosa EAWAG 251

Antiparasitic activity against Trypanosoma brucei

rhodesiense STIB 900

8.2 and 51 μM

a MIC—minimum inhibitory concentration, b CNS—central nervous system, c KB—ubiquitous KERATIN-forming tumor cell subline, d ED100—effective dose for 100% inhibition.

References

  1. Adiv, S.; Ahronov-Nadborny, R.; Carmeli, S. New aeruginazoles, a group of thiazole-containing cyclic peptides from Microcystis aeruginosa blooms. Tetrahedron 2012, 68, 1376–1383.
  2. Mitchell, S.S.; Faulkner, D.J.; Rubins, K.; Bushman, F.D. Dolastatin 3 and two novel cyclic peptides from a Palauan collection of Lyngbya majuscula. J. Nat. Prod. 2000, 63, 279–282.
  3. McIntosh, J.A.; Lin, Z.; Tianero, M.D.; Schmidt, E.W. Aestuaramides, a natural library of cyanobactin cyclic peptides resulting from isoprene-derived Claisen rearrangements. ACS Chem. Biol. 2013, 8, 877–883.
  4. Ploutno, A.; Carmeli, S. Modified peptides from a water bloom of the cyanobacterium Nostoc sp. Tetrahedron 2002, 58, 9949–9957.
  5. Williams, P.G.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J. Isolation and structure determination of obyanamide, a novel cytotoxic cyclic depsipeptide from the marine cyanobacterium Lyngbya confervoides. J. Nat. Prod. 2002, 65, 29–31.
  6. Luesch, H.; Williams, P.G.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J. Ulongamides A-F, new beta-amino acid-containing cyclodepsipeptides from Palauan collections of the marine cyanobacterium Lyngbya sp. J. Nat. Prod. 2002, 65, 996–1000.
  7. Tan, L.T.; Sitachitta, N.; Gerwick, W.H. The guineamides, novel cyclic depsipeptides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 2003, 66, 764–771.
  8. Luesch, H.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J. New apratoxins of marine cyanobacterial origin from Guam and Palau. Bioorg. Med. Chem. 2002, 10, 1973–1978.
  9. Hong, J.; Luesch, H. Largazole: From discovery to broad-spectrum therapy. Nat. Prod. Rep. 2012, 29, 449–456.
  10. Sudek, S.; Haygood, M.G.; Youssef, D.T.A.; Schmidt, E.W. Structure of Trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence. Appl. Environ. Microbiol. 2006, 72, 4382–4387.
  11. Zafrir-Ilan, E.; Carmeli, S. Two new microcyclamides from a water bloom of the cyanobacterium Microcystis sp. Tetrahedron Lett. 2010, 51, 6602–6604.
  12. Luesch, H.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J.; Corbett, T.H. Total structure determination of apratoxin A, a potent novel cytotoxin from the marine cyanobacterium Lyngbya majuscula. J. Am. Chem. Soc. 2001, 123, 5418–5423.
  13. Gutiérrez, M.; Suyama, T.L.; Engene, N.; Wingerd, J.S.; Matainaho, T.; Gerwick, W.H. Apratoxin D, a potent cytotoxic cyclodepsipeptide from papua new guinea collections of the marine cyanobacteria Lyngbya majuscule and Lyngbya sordida. J. Nat. Prod. 2008, 71, 1099–1103.
  14. Matthew, S.; Schupp, P.J.; Luesch, H. Apratoxin E, a cytotoxic peptolide from a Guamanian collection of the marine cyanobacterium Lyngbya bouillonii. J. Nat. Prod. 2008, 71, 1113–1116.
  15. Tidgewell, K.; Engene, N.; Byrum, T.; Media, J.; Doi, T.; Valeriote, F.A.; Gerwick, W.H. Evolved diversification of a modular natural product pathway: Apratoxins F and G, two cytotoxic cyclic depsipeptides from a Palmyra collection of Lyngbya bouillonii. ChemBioChem 2010, 11, 1458–1466.
  16. Thornburg, C.C.; Cowley, E.S.; Sikorska, J.; Shaala, L.A.; Ishmael, J.E.; Youssef, D.T.A.; McPhail, K.L. Apratoxin H and apratoxin A sulfoxide from the Red sea cyanobacterium Moorea producens. J. Nat. Prod. 2013, 76, 1781–1788.
  17. Kwan, J.C.; Ratnayake, R.; Abboud, K.A.; Paul, V.J.; Luesch, H. Grassypeptolides A−C, cytotoxic bis-thiazoline containing marine cyclodepsipeptides. J. Org. Chem. 2010, 75, 8012–8023.
  18. Thornburg, C.C.; Thimmaiah, M.; Shaala, L.A.; Hau, A.M.; Malmo, J.M.; Ishmael, J.E.; Youssef, D.T.A.; McPhail, K.L. Cyclic depsipeptides, grassypeptolides D, E and Ibu epidemethoxylyngbyastatin 3, from a Red sea Leptolyngbya cyanobacterium. J. Nat. Prod. 2011, 74, 1677–1685.
  19. Popplewell, W.L.; Ratnayake, R.; Wilson, J.A.; Beutler, J.A.; Colburn, N.H.; Henrich, C.J.; McMahon, J.B.; McKee, T.C. Grassypeptolides F and G, cyanobacterial peptides from Lyngbya majuscula. J. Nat. Prod. 2011, 74, 1686–1691.
  20. Luesch, H.; Yoshida, W.Y.; Moore, R.E.; Paul, V.J.; Mooberry, S.L. Isolation, Structure determination, and biological activity of lyngbyabellin A from the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 2000, 63, 611–615.
  21. Han, B.; McPhail, K.L.; Gross, H.; Goeger, D.E.; Mooberry, S.L.; Gerwick, W.H. Isolation and structure of five lyngbyabellin derivatives from a Papua New Guinea collection of the marine cyanobacterium Lyngbya majuscula. Tetrahedron 2005, 61, 11723–11729.
  22. Choi, H.; Mevers, E.; Byrum, T.; Valeriote, F.A.; Gerwick, W.H. Lyngbyabellins K-N from two Palmyra Atoll collections of the marine cyanobacterium Moorea bouilloni. Eur. J. Org. Chem. 2012, 2012(27), 5141–5150.
  23. Matthew, S.; Salvador, L.A.; Schupp, P.J.; Paul, V.J.; Luesch, H. Cytotoxic halogenated macrolides and modified peptides from the apratoxin-producing marine cyanobacterium Lyngbya bouillonii from Guam. J. Nat. Prod. 2010, 73, 1544–1552.
  24. Soria-Mercado, I.E.; Pereira, A.; Cao, Z.; Murray, T.F.; Gerwick, W.H. Alotamide A, a novel neuropharmacological agent from the marine cyanobacterium Lyngbya bouillonii. Org. Lett. 2009, 11, 4704–4707.
  25. Admi, V.; Afek, U.; Carmeli, S. Raocyclamides A and B, novel cyclic hexapeptides isolated from the cyanobacterium Oscillatoria raoi. J. Nat. Prod. 1996, 59, 396–399.
  26. Portmann, C.; Sieber, S.; Wirthensohn, S.; Blom, J.F.; Da Silva, L.; Baudat, E.; Kaiser, M.; Brun, R.; Gademann, K. Balgacyclamides, antiplasmodial heterocyclic peptides from Microcystis aeruguinosa EAWAG 251. J. Nat. Prod. 2014, 77, 557–562.
  27. Linington, R.G.; González, J.; Ureña, L.-D.; Romero, L.I.; Ortega-Barría, E.; Gerwick, W.H. Venturamides A and B: Antimalarial constituents of the Panamanian marine cyanobacterium Oscillatoria sp. J. Nat. Prod. 2007, 70, 397–401.
  28. Ishida, K.; Nakagawa, H.; Murakami, M. Microcyclamide, a cytotoxic cyclic hexapeptide from the cyanobacterium Microcystis aeruginosa. J. Nat. Prod. 2000, 63, 1315–1317.
  29. Jüttner, F.; Todorova, A.K.; Walch, N.; von Philipsborn, W. Nostocyclamide M: A cyanobacterial cyclic peptide with allelopathic activity from Nostoc 31. Phytochemistry 2001, 57, 613–619.
  30. Portmann, C.; Blom, J.F.; Gademann, K.; Jüttner, F. Aerucyclamides A and B: Isolation and synthesis of toxic ribosomal heterocyclic peptides from the cyanobacterium Microcystis aeruginosa PCC 7806. J. Nat. Prod. 2008, 71, 1193–1196.
  31. Portmann, C.; Blom, J.F.; Kaiser, M.; Brun, R.; Jüttner, F.; Gademann, K. Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: Heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evaluation. J. Nat. Prod. 2008, 71, 1891–1896.
  32. Chuang, P.-H.; Hsieh, P.-W.; Yang, Y.-L.; Hua, K.-F.; Chang, F.-R.; Shiea, J.; Wu, S.-H.; Wu, Y.-C. Cyclopeptides with anti-inflammatory activity from seeds of Annona montana. J. Nat. Prod. 2008, 71, 1365–1370.
  33. Ogino, J.; Moore, R.E.; Patterson, G.M.L.; Smith, C.D. Dendroamides, new cyclic hexapeptides from a blue-green alga. Multidrug-resistance reversing activity of dendroamide A. J. Nat. Prod. 1996, 59, 581–586.
  34. McDonald, L.A.; Foster, M.P.; Phillips, D.R.; Ireland, C.M.; Lee, A.Y.; Clardy, J. Tawicyclamides A and B, new cyclic peptides from the ascidian Lissoclinum patella: Studies on the solution- and solid-state conformations. J. Org. Chem. 1992, 57, 4616–4624.
  35. Arrault, A.; Witczak-Legrand, A.; Gonzalez, P.; Bontemps-Subielos, N.; Banaigs, B. Structure and total synthesis of cyclodidemnamide B, a cycloheptapeptide from the ascidian Didemnum molle. Tetrahedron Lett. 2002, 43, 4041–4044.
  36. Carroll, A.R.; Bowden, B.F.; Coll, J.C.; Hockless, D.C.R.; Skelton, B.W.; White, A.H. Studies of Australian ascidians. IV. Mollamide, a cytotoxic cyclic heptapeptide from the compound ascidian Didemnum molle. Aust. J. Chem. 1994, 47, 61–69.
  37. Carroll, A.R.; Coll, J.C.; Bourne, J.C.; MacLeod, J.K.; Zanriskie, T.M.; Ireland, C.M.; Bowden, B.F. Patellins 1-6 and trunkamide A: Novel cyclic hexa-, hepta- and octa-peptides from colonial ascidians, Lissoclinum sp. Aust. J. Chem. 1996, 49, 659–667.
  38. Rudi, A.; Aknin, M.; Gaydou, E.M.; Kashman, Y. Four new cytotoxic cyclic hexa- and heptapeptides from the marine ascidian Didemnum molle. Tetrahedron 1998, 54, 13203–13210.
  39. Donia, M.S.; Wang, B.; Dunbar, D.C.; Desai, P.V.; Patny, A.; Avery, M.; Hamann, M.T. Mollamides B and C, cyclic hexapeptides from the Indonesian tunicate Didemnum molle. J. Nat. Prod. 2008, 71, 941–945.
  40. Lu, Z.; Harper, M.K.; Pond, C.D.; Barrows, L.R.; Ireland, C.M.; Van Wagoner, R.M. Thiazoline peptides and a tris-phenethyl urea from Didemnum molle with anti-HIV activity. J. Nat. Prod. 2012, 75, 1436–1440.
  41. Rudi, A.; Chill, L.; Aknin, M.; Kashman, Y. Didmolamide A and B, two new cyclic hexapeptides from the marine ascidian Didemnum molle. J. Nat. Prod. 2003, 66, 575–577.
  42. Teruya, T.; Sasaki, H.; Suenaga, K. Hexamollamide, a hexapeptide from an Okinawan ascidian Didemnum molle. Tetrahedron Lett. 2008, 49, 5297–5299.
  43. Perez, L.J.; Faulkner, D.J. Bistratamides E-J, modified cyclic hexapeptides from the Philippines ascidian Lissoclinum bistratum. J. Nat. Prod. 2003, 66, 247–250.
  44. Fu, X.; Do, T.; Schmitz, F.J.; Andrusevich, V.; Engel, M.H. New cyclic peptides from the ascidian Lissoclinum patella. J. Nat. Prod. 1998, 61, 1547–1551.
  45. Morris, L.A.; Jantina Kettenes van den Bosch, J.; Versluis, K.; Thompson, G.S.; Jaspars, M. Structure determination and MSn analysis of two new lissoclinamides isolated from the Indo-Pacific ascidian Lissoclinum patella: NOE restrained molecular dynamics confirms the absolute stereochemistry derived by degradative methods. Tetrahedron 2000, 56, 8345–8353.
  46. Ireland, C.; Scheuer, P.J. Ulicyclamide and ulithiacyclamide, two new small peptides from a marine tunicate. J. Am. Chem. Soc. 1980, 102, 5688–5691.
  47. Rashid, M.A.; Gustafson, K.R.; Cardellina II, J.H.; Boyd, M.R. Patellamide F, a new cytotoxic cyclic peptide from the colonial ascidian Lissoclinum patella. J. Nat. Prod. 1995, 58, 594–597.
  48. Hawkins, C.J.; Lavin, M.F.; Marshall, K.A.; Van den Brenk, A.L.; Watters, D.J. Structure-activity relationships of the lissoclinamides: Cytotoxic cyclic peptides from the ascidian Lissoclinum patella. J. Med. Chem. 1990, 33, 1634–1638.
  49. Degnan, B.M.; Hawkins, C.J.; Lavin, M.F.; McCaffrey, E.J.; Parry, D.L.; Van den Brenk, A.L.; Watters, D.J. New cyclic peptides with cytotoxic activity from the ascidian Lissoclinum patella. J. Med. Chem. 1989, 32, 1349–1354.
  50. Williams, D.E.; Moore, R.E. The structure of ulithiacyclamide B. Antitumor evaluation of cyclic peptides and macrolides from Lissoclinum patella. J. Nat. Prod. 1989, 52, 732–739.
  51. McDonald, L.A.; Ireland, C.M. Patellamide E: A new cyclic peptide from the ascidian Lissoclinum patella. J. Nat. Prod. 1992, 55, 376–379.
  52. Foster, M.P.; Concepcion, G.P.; Caraan, G.B.; Ireland, C.M. Bistratamides C and D. two new oxazole-containing cyclic hexapeptides isolated from a Philippine Lissoclinum bistratum ascidian. J. Org. Chem. 1992, 57, 6671–6675.
  53. Degnan, B.M.; Hawkins, C.J.; Lavin, M.F.; McCaffrey, E.J.; Parry, D.L.; Watters, D.J. Novel cytotoxic compounds from the ascidian Lissoclinum bistratum. J. Med. Chem. 1989, 32, 1354–1359.
  54. Urda, C.; Fernández, R.; Rodríguez, J.; Pérez, M.; Jiménez, C.; Cuevas, C. Bistratamides M and N, oxazole-thiazole containing cyclic hexapeptides isolated from Lissoclinum bistratum interaction of zinc (II) with bistratamide K. Mar. Drugs 2017, 15, 209.
  55. Toske, S.G.; Fenical, W. Cyclodidemnamide: A new cyclic heptapeptide from the marine ascidian Didemnum molle. Tetrahedron Lett. 1995, 36, 8355–8358.
  56. Rashid, M.A.; Gustafson, K.R.; Boswell, J.L.; Boyd, M.R. Haligramides A and B, two new cytotoxic hexapeptides from the marine sponge Haliclona nigra. J. Nat. Prod. 2000, 63, 956–959.
  57. Schmidt, E.W.; Raventos-Suarez, C.; Bifano, M.; Menendez, A.T.; Fairchild, C.R.; Faulkner, D.J. Scleritodermin A, a cytotoxic cyclic peptide from the Lithistid sponge Scleritoderma nodosum. J. Nat. Prod. 2004, 67, 475–478.
  58. Chill, L.; Kashman, Y.; Schleyer, M. Oriamide, a new cytotoxic cyclic peptide containing a novel amino acid from the marine sponge Theonella sp. Tetrahedron 1997, 53, 16147–16152.
  59. Mau, C.M.S.; Nakao, Y.; Yoshida, W.Y.; Scheuer, P.J. Waiakeamide, a cyclic hexapeptide from the sponge Ircinia dendroides. J. Org. Chem. 1996, 61, 6302–6304.
  60. Kobayashi, J.; Itagaki, F.; Shigemori, I.; Takao, T.; Shimonishi, Y. Keramamides E, G, H, and J, new cyclic peptides containing an oxazole or a thiazole ring from a Theonella sponge. Tetrahedron 1995, 51, 2525–2532.
  61. Issac, M.; Aknin, M.; Gauvin-Bialecki, A.; De Voogd, N.; Ledoux, A.; Frederich, M.; Kashman, Y.; Carmeli, S. Cyclotheonellazoles A–C, potent protease inhibitors from the marine sponge Theonella aff. swinhoei. J. Nat. Prod. 2017, 80, 1110–1116.
  62. Erickson, K.L.; Gustafson, K.R.; Milanowski, D.J.; Pannell, L.K.; Klose, J.R.; Boyd, M.R. Myriastramides A–C, new modified cyclic peptides from the Philippines marine sponge Myriastra clavosa. Tetrahedron 2003, 59, 10231–10238.
  63. Kehraus, S.; König, G.M.; Wright, A.D.; Woerheide, G. Leucamide A: A new cytotoxic heptapeptide from the Australian sponge Leucetta microraphis. J. Org. Chem. 2002, 67, 4989–4992
  64. Tan, K.O.; Wakimoto, T.; Takada, K.; Ohtsuki, T.; Uchiyama, N.; Goda, Y.; Abe, I. Cycloforskamide, a cytotoxic macrocyclic peptide from the sea slug Pleurobranchus forskalii. J. Nat. Prod. 2013, 76, 1388–1391.
  65. Wesson, K.J.; Hamann, M.T. Keenamide A, a bioactive cyclic peptide from the marine mollusk Pleurobranchus forskalii. J. Nat. Prod. 1996, 59, 629–631.
  66. Dalisay, D.S.; Rogers, E.W.; Edison, A.S.; Molinski, T.F. Structure elucidation at the nanomole scale. 1. Trisoxazole macrolides and thiazole-containing cyclic peptides from the nudibranch Hexabranchus sanguineus. J. Nat. Prod. 2009, 72, 732–738
  67. Zhou, X.; Huang, H.; Chen, Y.; Tan, J.; Song, Y.; Zou, J.; Tian, X.; Hua, Y.; Ju, J. Marthiapeptide A, an anti-infective and cytotoxic polythiazole cyclopeptide from a 60 L scale fermentation of the deep sea-derived Marinactinospora thermotolerans SCSIO 00652. J. Nat. Prod. 2012, 75, 2251–2255.
  68. Sone, H.; Kigoshi, H.; Yamada, K. Isolation and stereostructure of dolastatin I, a cytotoxic cyclic hexapeptide from the Japanese sea hare Dolabella auricularia. Tetrahedron 1997, 53, 8149–8154.
  69. Ojika, M.; Nemoto, T.; Nakamura, M.; Yamada, K. Dolastatin E, a new cyclic hexapeptide isolated from the sea hare Dolabella auricularia. Tetrahedron Lett. 1995, 36, 5057–5058.
  70. Tan, L.T.; Williamson, R.T.; Gerwick, W.H.; Watts, K.S.; McGough, K.; Jacobs, R. cis, cis- and trans, trans-Ceratospongamide, new bioactive cyclic heptapeptides from the Indonesian red alga Ceratodictyon spongiosum and symbiotic sponge Sigmadocia symbiotica. J. Org. Chem. 2000, 65, 419–425.
  71. Matsuo, Y.; Kanoh, K.; Yamori, T.; Kasai, H.; Katsuta, A.; Adachi, K.; Shin-ya, K.; Shizuri, Y. Urukthapelstatin A, a novel cytotoxic substance from marine-derived Mechercharimyces asporophorigenens YM11-542. J. Antibiot. 2007, 60, 251–255.
  72. Kanoh, K.; Matsuo, Y.; Adachi, K.; Imagawa, H.; Nishizawa, M.; Shizuri, Y. Mechercharmycins A and B, cytotoxic substances from marine-derived Thermoactinomyces sp. YM3-251. J. Antibiot. 2005, 58, 289–292.
  73. Itokawa, H.; Yun, Y.; Morita, H.; Takeya, K.; Yamada, K. Estrogen-like activity of cyclic peptides from Vaccaria segetalis extracts. Planta Med. 1995, 61, 561–562.
  74. Miki Kimura; Toshiyuki Wakimoto; Yoko Egami; Karen Co Tan; Yuji Ise; Ikuro Abe; Calyxamides A and B, Cytotoxic Cyclic Peptides from the Marine Sponge Discodermia calyx. Journal of Natural Products 2012, 75, 290-294, 10.1021/np2009187.
  75. Avi Raveh; Shmuel Carmeli; Aeruginazole A, a Novel Thiazole-Containing Cyclopeptide from the CyanobacteriumMicrocystissp.. Organic Letters 2010, 12, 3536-3539, 10.1021/ol1014015.
  76. Hendrik Luesch; Wesley Y. Yoshida; Richard E. Moore; Valerie J. Paul; Isolation and structure of the cytotoxin lyngbyabellin B and absolute configuration of lyngbyapeptin A from the marine cyanobacterium Lyngbya majuscula.. Journal of Natural Products 2000, 63, 1437-1439, 10.1021/np000104n.
  77. Ronny Banker; Shmuel Carmeli; Tenuecyclamides A−D, Cyclic Hexapeptides from the CyanobacteriumNostocspongiaeformevar.tenue. Journal of Natural Products 1998, 61, 1248-1251, 10.1021/np980138j.
  78. Hiroshi Uemoto; Yumi Yahiro; Hideyuki Shigemori; Masashi Tsuda; Toshifumi Takao; Yasutsugu Shimonishi; Jun'ichi Kobayashi; Keramamides K and L, new cyclic peptides containing unusual tryptophan residue from Theonella sponge. Tetrahedron 1998, 54, 6719-6724, 10.1016/s0040-4020(98)00358-5.
  79. Chris M. Ireland; Augustine R. Durso; Robert A. Newman; Miles P. Hacker; Antineoplastic cyclic peptides from the marine tunicate Lissoclinum patella. The Journal of Organic Chemistry 1982, 47, 1807-1811, 10.1021/jo00349a002.
More
Information
Contributors MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register : , , , , , , , , , , , , , , , , ,
View Times: 588
Revisions: 3 times (View History)
Update Date: 22 Sep 2020
1000/1000