Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 1522 word(s) 1522 2022-01-25 09:12:36 |
2 Format change Meta information modification 1522 2022-02-21 02:00:08 | |
3 Format change + 36 word(s) 1558 2022-02-21 02:03:24 | |
4 Format Change + 34 word(s) 1556 2022-02-21 02:06:14 |

Video Upload Options

We provide professional Video Production Services to translate complex research into visually appealing presentations. Would you like to try it?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Mbalaviele, G. Role of Adenosine Diphosphate-Ribosylation in Bone Health. Encyclopedia. Available online: https://encyclopedia.pub/entry/19635 (accessed on 19 November 2024).
Mbalaviele G. Role of Adenosine Diphosphate-Ribosylation in Bone Health. Encyclopedia. Available at: https://encyclopedia.pub/entry/19635. Accessed November 19, 2024.
Mbalaviele, Gabriel. "Role of Adenosine Diphosphate-Ribosylation in Bone Health" Encyclopedia, https://encyclopedia.pub/entry/19635 (accessed November 19, 2024).
Mbalaviele, G. (2022, February 18). Role of Adenosine Diphosphate-Ribosylation in Bone Health. In Encyclopedia. https://encyclopedia.pub/entry/19635
Mbalaviele, Gabriel. "Role of Adenosine Diphosphate-Ribosylation in Bone Health." Encyclopedia. Web. 18 February, 2022.
Role of Adenosine Diphosphate-Ribosylation in Bone Health
Edit

Adenosine diphosphate (ADP)-ribosylation is the transfer of ADP-ribose units from nicotinamide adenine dinucleotide (NAD+) to acceptor proteins. This post-translational modification (PTM) unavoidably alters protein functions and signaling networks, thereby impacting cell behaviors and tissue outcomes. As a ubiquitous mechanism, ADP-ribosylation affects multiple tissues, including bones, as abnormal ADP-ribosylation compromises bone development and remodeling.

ADP-ribosylation bone

1. Introduction

The transfer of adenosine diphosphate (ADP)-ribose unit(s) from nicotinamide adenine dinucleotide (NAD+) to acceptor proteins is known as ADP-ribosylation. This post-translational modification (PTM) unavoidably alters protein functions and signaling networks, thereby impacting cell behaviors and tissue outcomes. As a ubiquitous mechanism, ADP-ribosylation affects multiple tissues, including bones, as abnormal ADP-ribosylation compromises bone development and remodeling.

2. Osteoclast Differentiation

During development, the emerging ossification centers recruit myeloid progenitors where they undergo terminal differentiation into the osteoclasts, which resorb the mineralized matrix, an action that over time results in the formation of the bone marrow cavity [1][2][3]. Postnatally, the damaged or old bone matrix is sensed and removed by the osteoclasts, and is evenly replaced by the osteoblasts. Potential sensors of defective bone matrix components include the innate immune complex, NOD-like receptor family (NLR), pyrin domain containing 3 (NLRP3) inflammasome, which is activated by bone matrix degradation products and promotes osteoclast differentiation [4][5]. While bone marrow myeloid precursors (e.g., CD11blowCD115highCD117high-expressing cells) differentiate into the osteoclasts in homeostatic conditions, circulating monocytes are capable of forming osteoclasts or fusing with pre-existing multinucleated osteoclasts in pathological settings, such as inflammatory arthritis [6][7][8][9][10][11]. Osteoclast differentiation, activity, and survival depend on macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL), whose expression and signaling outputs are regulated by various factors such as hormones (e.g., parathyroid hormone, estrogen, and 1,25α-dihydroxyvitamin D3) and pro-inflammatory cytokines, including those of the tumor necrosis factor (TNF) and interleukin-1 (IL-1) families [12][13][14][15]. For simplicity, osteoclast differentiation was considered, though other biological aspects of these cells, such as activity and survival, are occasionally described. M-CSF, RANKL, and the majority of osteoclast-regulating factors are mainly produced by cells of the osteoblast lineage, and immune cells (e.g., macrophages, T and B lymphocytes) though the osteoclasts themselves produce factors such as sphingosine-1-phosphate and Wnts, which act not only in autocrine manner, but also paracrine fashion, regulating the functions of neighboring cells such as the osteoblasts [16][17][18][19][20][21]. Osteoclast differentiation is driven by complex interactions among various transcription factors, including the nuclear factor of activated T cells cytoplasmic 1 (NFATc1), NF-κB, and c-Fos [22]. While the effects of PTMs such as phosphorylation, methylation, ubiquitination, and SUMOylation on transcriptional regulation and other key osteoclastogenic events have been extensively studied [23][24][25][26][27][28][29][30][31], only a few studies have investigated the role of ADP-ribosylation in osteoclast biology.

2.1. Role of ARTD1 in Osteoclast Differentiation

ARTD1 is the most studied member of the ARTD family in the skeleton. Early studies show that ARTD1 protein levels decline during in vitro osteoclast differentiation induced by RANKL, a response that correlates with increased expression of the a3 isoform of the V-ATPase subunit, tartrate-resistant acid phosphatase, and brain-type creatine kinase [32][33][34][35]. In agreement with the proposition that ARTD1 is a negative regulator of osteoclastogenesis, this protein binds to and represses the activity of the promoters of the aforementioned genes in the osteoclast precursors [32][33][34][35]. Follow up studies using engineered mice expressing uncleavable ARTD1 or Artd1-deficient mice, not only reinforce the anti-osteoclastogenic functions of ARTD1, but also shed light into the underlying mechanisms [36][37][38][39]. Novel insights include the demonstration that i) ARTD1 inhibits histone3lysine4 trimethylation (H3K4me3), histone marks of active chromatin, at the promoters of key osteoclastogenic factors such as B lymphocyte-induced maturation protein 1 (Blimp1), and ii) ARTD1 PARylates itself during osteoclast formation, a prerequisite modification that targets this protein for destruction through the proteasome pathway [39]. ARTD1 also inhibits H3K4me3 and H4 acetylation, thereby impeding the recruitment of the RelA subunit of NF-κB to the IL-1β promoter [37]. Progressive decline in ARTD1 levels also occurs during the differentiation of myotubes, which are multinucleated fibers that arise from the fusion of myoblasts [40]. The basis for the apparent inverse correlation between ARTD1 abundance and multinucleation is unclear, though it is tempting to speculate that the degradation of this enzyme, whose activity can deplete total intracellular NAD+ levels by 80% may be necessary to prevent energy collapse during the high energy-demanding differentiation process.
Mice lacking ARTD1 globally or selectively in myeloid cells indistinguishably exhibit a low bone mass phenotype associated with an increased number of the osteoclasts on bone surfaces (Wang et al., personal communication). Consistent with the view of osteoclast lineage autonomous actions of ARTD1, in vitro osteoclastogenesis from isolated mouse bone marrow cells is higher in Artd1 null cells compared to wild-type controls [37]. Potential ARTD1 substrates include the master regulators of osteoclast differentiation, NF-κB and NFATc1, which are PARylated by this enzyme in T cells and smooth muscle cells [41][42][43][44][45]. However, such interplay is unlikely in light of the recent study indicating that PARylated NF-κB and NFATc1 are undetectable in cells of the osteoclast lineage. Instead, ARTD1 consistently PARylates histone H2B among other proteins, and decreases the occupancy of H2B at the NFATc1 promoter, thereby inhibiting NFATc1 expression and restraining osteoclast differentiation (Wang et al., personal communication).
ARTD1 is cleaved at D214 into 89 kDa and 24 kDa fragments, presumably by caspase-7, in response to activation of the NLRP3 and NLR, CARD containing 4 (NLRC4) inflammasomes [39][46][47][48]. Consistent with its pro-inflammatory actions, loss of ARTD1 partially protects joints from destruction in the mouse model of collagen antibody-induced arthritis [49][50][51][52][53]. In line with the ability of ARTD1 and its cleaved fragments to activate signaling platforms such as the NF-κB pathway, knockin mice expressing uncleavable ARTD1 are resistant to ischemia/reperfusion-induced inflammation in intestine and kidney [36][41]. Unexpectedly, this ARTD1 mutant does not affect inflammatory outcomes induced by hyperactive NLRP3 inflammasome [38]. These conflicting results may be explained by the fact that ARTD1 actions are cell-context-dependent. Indeed, ARTD1 promotes NF-κB PARylation or activity in cultured smooth muscle cells, neuronal cells, and macrophages, while negatively regulating this transcription factor in lymphocytic leukemia cells [41][42][44][48]. Despite some gaps in our understanding of ARTD1 mechanisms of action, evidence overwhelmingly indicates that this enzyme negatively regulates osteoclast development (Figure 1).
Figure 1. Effects of ADP-ribosylation on osteoclast formation. ARTD1, ARTD5, and ARTD6 catalyze the attachment of ADP-ribose polymers from NAD+ to target proteins (PARylation), releasing nicotinamide (NAM) in the process; their actions lead to the inhibition of osteoclast differentiation. SIRT6 inhibits osteoclast development; however, the effects of its MARylating actions in this process are not clear because this enzyme also has deacetylase activity. Lysine deacetylation is coupled to NAD+ hydrolysis, yielding a deacetylated targeted protein, O-acetyl-ADP-ribose, and NAM. Ac, acetyl.

2.2. Role of ARTD5 and ARTD6 in Osteoclast Differentiation

ARTD5 (also known as PARP5A or tankyrase 1) and ARTD6 (also referred to as PARP5B or tankyrase 2) [54] are expressed by many cell types, including the osteoclast lineage [55][56][57][58]. ARTD5 and ARTD6 are implicated in a range of biological processes, including DNA repair, glucose homeostasis and energy expenditure, and skeletal metabolism (through their interactions with the adaptor protein SH3 domain-binding protein 2, SH3BP2 and AXIN 1/2) [55][59][60][61][62][63]. PARylation targets SH3BP2 for ubiquitination by the E3-ubiquitin ligase RNF46, and subsequently for degradation [55][64]. Missense mutations in SH3BP2 result in SH3BP2 that is stable, as it escapes the destructive actions of ARTD5 and ARTD6, and are associated with cherubism, a hereditary childhood-onset autoinflammatory disorder, whose severity regresses after puberty [65]. Focal facial bone lesions and deformities associated with the destruction of the jaws and dental complications characterize this disease [65]. Knockin mice expressing the most common disease-associated allele develop systemic inflammation (e.g., excessive TNF-α production) and bone loss due to massive osteoclast differentiation as a consequence of heightened sensitivity to M-CSF- and RANKL-induced signals; these events ultimately cumulate in hyperactivation of osteoclastogenic pathways such as Src, Syk, ERK1/2, and NFATc1 [55][56]. Conversely, Sh3bp2-deficient osteoclasts exhibit defective bone resorption in vitro [57]. Furthermore, pharmacological inhibition of ARTD5 and ARTD6, which results in SH3BP2 accumulation, promotes osteoclast differentiation in vitro and bone resorption in vivo [58][66], findings that are consistent with accelerated in vitro osteoclastogenesis of osteoclast precursors lacking both ARTD5 and ARTD6 [55]. A recent study suggests that oral bacteria produce pathogen-associated molecular patterns (PAMPs), which in conjunction with danger-associated molecular patterns (DAMPs) released during the remodeling of the jaws, provide tissue-restricted bone lesions in cherubism. Decreased jaw remodeling with age leading to attenuated levels of DAMPs may underlie the reported regression of this disorder over time in the affected patients [67]. Thus, ARTD5 and ARTD6 function as negative regulators of osteoclast differentiation (Figure 1).

3. Therapeutic Implications

ARTs are novel and promising targets for cancer therapies. Numerous studies have shown that various small-molecule inhibitors of ARTDs are efficacious against various cancers, including ovarian cancer, breast cancer, colon cancer, lung cancer, prostate cancer, hepatocellular carcinoma, osteosarcoma, and chordoma [68][69][70][71][72][73][74][75][76][77][78][79]. More importantly, the US Food and Drug Administration has approved three different ARTD inhibitors, olaparib, niraparib, and rucaparib for the treatment of BRCA1- or BRAC2-mutated ovarian cancers. Considering the crucial role that ARTDs play in the pathogenesis of acute tissue injury or periodontitis, some of these drugs may be indicated for the treatment of inflammatory osteolysis. However, pre-clinical evidence indicates that genetic or pharmacological inhibition of ARTD1 or ARTD5 and ARTD6 causes bone loss, a high-risk factor for fracture. Therefore, comprehensive translational studies may help understand the extent to which ARTD inhibitors may adversely affect the skeleton.

References

  1. Charbord, P.; Tavian, M.; Humeau, L.; Péault, B. Early ontogeny of the human marrow from long bones: An immunohistochemical study of hematopoiesis and its microenvironment. Blood 1996, 87, 4109–4119.
  2. Chen, L.T.; Weiss, L. The development of vertebral bone marrow of human fetuses. Blood 1975, 46, 389–408.
  3. Seike, M.; Omatsu, Y.; Watanabe, H.; Kondoh, G.; Nagasawa, T. Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes Dev. 2018, 32, 359–372.
  4. Alippe, Y.; Wang, C.; Ricci, B.; Xiao, J.; Qu, C.; Zou, W.; Novack, D.V.; Abu-Amer, Y.; Civitelli, R.; Mbalaviele, G. Bone matrix components activate the NLRP3 inflammasome and promote osteoclast differentiation. Sci. Rep. 2017, 7, 6630.
  5. Alippe, Y.; Mbalaviele, G. Omnipresence of inflammasome activities in inflammatory bone diseases. Semin. Immunopathol. 2019.
  6. Charles, J.F.; Hsu, L.-Y.; Niemi, E.C.; Weiss, A.; Aliprantis, A.O.; Nakamura, M.C. Inflammatory arthritis increases mouse osteoclast precursors with myeloid suppressor function. J. Clin. Investig. 2012, 122, 4592–4605.
  7. Jacome-Galarza, C.E.; Lee, S.-K.; Lorenzo, J.A.; Aguila, H.L. Identification, characterization, and isolation of a common progenitor for osteoclasts, macrophages, and dendritic cells from murine bone marrow and periphery. J. Bone Miner. Res. 2013, 28, 1203–1213.
  8. Jacquin, C.; Gran, D.E.; Lee, S.K.; Lorenzo, J.A.; Aguila, H.L. Identification of multiple osteoclast precursor populations in murine bone marrow. J. Bone Miner. Res. 2006, 21, 67–77.
  9. Jacome-Galarza, C.E.; Percin, G.I.; Muller, J.T.; Mass, E.; Lazarov, T.; Eitler, J.; Rauner, M.; Yadav, V.K.; Crozet, L.; Bohm, M.; et al. Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 2019, 568, 541–545.
  10. Gu, R.; Santos, L.L.; Ngo, D.; Fan, H.; Singh, P.P.; Fingerle-Rowson, G.; Bucala, R.; Xu, J.; Quinn, J.M.W.; Morand, E.F. Macrophage migration inhibitory factor is essential for osteoclastogenic mechanisms in vitro and in vivo mouse model of arthritis. Cytokine 2015, 72, 135–145.
  11. Romas, E.; Bakharevski, O.; Hards, D.K.; Kartsogiannis, V.; Quinn, J.M.W.; Ryan, P.F.J.; Martin, T.J.; Gillespie, M.T. Expression of osteoclast differentiation factor at sites of bone erosion in collagen-induced arthritis. Arthritis Rheum. 2000, 43, 821.
  12. Mbalaviele, G.; Veis, D.J. Inflammasomes in Bone Diseases. Exp. Suppl. 2018, 108, 269–279.
  13. Mbalaviele, G.; Novack, D.V.; Schett, G.; Teitelbaum, S.L. Inflammatory osteolysis: A conspiracy against bone. J. Clin. Investig. 2017, 127, 2030–2039.
  14. Novack, D.V.; Mbalaviele, G. Osteoclasts-Key Players in Skeletal Health and Disease. Microbiol. Spectr. 2016, 4, 4.
  15. Kanatani, M.; Sugimoto, T.; Takahashi, Y.; Kaji, H.; Kitazawa, R.; Chihara, K. Estrogen via the Estrogen Receptor Blocks cAMP-Mediated Parathyroid Hormone (PTH)-Stimulated Osteoclast Formation. J. Bone Miner. Res. 1998, 13, 854–862.
  16. Dirckx, N.; Moorer, M.C.; Clemens, T.L.; Riddle, R.C. The role of osteoblasts in energy homeostasis. Nat. Rev. Endocrinol. 2019.
  17. Lerner, U.H.; Ohlsson, C. The WNT system: Background and its role in bone. J. Intern. Med. 2015, 277, 630–649.
  18. Sartawi, Z.; Schipani, E.; Ryan, K.B.; Waeber, C. Sphingosine 1-phosphate (S1P) signalling: Role in bone biology and potential therapeutic target for bone repair. Pharmacol. Res. 2017, 125, 232–245.
  19. Meshcheryakova, A.; Mechtcheriakova, D.; Pietschmann, P. Sphingosine 1-phosphate signaling in bone remodeling: Multifaceted roles and therapeutic potential. Expert Opin. Ther. Tar. 2017, 21, 725–737.
  20. Pederson, L.; Ruan, M.; Westendorf, J.J.; Khosla, S.; Oursler, M.J. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc. Natl. Acad. Sci. USA 2008, 105, 20764–20769.
  21. Quint, P.; Ruan, M.; Pederson, L.; Kassem, M.; Westendorf, J.J.; Khosla, S.; Oursler, M.J. Sphingosine 1-Phosphate (S1P) Receptors 1 and 2 Coordinately Induce Mesenchymal Cell Migration through S1P Activation of Complementary Kinase Pathways. J. Boil. Chem. 2013, 288, 5398–5406.
  22. Park, J.H.; Lee, N.K.; Lee, S.Y. Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation. Mol. Cells 2017, 40, 706–713.
  23. Sato, K.; Suematsu, A.; Nakashima, T.; Takemoto-Kimura, S.; Aoki, K.; Morishita, Y.; Asahara, H.; Ohya, K.; Yamaguchi, A.; Takai, T.; et al. Regulation of osteoclast differentiation and function by the CaMK-CREB pathway. Nat. Med. 2006, 12, 1410–1416.
  24. Huh, J.-E.; Lee, W.I.; Kang, J.W.; Nam, D.; Choi, D.-Y.; Park, D.-S.; Lee, S.H.; Lee, J.-D. Formononetin Attenuates Osteoclastogenesis via Suppressing the RANKL-Induced Activation of NF-κB, c-Fos, and Nuclear Factor of Activated T-Cells Cytoplasmic 1 Signaling Pathway. J. Nat. Prod. 2014, 77, 2423–2431.
  25. Kim, J.H.; Kim, N. Regulation of NFATc1 in Osteoclast Differentiation. J. Bone Metab. 2014, 21, 233–241.
  26. Yasui, T.; Tsutsumi, S.; Aburatani, H.; Hirose, J.; Nakamura, K.; Tanaka, S. Epigenetic regulation of osteoclast differentiation: Possible involvement of Jmjd3 in the histone demethylation of Nfatc1. J. Bone Miner. Res. 2011, 26, 2665–2671.
  27. Collins, P.E.; Mitxitorena, I.; Carmody, R.J. The Ubiquitination of NF-κB Subunits in the Control of Transcription. Cells 2016, 5.
  28. Kim, J.H.; Kim, K.; Jin, H.M.; Song, I.; Youn, B.U.; Lee, S.H.; Choi, Y.; Kim, N. Negative feedback control of osteoclast formation through ubiquitin-mediated down-regulation of NFATc1. J. Biol. Chem. 2010, 285, 5224–5231.
  29. Nayak, A.; Glöckner-Pagel, J.; Vaeth, M.; Schumann, J.E.; Buttmann, M.; Bopp, T.; Schmitt, E.; Serfling, E.; Berberich-Siebelt, F. Sumoylation of the Transcription Factor NFATc1 Leads to Its Subnuclear Relocalization and Interleukin-2 Repression by Histone Deacetylase. J. Boil. Chem. 2009, 284, 10935–10946.
  30. Chen, N.-M.; Neesse, A.; Dyck, M.L.; Steuber, B.; Koenig, A.O.; Lubeseder-Martellato, C.; Winter, T.; Forster, T.; Bohnenberger, H.; Kitz, J.; et al. Context-Dependent Epigenetic Regulation of Nuclear Factor of Activated T Cells 1 in Pancreatic Plasticity. Gastroenterology 2017, 152, 1507–1520.e15.
  31. Yasui, T.; Hirose, J.; Aburatani, H.; Tanaka, S. Epigenetic regulation of osteoclast differentiation. Ann. N. Y. Acad. Sci. 2011, 1240, 7–13.
  32. Beranger, G.E.; Momier, D.; Rochet, N.; Quincey, D.; Guigonis, J.M.; Samson, M.; Carle, G.F.; Scimeca, J.C. RANKL Treatment Releases the Negative Regulation of the Poly(ADP-Ribose) Polymerase-1 on Tcirg1 Gene Expression During Osteoclastogenesis. J. Bone Miner. Res. 2006, 21, 1757–1769.
  33. Beranger, G.E.; Momier, D.; Guigonis, J.-M.; Samson, M.; Carle, G.F.; Scimeca, J.-C.; Guigonis, J.; Scimeca, J. Differential Binding of Poly(ADP-Ribose) Polymerase-1 and JunD/Fra2 Accounts for RANKL-Induced Tcirg1 Gene Expression During Osteoclastogenesis. J. Bone Miner. Res. 2007, 22, 975–983.
  34. Beranger, G.E.; Momier, D.; Rochet, N.; Carle, G.F.; Scimeca, J.C. Poly(adp-ribose) polymerase-1 regulates Tracp gene promoter activity during RANKL-induced osteoclastogenesis. J. Bone Miner. Res. 2008, 23, 564–571.
  35. Chen, J.; Sun, Y.; Mao, X.; Liu, Q.; Wu, H.; Chen, Y. RANKL Up-regulates Brain-type Creatine Kinase via Poly(ADP-ribose) Polymerase-1 during Osteoclastogenesis. J. Boil. Chem. 2010, 285, 36315–36321.
  36. Petrilli, V.; Herceg, Z.; Hassa, P.O.; Patel, N.S.; Paola, R.D.; Cortes, U.; Dugo, L.; Filipe, H.-M.; Thiemermann, C.; Hottiger, M.O.; et al. Noncleavable poly(ADP-ribose) polymerase-1 regulates the inflammation response in mice. J. Clin. Investig. 2004, 114, 1072–1081.
  37. Robaszkiewicz, A.; Qu, C.; Wisnik, E.; Ploszaj, T.; Mirsaidi, A.; Kunze, F.A.; Richards, P.J.; Cinelli, P.; Mbalaviele, G.; Hottiger, M.O. ARTD1 regulates osteoclastogenesis and bone homeostasis by dampening NF-kappaB-dependent transcription of IL-1beta. Sci. Rep. 2016, 6, 21131.
  38. Wang, C.; Xu, C.-X.; Alippe, Y.; Qu, C.; Xiao, J.; Schipani, E.; Civitelli, R.; Abu-Amer, Y.; Mbalaviele, G. Chronic inflammation triggered by the NLRP3 inflammasome in myeloid cells promotes growth plate dysplasia by mesenchymal cells. Sci. Rep. 2017, 7, 4880.
  39. Wang, C.; Qu, C.; Alippe, Y.; Bonar, S.L.; Civitelli, R.; Abu-Amer, Y.; O Hottiger, M.; Mbalaviele, G. Poly-ADP-ribosylation-mediated degradation of ARTD1 by the NLRP3 inflammasome is a prerequisite for osteoclast maturation. Cell Death Dis. 2016, 7, e2153.
  40. Oláh, G.; Szczesny, B.; Brunyánszki, A.; López-García, I.A.; Gero, D.; Radak, Z.; Szabo, C. Differentiation-Associated Downregulation of Poly(ADP-Ribose) Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress. PLoS ONE 2015, 10, e0134227.
  41. Castri, P.; Lee, Y.J.; Ponzio, T.; Maric, D.; Spatz, M.; Bembry, J.H. Poly(ADP-ribose) polymerase-1 and its cleavage products differentially modulate cellular protection through NF-κB-dependent signaling. BBA-Mol. Cell Res. 2014, 1843, 640–651.
  42. Zerfaoui, M.; Errami, Y.; Naura, A.S.; Suzuki, Y.; Kim, H.; Ju, J.; Liu, T.; Hans, C.P.; Kim, J.G.; Elmageed, Z.Y.A.; et al. Poly(ADP-ribose) polymerase-1 is a determining factor in Crm1-mediated nuclear export and retention of p65 NF-kappa B upon TLR4 stimulation. J. Immunol. 2010, 185, 1894–1902.
  43. Valdor, R.; Schreiber, V.; Saenz, L.; Martínez, T.; Muñoz-Suano, A.; Domínguez-Villar, M.; Ramírez, P.; Parrilla, P.; Aguado, E.; Garcia-Cozar, F. Regulation of NFAT by poly(ADP-ribose) polymerase activity in T cells. Mol. Immunol. 2008, 45, 1863–1871.
  44. Kameoka, M.; Ota, K.; Tetsuka, T.; Tanaka, Y.; Itaya, A.; Okamoto, T.; Yoshihara, K. Evidence for regulation of NF-kappaB by poly(ADP-ribose) polymerase. Biochem. J. 2000, 346, 641–649.
  45. Olabisi, O.A.; Soto-Nieves, N.; Nieves, E.; Yang, T.T.C.; Yang, X.; Yu, R.Y.L.; Suk, H.Y.; Macian, F.; Chow, C.-W. Regulation of Transcription Factor NFAT by ADP-Ribosylation. Mol. Cell. Boil. 2008, 28, 2860–2871.
  46. Malireddi, R.K.S.; Ippagunta, S.; Lamkanfi, M.; Kanneganti, T.-D. Cutting edge: Proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes. J. Immunol. 2010, 185, 3127–3130.
  47. Qu, C.; Bonar, S.L.; Hickman-Brecks, C.L.; Abu-Amer, S.; McGeough, M.D.; Peña, C.A.; Broderick, L.; Yang, C.; Kading, J. NLRP3 mediates osteolysis through inflammation-dependent and -independent mechanisms. FASEB. J. 2015, 29, 1269–1279.
  48. Erener, S.; Pétrilli, V.; Kassner, I.; Minotti, R.; Castillo, R.; Santoro, R.; Hassa, P.O.; Tschopp, J.; Hottiger, M.O. Inflammasome-Activated Caspase 7 Cleaves PARP1 to Enhance the Expression of a Subset of NF-κB Target Genes. Mol. Cell 2012, 46, 200–211.
  49. García, S.; Bodaño, A.; González, A.; Forteza, J.; Gómez-Reino, J.J.; Conde, C. Partial protection against collagen antibody-induced arthritis in PARP-1 deficient mice. Arthritis Res. Ther. 2006, 8.
  50. Kunze, F.A.; Bauer, M.; Komuczki, J.; Lanzinger, M.; Gunasekera, K.; Hopp, A.K.; Lehmann, M.; Becher, B.; Müller, A.; Hottiger, M.O. ARTD1 in Myeloid Cells Controls the IL-12/18–IFN-γ Axis in a Model of Sterile Sepsis, Chronic Bacterial Infection, and Cancer. J. Immunol. 2019, 202, 1406–1416.
  51. Oliver, F.J.; Murcia, J.M.; Nacci, C.; Decker, P.; Andriantsitohaina, R.; Muller, S.; de la Rubia, G.; Stoclet, J.C.; de Murcia, G. Resistance to endotoxic shock as a consequence of defective NF-κB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J. 1999, 18, 4446–4454.
  52. Burkart, V.; Wang, Z.-Q.; Radons, J.; Heller, B.; Herceg, Z.; Stingl, L.; Wagner, E.F.; Kolb, H. Mice lacking the poly(ADP-ribose) polymerase gene are resistant to pancreatic beta-cell destruction and diabetes development induced by streptozocin. Nat. Med. 1999, 5, 314–319.
  53. Mabley, J.G.; Jagtap, P.; Perretti, M.; Getting, S.J.; Salzman, A.L.; Virag, L.; Szabo, E.; Soriano, F.G.; Liaudet, L.; Abdelkarim, G.E.; et al. Anti-inflammatory effects of a novel, potent inhibitor of poly (ADP-ribose) polymerase. Inflamm. Res. 2001, 50, 561–569.
  54. Hottiger, M.O. Nuclear ADP-Ribosylation and Its Role in Chromatin Plasticity, Cell Differentiation, and Epigenetics. Annu. Rev. Biochem. 2015, 84, 227–263.
  55. Levaot, N.; Voytyuk, O.; Dimitriou, I.; Sircoulomb, F.; Chandrakumar, A.; Deckert, M.; Krzyzanowski, P.M.; Scotter, A.; Gu, S.; Janmohamed, S.; et al. Loss of Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic mechanism of cherubism. Cell 2011, 147, 1324–1339.
  56. Ueki, Y.; Lin, C.-Y.; Senoo, M.; Ebihara, T.; Agata, N.; Onji, M.; Saheki, Y.; Kawai, T.; Mukherjee, P.M.; Reichenberger, E.; et al. Increased Myeloid Cell Responses to M-CSF and RANKL Cause Bone Loss and Inflammation in SH3BP2 “Cherubism” Mice. Cell 2007, 128, 71–83.
  57. Levaot, N.; Simoncic, P.; Dimitriou, I.; Scotter, A.; Rose, J.L.; Willett, T.; Ng, A.; Wang, C.; Janmohamed, S.; Grynpas, M.; et al. 3BP2 deficient mice are osteoporotic with impaired osteoblast and osteoclast functions. J. Clin. Invest. 2011, 121, 3244–3257.
  58. Fujita, S.; Mukai, T.; Mito, T.; Kodama, S.; Nagasu, A.; Kittaka, M.; Sone, T.; Ueki, Y.; Morita, Y. Pharmacological inhibition of tankyrase induces bone loss in mice by increasing osteoclastogenesis. Bone 2018, 106, 156–166.
  59. Jiang, Q.; Paramasivam, M.; Aressy, B.; Wu, J.; Bellani, M.; Tong, W.; Seidman, M.M.; Greenberg, R.A. MERIT40 cooperates with BRCA2 to resolve DNA interstrand cross-links. Genes Dev. 2015, 29, 1955–1968.
  60. Nagy, Z.; Kalousi, A.; Furst, A.; Koch, M.; Fischer, B.; Soutoglou, E. Tankyrases Promote Homologous Recombination and Check Point Activation in Response to DSBs. PLoS Genet. 2016, 12, 1005791.
  61. Zhong, L.L.; Ding, Y.; Bandyopadhyay, G.; Waaler, J.; Börgeson, E.; Smith, S.; Zhang, M.; Phillips, S.A.; Mahooti, S.; Mahata, S.K.; et al. The PARsylation activity of tankyrase in adipose tissue modulates systemic glucose metabolism in mice. Diabetologia 2016, 59, 582–591.
  62. Yeh, T.-Y.J.; Beiswenger, K.K.; Li, P.; Bolin, K.E.; Lee, R.M.; Tsao, T.-S.; Murphy, A.N.; Hevener, A.L.; Chi, N.-W. Hypermetabolism, Hyperphagia, and Reduced Adiposity in Tankyrase-Deficient Mice. Diabetes 2009, 58, 2476–2485.
  63. Mariotti, L.; Pollock, K.; Guettler, S. Regulation of Wnt/beta-catenin signalling by tankyrase-dependent poly(ADP-ribosyl)ation and scaffolding. Br. J. Pharmacol. 2017, 174, 4611–4636.
  64. Guettler, S.; LaRose, J.; Petsalaki, E.; Gish, G.; Scotter, A.; Pawson, T.; Rottapel, R.; Sicheri, F. Structural Basis and Sequence Rules for Substrate Recognition by Tankyrase Explain the Basis for Cherubism Disease. Cell 2011, 147, 1340–1354.
  65. Ueki, Y.; Tiziani, V.; Santanna, C.; Fukai, N.; Maulik, C.; Garfinkle, J.; Ninomiya, C.; Doamaral, C.; Peters, H.; Habal, M.; et al. Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism. Nat. Genet. 2001, 28, 125–126.
  66. Mukai, T.; Fujita, S.; Morita, Y. Tankyrase (PARP5) Inhibition Induces Bone Loss through Accumulation of Its Substrate SH3BP2. Cells 2019, 8, 195.
  67. Yoshitaka, T.; Mukai, T.; Kittaka, M.; Alford, L.M.; Masrani, S.; Ishida, S.; Yamaguchi, K.; Yamada, M.; Mizuno, N.; Olsen, B.R.; et al. Enhanced TLR-MYD88 signaling stimulates autoinflammation in SH3BP2 cherubism mice and defines the etiology of cherubism. Cell Rep. 2014, 8, 1752–1766.
  68. Mirza, M.R.; Monk, B.J.; Herrstedt, J.; Oza, A.M.; Mahner, S.; Redondo, A.; Fabbro, M.; Ledermann, J.A.; Lorusso, D.; Vergote, I.; et al. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. New Engl. J. Med. 2016, 375, 2154–2164.
  69. Marchetti, C.; Imperiale, L.; Gasparri, M.L.; Palaia, I.; Pignata, S.; Boni, T.; Bellati, F.; Panici, P.B. Olaparib, PARP1 inhibitor in ovarian cancer. Expert Opin. Investig. Drugs 2012, 21, 1575–1584.
  70. Keung, M.Y.T.; Wu, Y.; Vadgama, J.V. PARP Inhibitors as a Therapeutic Agent for Homologous Recombination Deficiency in Breast Cancers. J. Clin. Med. 2019, 8, 435.
  71. Tutt, A.; Robson, M.; Garber, J.E.; Domchek, S.M.; Audeh, M.W.; Weitzel, J.N.; Friedlander, M.; Arun, B.; Loman, N.; Schmutzler, R.K.; et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 2010, 376, 235–244.
  72. Mizutani, A.; Yashiroda, Y.; Muramatsu, Y.; Yoshida, H.; Chikada, T.; Tsumura, T.; Okue, M.; Shirai, F.; Fukami, T.; Yoshida, M.; et al. RK-287107, a potent and specific tankyrase inhibitor, blocks colorectal cancer cell growth in a preclinical model. Cancer Sci. 2018, 109, 4003–4014.
  73. Paulsen, J.E.; Pedersen, N.M.; Kries, J.P.V.; Waaler, J.; Machon, O.; Tumova, L.; Dinh, H.; Korinek, V.; Wilson, S.R.; Eide, T.J.; et al. A Novel Tankyrase Inhibitor Decreases Canonical Wnt Signaling in Colon Carcinoma Cells and Reduces Tumor Growth in Conditional APC Mutant Mice. Cancer Res. 2012, 72, 2822–2832.
  74. Li, C.; Zheng, X.; Han, Y.; Lv, Y.; Lan, F.; Zhao, J. XAV939 inhibits the proliferation and migration of lung adenocarcinoma A549 cells through the WNT pathway. Oncol. Lett. 2018, 15, 8973–8982.
  75. Cheng, H.; Li, X.; Wang, C.; Chen, Y.; Li, S.; Tan, J.; Tan, B.; He, Y. Inhibition of tankyrase by a novel small molecule significantly attenuates prostate cancer cell proliferation. Cancer Lett. 2019, 443, 80–90.
  76. Jia, J.; Qiao, Y.; Pilo, M.G.; Cigliano, A.; Liu, X.; Shao, Z.; Calvisi, D.F.; Chen, X. Tankyrase inhibitors suppress hepatocellular carcinoma cell growth via modulating the Hippo cascade. PLoS ONE 2017, 12, e0184068.
  77. Stratford, E.W.; Daffinrud, J.; Munthe, E.; Castro, R.; Waaler, J.; Krauss, S.; Myklebost, O. The tankyrase-specific inhibitor JW74 affects cell cycle progression and induces apoptosis and differentiation in osteosarcoma cell lines. Cancer Med. 2014, 3, 36–46.
  78. Martins-Neves, S.R.; Paiva-Oliveira, D.I.; Fontes-Ribeiro, C.; Bovée, J.V.; Cleton-Jansen, A.-M.; Gomes, C.F. IWR-1, a tankyrase inhibitor, attenuates Wnt/β-catenin signaling in cancer stem-like cells and inhibits in vivo the growth of a subcutaneous human osteosarcoma xenograft. Cancer Lett. 2018, 414, 1–15.
  79. Gröschel, S.; Hübschmann, D.; Raimondi, F.; Horak, P.; Warsow, G.; Fröhlich, M.; Klink, B.; Gieldon, L.; Hutter, B.; Kleinhenz, K.; et al. Defective homologous recombination DNA repair as therapeutic target in advanced chordoma. Nat. Commun. 2019, 10, 1635.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 472
Revisions: 4 times (View History)
Update Date: 21 Feb 2022
1000/1000
ScholarVision Creations