Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 1471 word(s) 1471 2021-12-08 08:54:34 |
2 format correct Meta information modification 1471 2021-12-30 08:54:06 | |
3 update layout Meta information modification 1471 2023-08-24 04:25:51 |

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Jiang, F. Expression and Subcellular Localization of PCAT6. Encyclopedia. Available online: (accessed on 17 June 2024).
Jiang F. Expression and Subcellular Localization of PCAT6. Encyclopedia. Available at: Accessed June 17, 2024.
Jiang, Feng. "Expression and Subcellular Localization of PCAT6" Encyclopedia, (accessed June 17, 2024).
Jiang, F. (2021, December 30). Expression and Subcellular Localization of PCAT6. In Encyclopedia.
Jiang, Feng. "Expression and Subcellular Localization of PCAT6." Encyclopedia. Web. 30 December, 2021.
Expression and Subcellular Localization of PCAT6

Prostate cancer-associated transcript 6 (PCAT6), as a newly discovered carcinogenic long non-coding RNA (lncRNA), is abnormally expressed in multiple diseases. PCAT6 is also named KDM5B-AS1, KDM5BAS1, PCAN-R1, ncRNA-a2, or onco-lncRNA-96. It was first described as ncRNA-a2 in 2010. The gene of PCAT6 is located on chromosome 1q32.1 and contains two exons. It consists of 968 bp and has two transcript variants: transcript variant 1 (NR_046325.1) and transcript variant 2 (NR_046326.1).

lncRNA PCAT6 Expression Subcellular Localization

1. The Abnormal Expression of PCAT6 in Cancers

The expression of PCAT6 is found to be aberrantly elevated in various human tumor tissues and cell lines compared with matched normal ones, including bladder cancer (BC) [1][2][3], breast cancer (BrCa) [4][5], cervical cancer (CC) [6][7], colorectal cancer (CRC) [8][9], gastrointestinal stromal tumor (GIST) [10], gastric cancer (GC) [11][12], glioblastoma (GBM) [13], hepatocellular carcinoma (HCC) [14][15][16], lung cancer (LC) [17][18][19][20][21][22], osteosarcoma (Osa) [23][24][25], ovarian cancer (OvCa) [26][27], cholangiocarcinoma (CCA) [28], pituitary adenoma (PA) [29], pancreatic ductal adenocarcinoma (PDAC) [30], and prostate cancer (PCa) [31][32]. In subsequent experiments on the biological functions of tumor cells, it has been revealed that a high level of PCAT6 has strong cancer-promoting effects, mainly including the promotion of cell proliferation, enhancement of migration, invasion and EMT process, as well as the inhibition of cell apoptosis. Meanwhile, PCAT6 has been shown to promote tumor growth and metastasis in xenograft mouse models (Table 1) [4][7][8][16][18][19][22][23][25][29][31][32][33]. However, Amelia et al. reported that the expression level of PCAT6 was opposite in lung tumor tissues and lung cancer cell lines compared with the normal control group [34]. Compared with paired normal tissue, PCAT6 expression level is higher in lung tumors, while its level is lower in non-small cell lung cancer (NSCLC) cell lines compared to the normal human fetal lung fibroblast cell line (IMR-90) [34]. Interestingly, Tu et al. found that, compared to T cells, B cells, dendritics, and neutrophils, PCAT6 expression was the highest in macrophages which derived from patients of CCA, especially M2 macrophages [33]. Furthermoer, PCAT6 expression level is also significantly higher in the blood samples of some cancer patients, including BC [2] and LC [20][35]. Contradictorily, Siddique et al., testified that PCAT6 level had no significant difference in the blood between Saudi CRC patients and healthy donors [36]. It is speculated that the cause of this result may be ethnically related, and the expression level of PCAT6 in CRC patients of different races might be different.
Table 1. Functional characterization of PCAT6 in multiple human cancers.
Tumor Types Expression Sample Type Role Functional Role in Vitro Functional Role in Vivo Related Genes/Protein/Pathways Ref.
Bladder cancer Up cells (RT4, T24, J82, UMUC3, 5637), patient tissue and serum Tumor promoter Cell proliferation and apoptosis   NA [2]
Up Cells (T24, EJ, 253j, 5637), patient tissue Tumor promoter Cell proliferation, migration, and invasion   miR-513a-5p [1]
Up Cells (T24T, EJ, UMUC3, 5637), patient tissue Tumor promoter Cell proliferation, migration, and invasion   miR-143-3p, PDIA6 [3]
Breast cancer Up Cells (MDA-MB-231, MDA-MB-468, MDA-MB-436, HCC-1937), patient tissue Tumor promoter Cell proliferation, migration, invasion, EMT process, and angiogenesis Tumor growth, metastasis, and angiogenesis VEGF, VEGFR2/Akt/mTOR, miR-4723-5p, USP14, E-cadherin, N-cadherin, Slug, Twist, [4]
Up Cells (MDA-MB-468, MDA-MB-231), patient tissue Tumor promoter Cell proliferation, apoptosis, cell cycle, and radiosensitivity   miR-185-5p, TPD52 [5]
Cervical cancer Up Cells (Caski, SW756, HeLa, ME-180, SiHa, C33A), patient tissue Tumor promoter Cell proliferation, apoptosis, migration, and invasion   Wnt/β-catenin, β-catenin, cyclin D1, c-myc [6]
Up Cells (SiHa, HeLa, ME180, C-33A), patient tissue Tumor promoter Cell proliferation, apoptosis, migration, invasion, and chemoresistance Tumor growth miR-543, Bcl-2, cleaved-caspase 3, ZEB1 [7]
Colorectal cancer Up Cells (SW628, SW480, RKO, COLO320HSR, HCT116), patient tissue Tumor promoter Cell proliferation and apoptosis Tumor growth Cleaved-caspase 3, ARC, EZH2 [8]
Up Cells (HCT116, HT-29, SW620, SW480, DLD-1, RKO, LoVo), patient tissue Tumor promoter Cell proliferation and chemoresistance   miR-204, HMGA2, PI3K, Akt [9]
Gastrointestinal stromal tumor Up Cells (GIST-H1, GIST-882, GIST-T1, GIST-48), patient tissue Tumor promoter Cell proliferation, stemness, and apoptosis   Wnt/β-catenin, miR-143-3p, PRDX5 [10]
Gastric cancer Up Cells (BGC-823, SGC-7901, HGC-27, MKN45), patient tissue Tumor promoter Cell proliferation, migration, EMT, and apoptosis   miR-30, MKRN3, caspase 3, caspase 9, Bax, Bcl-2, E-cadherin, N-cadherin, Vimentin, ZEB1, Snail [12]
Up Cells (MKN45, SGC-7901, AGS, MKN28), patient tissue Tumor promoter Cell proliferation, EMT, and apoptosis   Cyclin D1, p53, Bax, cleaved caspase 3, E-cadherin, N-cadherin, Vimentin, Snail, ZEB1, miR-15a, RB/E2F, Wnt/β-catenin [11]
Glioblastoma Up Cells (A172, U251, U87, LN229), patient tissue Tumor promoter Cell proliferation and apoptosis   YY1, miR-513, IGF2BP1, Akt [13]
Hepatocellular carcinoma Up Patient tissue Tumor promoter Cell proliferation and migration   NA [14]
Up Cells (HuH7, SMMC-7721, Hep3B, HepG2, PLC/PRF/5), patient tissue Tumor promoter Cell proliferation, cycle, apoptosis, and migration   PCNA, CCND1, Bcl-2 [15]
Up Cells (MHCC97H, HepG2, Huh7), patient tissue Tumor promoter Cell proliferation and invasion Tumor growth miR-326, hnRNPA2B1 [16]
Lung cancer Up Cells (H1650, HCC827, H1975, A549), patient tissue Tumor promoter Cell proliferation, migration, and invasion, Tumor growth miR-330-5p [18]
Up Cells (SK-MES-1, H1703, H520, H1299, H1975, SPCA1, A549), patient tissue Tumor promoter Cell proliferation, cycle, apoptosis, migration, and invasion Tumor growth EZH2, LATS2 [19]
Up Cells (H292, PC-9, CL1-5, H460, H1650, A549, H446, H1975) Tumor promoter Cell proliferation, apoptosis, and invasion   Bcl-2, Bax, c-myc, p53 [17]
Up Cells (H446, H1975), patient tissue Tumor promoter Cell proliferation, migration, invasion, and apoptosis   c-myc, MMP9, cleaved-caspase-3, Wnt5a, β-catenin. miR-326. [21]
Up Cells (H1838, H522, H2228, H358, H1299, A549), Tumor promoter Cell proliferation, migration, invasion, cycle, apoptosis Tumor growth Caspase-3, Ki-67 [22]
Osteosarcoma Up Cells (MG-63, Saos-2, 143B, U2OS), patient tissue Tumor promoter Cell proliferation, migration, invasion, and cell cycle Tumor growth ZEB1, miR-143-3p [23]
Up Cells (Saos2, MG63, U2OS, HOS) Tumor promoter Cell proliferation, migration, and invasion Tumor growth MMP2, MMP9, p53, p21, MDM2 [25]
Up Cells (Saos2, HOS, U2OS, 143B, KHOS/240S, MG63, SK-ES-1), patient tissue Tumor promoter Cell proliferation, migration, and invasion   miR-185-5p, TGF-β, p-SMAD, TGFBR1/2 [24]
Ovarian cancer Up Cells (OVCAR3, PEO1, A2780, 3AO, CAOV3, SKOV3), patient tissue Tumor promoter Cell proliferation, migration, and invasion   PTEN [26]
Up Patient tissue Tumor promoter Cell proliferation, migration, and invasion   miR-143-3p, TAK1 [27]
Cholangiocarcinoma Up Patient-derived macrophages, patient tissue Tumor promoter M2 polarization of macrophages, cellular reactive oxygen species production, mitochondrial and metabolic dysfunction Tumor growth miR-326, RhoA, ROCK1, ROCK2 [33]
Up Cell (ICC-9810, CCLP1, HuCC-T1, QBC939), patient tissue Tumor promoter Cell proliferation and invasion   miR-330-5p [28]
Pituitary adenomas Up Patient tissue Tumor promoter Cell proliferation, migration, invasion, viability, apoptosis, cell cycle, and EMT Tumor growth, apoptosis, EMT miR-139-3p, BRD4, E-cadherin, N-cadherin, Bcl-2, Bax, cleaved-caspase 3 [29]
Pancreatic ductal adenocarcinoma Up Cell (Capan-2, AsPC-1, PANC1, BxPC-3), Patient tissue Tumor promoter Cell proliferation, migration, and invasion   miR-185-5p, CBX2 [30]
Prostate cancer Up Cell (NCI-H660), patient tissue Tumor promoter Cell NED, proliferation, and invasion Tumor growth and metastasis NSE, SYP, ChgA, miR-326, hnRNPA2B1 [31]
Up Patient tissue Tumor promoter Cell proliferation, cycle, migration, and invasion Tumor growth and BM IGF2BP2, IGF1R, PI3K/Akt, NF-κB, METTL3, ALKBH5 [32]
PDIA6, protein disulfide isomerase family A number 6; EMT, epithelial-mesenchymal transition; VEGF, vascular endothelial growth factor; VEFGR2, vascular endothelial growth factor receptor 2; Akt, serine/threonine kinase; mTOR, mammalian target of rapamycin; USP14, ubiquitin-specific protease-14; TPD52, tumor protein D52; Bcl-2, B-cell lymphoma-2; ZEB1, zinc finger E-box binding homeobox 1; ARC, activity regulated cytoskeleton associated protein; EZH2, enhancer of zeste homolog 2; HMGA2, high mobility group AT-hook 2; PRDX5, peroxiredoxin 5; MKRN3, makorin ring finger protein 3; YY1, Yin Yang 1; IGF2BP1, insulin like growth factor 2 mRNA binding protein 1; IGF2BP2, insulin like growth factor 2 mRNA binding protein 2; PCNA, proliferating cell nuclear antigen; CCND1, cyclin D1; hnRNPA2B1, heterogeneous nuclear ribonucleoprotein A2/B1, LATS2, large tumor suppressor kinase 2; Bax, BCL2 associated X; MMP2, matrix metallopeptidase 2; MMP9, matrix metallopeptidase 9; MDM2, mouse double minute 2 homolog; TGF-β, transforming growth factor β; TGFBR1/2, transforming growth factor β receptor 1/2; PTEN, phosphatase and tensin homolog; TAK1, TGF-β activated kinase 1; RhoA, ras homolog family member A; ROCK1/2, Rho associated coiled-coil containing protein kinase 1/2; BRD4, bromodomain containing 4; CBX2, chromobox 2; NED, neuroendocrine differentiation; SYP, synaptophysin; ChgA, chromogranin A; BM, bone metastasis; IGF1R, insulin like growth factor 1 receptor; METTL3, methyltransferase 3, N6-adenosine-methyltransferase complex catalytic subunit; ALKBH5, alkB homolog 5.

2. The Subcellular Localization of PCAT6 in Cancer Cell Lines

LncRNAs play diverse functions depending on different subcellular or extracellular compartmental localizations. Most studies indicate that PCAT6 is primarily located in the cytoplasm of BC [3], GIST [10], GBM [13], Osa [23][24], PA [29], and Pca [31] cells. Cytoplasmic lncRNAs regulate genes at the translational and post-transcriptional levels, such as interaction with cytoplasmic proteins [37], and interaction with microRNAs to regulate downstream mRNA levels [38][39][40][41][42]. Shi et al. determined that PCAT6 was principally distributed in the nucleus of NSCLC cells [19]. Nucleic lncRNAs regulate genes at the epigenetic and transcriptional levels, including histone modifications [43][44], DNA methylation [45], and chromatin remodeling [46]. Furthermore, Dong and Lang et al. demonstrated that PCAT6 was located in both the cytoplasm and nucleus of BrCa and PCa cells by fluorescence in situ hybridization (FISH) and subcellular fraction assays, which was different from most studies [4][32]. This is similar to the lncRNA HOTAIR, which regulates genes at both the epigenetic and transcriptional levels, as well as at the post-transcriptional level [47].


  1. Xia, W.; Chen, C.; Zhang, M.; Zhu, L. LncRNA PCAT6 aggravates the progression of bladder cancer cells by targeting miR-513a-5p. Eur. Rev. Med Pharmacol. Sci. 2020, 24, 9908–9914.
  2. Zhang, D.; Du, D.; Yi, S.; Li, X. LncRNA PCAT6: A potential biomarker for diagnosis and prognosis of bladder cancer. Ann. Diagn. Pathol. 2020, 49, 151642.
  3. Zhang, Y.; Chen, L.; Luo, G. Long non-coding RNA PCAT6 regulates bladder cancer progression via the microRNA-143-3p/PDIA6 axis. Exp. Ther. Med. 2021, 22, 947.
  4. Dong, F.; Ruan, S.; Wang, J.; Xia, Y.; Le, K.; Xiao, X.; Hu, T.; Wang, Q. M2 macrophage-induced lncRNA PCAT6 facilitates tumorigenesis and angiogenesis of triple-negative breast cancer through modulation of VEGFR2. Cell Death Dis. 2020, 11, 728.
  5. Shi, R.; Wu, P.; Liu, M.; Chen, B.; Cong, L. Knockdown of lncRNA PCAT6 enhances radiosensitivity in triple-negative breast cancer cells by regulating miR-185-5p/TPD52 axis. OncoTargets Ther. 2020, 13, 3025–3037.
  6. Lv, X.; Tang, Q.; Tu, Y.; Yan, D.; Wei, Q. Long noncoding RNA PCAT6 regulates cell growth and metastasis via Wnt/β-catenin pathway and is a prognosis marker in cervical cancer. Eur. Rev. Med Pharmacol. Sci. 2019, 23, 1947–1956.
  7. Ma, Z.; Gu, G.; Pan, W.; Chen, X. LncRNA PCAT6 Accelerates the Progression and Chemoresistance of Cervical Cancer Through Up-Regulating ZEB1 by Sponging miR-543. OncoTargets Ther. 2020, 13, 1159–1170.
  8. Huang, W.; Su, G.; Huang, X.; Zou, A.; Wu, J.; Yang, Y.; Zhu, Y.; Liang, S.; Li, D.; Ma, F.; et al. Long noncoding RNA PCAT6 inhibits colon cancer cell apoptosis by regulating anti-apoptotic protein ARC expression via EZH2. Cell Cycle 2019, 18, 69–83.
  9. Wu, H.; Zou, Q.; He, H.; Liang, Y.; Lei, M.; Zhou, Q.; Fan, D.; Shen, L. Long non-coding RNA PCAT6 targets miR-204 to modulate the chemoresistance of colorectal cancer cells to 5-fluorouracil-based treatment through HMGA2 signaling. Cancer Med. 2019, 8, 2484–2495.
  10. Bai, F.; Zhang, N.; Fang, W.; He, X.; Zheng, Y.; Gu, D. PCAT6 mediates cellular biological functions in gastrointestinal stromal tumor via upregulation of PRDX5 and activation of Wnt pathway. Mol. Carcinog. 2020, 59, 661–669.
  11. Dong, D.; Lun, Y.; Sun, B.; Sun, H.; Wang, Q.; Yuan, G.; Quan, J. Silencing of long non-coding RNA PCAT6 restrains gastric cancer cell proliferation and epithelial-mesenchymal transition by targeting microRNA-15a. Gen. Physiol. Biophys. 2020, 39, 1–12.
  12. Xu, Y.; Sun, J.; Jin, Y.; Yu, H. PCAT6 participates in the development of gastric cancer through endogenously competition with microRNA-30. Eur. Rev. Med Pharmacol. Sci. 2018, 22, 5206–5213.
  13. Liu, P.; Zhao, P.; Li, B.; Xu, D.; Wang, K. LncRNA PCAT6 Regulated by YY1 Accelerates the Progression of Glioblastoma via miR-513/IGF2BP1. Neurochem. Res. 2020, 45, 2894–2902.
  14. Chen, S.; Chen, Y.; Qian, Q.; Wang, X.; Chang, Y.; Ju, S.; Xu, Y.; Zhang, C.; Qin, N.; Ding, H.; et al. Gene amplification derived a cancer-testis long noncoding RNA PCAT6 regulates cell proliferation and migration in hepatocellular carcinoma. Cancer Med. 2019, 8, 3017–3025.
  15. Luo, Y.; Lin, J.; Zhang, Y.; Dai, G.; Li, A.; Liu, X. LncRNA PCAT6 predicts poor prognosis in hepatocellular carcinoma and promotes proliferation through the regulation of cell cycle arrest and apoptosis. Cell Biochem. Funct. 2020, 38, 895–904.
  16. Luo, J.; Zheng, J.; Hao, W.; Zeng, H.; Zhang, Z.; Shao, G. lncRNA PCAT6 facilitates cell proliferation and invasion via regulating the miR-326/hnRNPA2B1 axis in liver cancer. Oncol. Lett. 2021, 21, 471.
  17. Wan, L.; Zhang, L.; Fan, K.; Cheng, Z.; Sun, Q.; Wang, J. Knockdown of Long Noncoding RNA PCAT6 inhibits proliferation and invasion in lung cancer cells. Oncol. Res. 2016, 24, 161–170.
  18. Cui, L.; Xu, H.; Yang, W.; Yu, L. lncRNA PCAT6 promotes non-small cell lung cancer cell proliferation, migration and invasion through regulating miR-330-5p. OncoTargets Ther. 2018, 11, 7715–7724.
  19. Shi, X.; Liu, Z.; Liu, Z.; Feng, X.; Hua, F.; Hu, X.; Wang, B.; Lu, K.; Nie, F. Long noncoding RNA PCAT6 functions as an oncogene by binding to EZH2 and suppressing LATS2 in non-small-cell lung cancer. EBioMedicine 2018, 37, 177–187.
  20. Wan, L.; Zhang, L.; Fan, K.; Wang, J. Diagnostic significance of circulating long noncoding RNA PCAT6 in patients with non-small cell lung cancer. OncoTargets Ther. 2017, 10, 5695–5702.
  21. Su, G.; Yan, Z.; Deng, M. Sevoflurane Inhibits Proliferation, Invasion, but Enhances Apoptosis of Lung Cancer Cells by Wnt/β-catenin Signaling via Regulating lncRNA PCAT6/miR-326 Axis. Open Life Sci. 2020, 15, 159–172.
  22. Lou, B.; Wei, D.; Zhou, X.; Chen, H. Long non-coding RNA KDM5B anti-sense RNA 1 enhances tumor progression in non-small cell lung cancer. J. Clin. Lab. Anal. 2020, 34, e22897.
  23. Wu, K.; Feng, Q.; Li, L.; Xiong, Y.; Liu, S.; Liu, J.; Wu, Q. Long-Noncoding RNA PCAT6 Aggravates Osteosarcoma Tumourigenesis via the MiR-143-3p/ZEB1 Axis. OncoTargets Ther. 2020, 13, 8705–8714.
  24. Zhu, C.; Huang, L.; Xu, F.; Li, P.; Li, P.; Hu, F. LncRNA PCAT6 promotes tumor progression in osteosarcoma via activation of TGF-β pathway by sponging miR-185-5p. Biochem. Biophys. Res. Commun. 2020, 521, 463–470.
  25. Guan, X.; Xu, Y.; Zheng, J. Long non-coding RNA PCAT6 promotes the development of osteosarcoma by increasing MDM2 expression. Oncol. Rep. 2020, 44, 2465–2474.
  26. Kong, F.; Lv, Y.; Yao, H.; Zhang, H.; Zhou, Y.; Liu, S. LncRNA PCAT6 promotes occurrence and development of ovarian cancer by inhibiting PTEN. Eur. Rev. Med Pharmacol. Sci. 2019, 23, 8230–8238.
  27. Tan, X.; Shao, Y.; Teng, Y.; Liu, S.; Li, W.; Xue, L.; Cao, Y.; Sun, C.; Zhang, J.; Han, J.; et al. The Cancer-Testis Long Non-coding RNA PCAT6 Facilitates the Malignant Phenotype of Ovarian Cancer by Sponging miR-143-3p. Front. Cell Dev. Biol. 2021, 9, 593677.
  28. Xin, Y.; He, X.; Zhao, W.; Zhan, M.; Li, Y.; Xiao, J.; He, K.; Lu, L. LncRNA PCAT6 increased cholangiocarcinoma cell proliferation and invasion via modulating miR-330-5p. Am. J. Transl. Res. 2019, 11, 6185–6195.
  29. Zhao, P.; Cheng, J.; Li, B.; Nie, D.; Wang, H.; Li, C.; Gui, S.; Zhang, Y. LncRNA PCAT6 regulates the progression of pituitary adenomas by regulating the miR-139-3p/BRD4 axis. Cancer Cell Int. 2021, 21, 14.
  30. Wang, W.; Li, X.; Guan, C.; Hu, Z.; Zhao, Y.; Li, W.; Jiang, X. LncRNA PCAT6 promotes the proliferation, migration and invasion of pancreatic ductal adenocarcinoma via regulating miR-185-5p/CBX2 axis. Pathol. Res. Pract. 2020, 216, 153074.
  31. Liu, B.; Jiang, H.; Yuan, T.; Luo, J.; Zhou, W.; Jiang, Q.; Wu, D. Enzalutamide-Induced Upregulation of PCAT6 Promotes Prostate Cancer Neuroendocrine Differentiation by Regulating miR-326/HNRNPA2B1 Axis. Front. Oncol. 2021, 11, 650054.
  32. Lang, C.; Yin, C.; Lin, K.; Li, Y.; Yang, Q.; Wu, Z.; Du, H.; Ren, D.; Dai, Y.; Peng, X. m A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization. Clin. Transl. Med. 2021, 11, e426.
  33. Tu, J.; Wu, F.; Chen, L.; Zheng, L.; Yang, Y.; Ying, X.; Song, J.; Chen, C.; Hu, X.; Zhao, Z.; et al. viaLong Non-Coding RNA PCAT6 Induces M2 Polarization of Macrophages in Cholangiocarcinoma Modulating miR-326 and RhoA-ROCK Signaling Pathway. Front. Oncol. 2020, 10, 605877.
  34. Acha-Sagredo, A.; Uko, B.; Pantazi, P.; Bediaga, N.; Moschandrea, C.; Rainbow, L.; Marcus, M.; Davies, M.; Field, J.; Liloglou, T. Long non-coding RNA dysregulation is a frequent event in non-small cell lung carcinoma pathogenesis. Br. J. Cancer 2020, 122, 1050–1058.
  35. Bai, Y.; Qu, Y.; Wu, Z.; Ren, Y.; Cheng, Z.; Lu, Y.; Hu, J.; Lou, J.; Zhao, J.; Chen, C.; et al. Absolute quantification and analysis of extracellular vesicle lncRNAs from the peripheral blood of patients with lung cancer based on multi-colour fluorescence chip-based digital PCR. Biosens. Bioelectron. 2019, 142, 111523.
  36. Siddique, H.; Al-Ghafari, A.; Choudhry, H.; AlTurki, S.; Alshaibi, H.; Al Doghaither, H.; Alsufiani, H. Long noncoding RNAs as prognostic markers for colorectal cancer in Saudi patients. Genet. Test. Mol. Biomark. 2019, 23, 509–514.
  37. Chu, C.; Zhang, Q.; da Rocha, S.; Flynn, R.; Bharadwaj, M.; Calabrese, J.; Magnuson, T.; Heard, E.; Chang, H. Systematic discovery of Xist RNA binding proteins. Cell 2015, 161, 404–416.
  38. Li, S.; Zhu, Y.; Li, R.; Huang, J.; You, K.; Yuan, Y.; Zhuang, S. αLncRNA Lnc-APUE is Repressed by HNF4 and Promotes G1/S Phase Transition and Tumor Growth by Regulating MiR-20b/E2F1 Axis. Adv. Sci. 2021, 8, 2003094.
  39. Yin, G.; Peng, Y.; Lin, Y.; Wang, P.; Li, Z.; Wang, R.; Lin, H. MSTRG.24008.1Long Non-coding RNA Regulates the Regeneration of the Sciatic Nerve via the miR-331-3p-NLRP3/MAL Axis. Front. Cell Dev. Biol. 2021, 9, 641603.
  40. Zhang, X.; Li, F.; Zhou, Y.; Mao, F.; Lin, Y.; Shen, S.; Li, Y.; Zhang, S.; Sun, Q. Long noncoding RNA AFAP1-AS1 promotes tumor progression and invasion by regulating the miR-2110/Sp1 axis in triple-negative breast cancer. Cell Death Dis. 2021, 12, 627.
  41. Yu, T.; Li, G.; Wang, C.; Gong, G.; Wang, L.; Li, C.; Chen, Y.; Wang, X. MIR210HG regulates glycolysis, cell proliferation, and metastasis of pancreatic cancer cells through miR-125b-5p/HK2/PKM2 axis. RNA Biol. 2021, 18, 1–18.
  42. Zhuang, M.; Deng, Y.; Zhang, W.; Zhu, B.; Yan, H.; Lou, J.; Zhang, P.; Cui, Q.; Tang, H.; Sun, H.; et al. LncRNA Bmp1 promotes the healing of intestinal mucosal lesions via the miR-128-3p/PHF6/PI3K/AKT pathway. Cell Death Dis. 2021, 12, 595.
  43. Da Rocha, S.; Boeva, V.; Escamilla-Del-Arenal, M.; Ancelin, K.; Granier, C.; Matias, N.; Sanulli, S.; Chow, J.; Schulz, E.; Picard, C.; et al. Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the Inactive X Chromosome. Mol. Cell 2014, 53, 301–316.
  44. Marín-Béjar, O.; Marchese, F.; Athie, A.; Sánchez, Y.; González, J.; Segura, V.; Huang, L.; Moreno, I.; Navarro, A.; Monzó, M.; et al. Pint lincRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2. Genome Biol. 2013, 14, R104.
  45. Venkatraman, A.; He, X.; Thorvaldsen, J.; Sugimura, R.; Perry, J.; Tao, F.; Zhao, M.; Christenson, M.; Sanchez, R.; Yu, J.; et al. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 2013, 500, 345–349.
  46. Chen, D.; Zhang, Z.; Mao, C.; Zhou, Y.; Yu, L.; Yin, Y.; Wu, S.; Mou, X.; Zhu, Y. ANRIL inhibits p15(INK4b) through the TGFβ1 signaling pathway in human esophageal squamous cell carcinoma. Cell. Immunol. 2014, 289, 91–96.
  47. Tang, Q.; Hann, S. HOTAIR: An Oncogenic Long Non-Coding RNA in Human Cancer. Cell. Physiol. Biochem. 2018, 47, 893–913.
Subjects: Oncology
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to :
View Times: 355
Revisions: 3 times (View History)
Update Date: 24 Aug 2023
Video Production Service