Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 1404 word(s) 1404 2021-09-13 09:40:16

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
De Araújo, J.V. Helminthophagous Fungi. Encyclopedia. Available online: https://encyclopedia.pub/entry/16575 (accessed on 19 May 2024).
De Araújo JV. Helminthophagous Fungi. Encyclopedia. Available at: https://encyclopedia.pub/entry/16575. Accessed May 19, 2024.
De Araújo, Jackson Victor. "Helminthophagous Fungi" Encyclopedia, https://encyclopedia.pub/entry/16575 (accessed May 19, 2024).
De Araújo, J.V. (2021, November 30). Helminthophagous Fungi. In Encyclopedia. https://encyclopedia.pub/entry/16575
De Araújo, Jackson Victor. "Helminthophagous Fungi." Encyclopedia. Web. 30 November, 2021.
Helminthophagous Fungi
Edit

Helminthophagous fungi can be divided into five groups: nematode-trapping/predatorial, opportunistic or ovicidal, endoparasitic, toxin-producing, and producers of special attack devices. The fungi of the first and second groups produce modified hyphae called traps, with which, by a mechanical/enzymatic process, they bind and digest nematode larvae, eggs, cysts, and nematode females. Thus, they are the ones that best act in the predation of animal parasites. Supplied orally, after passing through the gastrointestinal tract of animals, fungal structures such as conidia, mycelium, and chlamidospores germinate in the feces, forming a network of hyphae with the ability to capture and destroy infective forms of animal parasitic helminths.

nematophagous fungi predatory fungi ovicidal fungi

1. Brief History of Helminthophagous Fungi

There are many studies from across the world demonstrating the successful implementation of helminthophagous fungi for the biological control of parasites in animal production systems. It should be emphasized, a priori, that the term “helminthophagous fungi” is the best one to use due to the ability and diversified action of these organisms against not only nematodes but also cestodes and trematodes. However, the term nematophagous fungus is still the most used in the scientific literature.

Since 2014, several studies carried out on an experimental basis have proposed the efficacy of helminthophagous fungi from the predatorial group ( Duddingtonia spp. , Arthrobotrys spp. and Monacrosporium spp.) and from the ovicidal group ( Pochonia chlamydosporia and Mucor circinelloides ) against the decrease in the rates of recurrence of helminth infections in different parts of the world [1][2][3][4][5][6][7]. In these studies, successful experiments demonstrated the great versatility of helminthophagous fungi in the classic biological control of helminths.

In the last five years, commercial formulations containing D. flagrans started became commercially available. In Brazil (Bioverm ® —AC001, GhenVet Saúde Animal, Paulínia, Brazil), Australia, and New Zealand (BioWorma ® —NCIMB 30336, BioWorma, Sydney, Australia), these products are already used, with administration in animal feed [5][8][9][10][11].

1.1. Duddingtonia flagrans

The fungus D. flagrans acts as the main predatory fungus of gastrointestinal parasitic nematode larvae. Relevant results were published after using Bioverm® (GhenVet Saúde Animal, Paulínia, Brazil), a commercial product based on D. flagrans (AC001). Bioverm® is licensed by the Brazilian Ministry of Agriculture, Livestock, and Supply, and can be used to combat nematodiosis in domestic animals [5].
Duddingtonia flagrans was classified as “Old friend of researchers”, a tribute to the great diversity of action that this fungus has [12]. Over the years, a series of important studies demonstrating the effectiveness of strain AC001 in the production of extracellular enzymes and crude enzymatic extract denoted its ability to be tested against the control of helminth gastrointestinal parasites [6][13][14].

1.2. Pochonia chamydosporia

The fungus P. chlamydosporia (Goddard) Zare and Gams (syn. Verticillium chlamydosporium) parasitizes helminth eggs through specialized structures called appressoria, which allow the colonization of the egg surface and penetration by mechanical and enzymatic action [15][16]. This fungus also produces chlamydospores in abundance. Several studies have addressed the efficacy of P. chlamydosporia in the control of helminths in domestic animals such as Oxyuris equi [17], Ancylostoma ceylanicum, Ascaris suum [18], Fasciola hepatica [19][20], Toxocara canis [21], and in poultry helminths [13][22][23].
There are reports that P. chlamydosporia, in addition to ovicidal action, parasitises female phytonematodes of the genus Meloidogyne, which are colonized and completely digested [24][25]. Several secondary metabolites produced by this fungus have been described as promising to be applied as anthelmintics [26][27]. Intermediate hosts of trematodes, such as the mollusk Pseudosuccinea columella, also have their offspring affected by this fungus [28].

1.3. Mucor circinelloides

Another species capable of adhering to the surface of the eggs of certain helminths, penetrating and feeding on their contents, is Mucor circinelloides [29]. It is a filamentous saprophytic fungus with action against trematode eggs (F. hepatica, Calicophoron daubneyi) [30][31], ascarids (Toxocara canis, Toxascaris leonina, A. suum, Bayliscascaris procyonis) [32][33], and whipworms (Trichuris spp.) [34]. In several investigations it was shown that M. cicinelloides can be cultivated together with D. flagrans, with ovicidal and larvicidal activity very practical for the control of helminths whose infective stages are eggs or larvae that develop in the environment [35].

2. Advances and Perspectives for the Control of Geohelminths

The nematodes A. caninum, T. Canis, and T. cati are potentially zoonotic parasites of dogs and cats in various parts of the world [36][37][38]. As part of the environmental cycle, these parasites manage to cause infections via soil/environment, giving them the name of geohelminths [39].
The use of anthelmintic drugs is the main form of control used to helminth infections in domestic animals, but cases of therapeutic failure have also been observed, resulting in reports of anthelmintic resistance [40][41][42]. It is noteworthy that the high environmental resistance of infective A. caninum larvae, T. Canis, and T. cati eggs gives them a greater ability to survive. However, by the use of helminthophagous fungi P. chlamydosporia, the environment can be used as an alternative route for their control [43][44].
In places where there is a high population of stray dogs and cats, the presence of zoonotic parasitic forms in the soil of public squares is a sanitary and environmental problem [45][46]. Children are the main affected, as they have the habit of playing on the ground [47]. The soils of public environments can be considered maintenance areas for parasites with zoonotic potential, with difficult environmental control, since restricting the access of animals to these environments is impractical. Common disinfectants such as 2% sodium hypochlorite (bleach), have highly effective in environmental sanitation, with the destruction of geohelminths in impermeable soils and surfaces. Nonetheless, common disinfectants have limitations of effectiveness on other surfaces, such as sandy soils and lawns [48][49]. Research with the purpose of promoting integrative control measures, through the association of chemical and biological control, has been developed and demonstrated satisfactory results [12][6][35][43][50][51]. Research should be encouraged to evaluate the associated use of helminthophagous fungi and common disinfectants, enabling their associated use in doses that do not cause fungal inhibition, increasing the use of these fungi.

3. Biotechnological Advances in the Use of Helminthophagous Fungi

The understanding of biotechnological advances with the use of helminthophagous fungi can be divided into two main points: predatory action against infective larvae and helminth eggs; and the production of primary and secondary metabolites [52]. In this sense, the predatory activity of helminthophagous fungi and its mechanism of action through traps and/or adhesive nets has long been recognized [15][53][54][55][56]. For this reason, the use of fungal mixtures with complementary activity (ovicide and larvicide) is of great importance. Furthermore, this mixture of fungi resists the process of manufacturing nutritional pellets and, therefore, represents a very useful formulation for the control of different helminths that affect domestic animals in grazing and wild animals in captivity [35][57].
The production of extracellular enzymes is important for understanding the mechanical and enzymatic process carried out by helminthophagous fungi, especially those classified as ovicides [52]. Through biochemical and molecular studies, it was found that there was a great possibility that these fungi produce extracellular enzymes with direct use against nematode larvae and eggs [58].
The enzymatic activity of nematophagous fungi has motivated great interest in studies in different countries. For example, in China, a recombinant protein from the species Arthrobotrys oligospora, one of the most widely studied nematode-trapping fungi, has been demonstrated to have a high chitinase activity and is able to degrade chitine from both infective stages and the egg-shell of the following helminth species Strongylus equinus, Caenorhabditis elegans, and Haemonchus contortus and also the egg-shell of the trematodes F. hepatica and Dicrocoelium chinensis [59].
Thus, research has advanced, and, recently, a new possibility of using these fungi in the control of nematodes was discovered through nanoparticles (NP’s) biosynthesized from fungal filtrate [60]. It has been proven that nanoparticles biosynthesized by D. flagrans, were able to cause the destruction of infective larvae of A. caninum [61].
The biosynthesis of these nanoparticles by filamentous fungi has attracted considerable interest for the use of these microorganisms in the production of NP’s, due to their ability to grow on low-cost, nutrient-poor substrates and to produce secondary metabolites. In addition, fungal mycelium can withstand flow pressure, agitation, and other laboratory conditions important for large-scale production. Still, in biological synthesis using fungi, the biosynthesis of NP’s occurs extracellularly. That is, the reduction occurs outside the cell, eliminating the need for extra steps to coat the NP’s in post-production [62].
Helminthophagous fungi can also produce ecological silver nanoparticles (AgNP’s) [61][60][63]. They convert toxic metal ions into non-toxic nanoparticles through their catalytic effect [64]. The destruction of L3 of equine cyatostomine nematodes by AgNP’s—D. flagrans, with nematicidal effect in 24 h, was a great advance for a new use of these fungus [6].

References

  1. Saumell, C.A.; Fernández, A.S.; Fusé, L.A.; Rodríguez, M.; Sagüés, M.F.; Iglesias, L.E. Nematophagous fungi from decomposing cattle faeces in Argentina. Rev. Iberoam. Micol. 2015, 32, 252–256.
  2. Vilela, V.L.R.; Feitosa, T.F.; Braga, F.R.; Araújo, J.V.; Santos, A.; Morais, D.F.; Souto, D.V.O.; Athayde, A.C.R. Coadministration of nematophagous fungi for biological control over gastrointestinal helminths in sheep in the semiarid region of northeastern Brazil. Vet. Parasitol. 2016, 221, 139–143.
  3. Mendoza-de-Gives, P.; López-Arellano, M.E.; Aguilar-Marcelino, L.; Olazarán-Jenkins, S.; Reyes-Guerrero, D.; Ramírez-Várgas, G.; Veja-Murilloc, V.E. The nematophagous fungus Duddingtonia flagrans reduces the gastrointestinal parasitic nematode larvae population in faeces of orally treated calves maintained under tropical conditions—Dose/response assessment. Vet. Parasitol. 2018, 263, 66–72.
  4. Costa, P.W.L.; Alvares, F.B.V.; Bezerra, R.A.; Sarmento, W.F.; Silva, F.F.; Rodrigues, J.A.; Feitosa, T.F.; Araújo, J.V.; Braga, F.R.; Vilela, V.L.R. Effect of refrigeration storage of nemathophagous fungi embedded in sodium alginate pellets on predatory activity against asinine gastrointestinal nematodes. Biocontrol. Sci. Technol. 2019, 29, 1–18.
  5. Braga, F.R.; Ferraz, C.M.; Silva, E.M.; Araújo, J.V. Efficiency of the Bioverm® (Duddingtonia flagrans) fungal formulation to control in vivo and in vitro of Haemonchus contortus and Strongyloides papillosus in sheep. 3 Biotech 2020, 10, 62.
  6. Ferraz, C.M.; Silva, L.P.C.; Soares, F.E.F.; Souza, R.L.O.; Tobias, F.L.; Araújo, J.V.; Veloso, F.B.R.; Laviola, F.P.; Endringer, D.C.; Mendoza-de-Gives, P.; et al. Effect of silver nanoparticles (AgNP’s) from Duddingtonia flagrans on cyathostomins larvae (subfamily: Cyathostominae). J. Invertebr. Pathol. 2020, 1, 107395.
  7. Rodrigues, J.A.; Alvares, F.B.V.; Silva, J.T.; Ferreira, L.C.; Costa, P.W.L.; Sarmento, W.F.; Feitosa, T.F.; Araujo, J.V.; Braga, F.R.; Vilela, V.L.R. Predatory effects of the fungus Arthrobotrys cladodes on sheep gastrointestinal nematodes. Biocontrol. Sci. Technol. 2020, 1–10.
  8. Bampidis, V.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Dusemund, B.; Kos Durjava, M.; Kouba, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; et al. Scientific opinion on the safety and efficacy of BioWorma® (Duddingtonia flagrans NCIMB 30336) as a feed additive for all grazing animals. EFSA J. 2020, 18, 6208.
  9. Oliveira, L.S.S.C.B.; Dias, F.G.S.; Melo, A.L.T.; Carvalho, L.M.; Silva, E.N.; Araújo, J.V. Bioverm® in the control of nematodes in beef cattle raised in the Central-West region of Brazil. Pathogens 2021, 10, 548.
  10. Fausto, G.C.; Fausto, M.C.; Vieira, Í.S.; Freitas, S.G.; Carvalho, L.M.; Oliveira, I.C.; Silva, E.N.; Campos, A.K.; Araújo, J.V. Formulation of the nematophagous fungus Duddingtonia flagrans in the control of equine gastrointestinal parasitic nematodes. Vet. Parasitol. 2021, 296, 109458–109464.
  11. Rodrigues, J.A.; Roque, F.L.; Alvares, F.B.V.; Silva, A.L.P.; Lima, E.F.; Silva Filho, G.M.; Feitosa, T.F.; Araujo, J.V.; Braga, F.R.; Vilela, V.L.R. Efficacy of a commercial fungal formulation containing Duddingtonia flagrans (Bioverm®) for controlling bovine gastrointestinal nematodes. Rev. Bras. Parasitol. Veter. 2021, 30, e026620.
  12. Braga, F.R.; Araújo, J.V. Nematophagous fungi for biological control of gastrintestinal nematodes in domestic animals. Appl. Microbiol. Biotechnol. 2014, 98, 71–82.
  13. Braga, F.R.; Araújo, J.V.; Araujo, J.M.; Frassy, L.N.; Tavela, A.O.; Soares, F.E.F.; Carvalho, R.O.; Queiroz, L.M.; Queiroz, J.H. Pochonia chlamydosporia fungal activity in a solid medium and its crude extract against eggs of Ascaridia galli. J. Helminthol. 2012, 86, 348–352.
  14. Braga, F.R.; Soares, F.E.F.; Giuberti, T.Z.; Lopes, A.D.C.G.; Lacerda, T.; Ayupe, T.H.; Queiroz, P.V.; Gouveia, A.S.; Pinheiro, L.; Araújo, A.L.; et al. Nematocidal activity of extracellular enzymes produced by the nematophagous fungus Duddingtonia flagrans on cyathostomin infective larvae. Vet. Parasitol. 2015, 212, 214–218.
  15. Braga, F.R.; Araújo, J.V.; Campos, A.K.; Araujo, J.M.; Silva, A.S.; Carvalho, R.O.; Tavela, A.O. In vitro evaluation of the action of the nematophagous fungi Duddingtonia flagrans, Monacrosporium sinense and Pochonia chlamydosporia on Fasciola hepatica eggs. World J. Microbiol. Biotechnol. 2008, 24, 1559–1564.
  16. Dallemole-Giaretta, R.; Freitas, L.G.; Caixeta, L.B.; Xavier, D.M.; Ferraz, S.; Fabry, C.F.S. Produção de clamidósporos de Pochonia chlamydosporia em diferentes substratos. Ciênc. Agrotec. 2011, 35, 314–321.
  17. Braga, F.R.; Araújo, J.V.; Silva, A.R.; Carvalho, R.O.; Araújo, J.M.; Ferreira, S.R.; Carvalho, G.R. Viability of the nematophagous fungus Pochonia chlamydosporia after passage through the gastrointestinal tract of horses. Vet. Parasitol. 2010, 168, 264–268.
  18. Ferreira, S.R.; Araújo, J.V.; Braga, F.R.; Araújo, J.M.; Frassy, L.N.; Ferreira, A.S. Biological control of Ascaris suum eggs by Pochonia chlamydosporia fungus. Vet. Res. Commun. 2011, 35, 553–558.
  19. Dias, A.S.; Araújo, J.V.; Braga, F.R.; Puppin, A.C.; Perboni, W.R. Pochonia chlamydosporia in the biological control of Fasciola hepatica in cattle in Southeastern Brazil. Parasitol. Res. 2013, 112, 2131–2136.
  20. Castro, L.S.; Martins, I.V.F.; Alves, V.; Roldi, F.; Tavares, G.P.; Araújo, J.V. Effect of the enzymatic fungal extract of Pochonia chlamydosporia on the viability of Fasciola hepatica eggs. J. Adv. Vet. Anim. Res. 2020, 10, 135–140.
  21. Araujo, J.M.; Araújo, J.V.; Braga, F.R.; Ferreira, S.R.; Tavela, A.O. Predatory activity of chlamydospores of the fungus Pochonia chlamydosporia on Toxocara canis eggs under laboratory conditions. Rev. Bras. Parasitol. Vet. 2013, 22, 171–174.
  22. Thapa, S.; Hinrichsen, L.K.; Brenninkmeyer, C.; Gunnarsson, S.; Heerkens, J.L.T.; Verner, C.; Niebuhr, K.; Willett, A.; Grilli, G.; Thamsborg, S.M.; et al. Prevalence and magnitude of helminth infections in organic laying hens (Gallus gallus domesticus) across Europe. Vet. Parasitol. 2015, 214, 118–124.
  23. Valadão, M.C.; Carvalho, L.M.; Vieira, Í.S.; Neves, P.H.; Ferreira, V.M.; Campos, A.K.; Soares, F.E.F.; Ferraz, C.M.; Vilela, V.L.R.; Braga, F.R.; et al. Germination capacity of the Pochonia chlamydosporia fungus after its passage through the gastrointestinal tract of domestic chickens (Gallus gallus domesticus). Exp. Parasitol. 2020, 215, 107936–107940.
  24. Podestá, G.S.; Dallemole-Giaretta, R.; Freitas, L.G.; Lopes, E.A.; Ferraz, S.; Zooca, R.J.F. Atividade nematófaga de Pochonia chlamydosporia em solo natural ou autoclavado sobre Meloidogyne javanica. Nematol. Brasileira 2009, 33, 191–193.
  25. Zouhar, M.; Douda, O.; Novotny, D.; Novakova, J.; Mazakova, J. Evaluation of the pathogenicity of selected nematophagous fungi. Czech Mycol. 2010, 61, 139–147.
  26. Niu, X.M. Secondary metabolites from Pochonia chlamydosporia and other species of Pochonia. In Perspectives in Sustainable Nematode Management through Pochonia Chlamydosporia Applications for Root and Rhizosphere Health; Manzanilla-López, R.H., Lopez-Llorca, L.V., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; p. 309.
  27. Ferreira, S.R.; Machado, A.R.T.; Furtado, L.F.; Gomes, J.H.S.; Almeida, R.M.; Oliveira, M.T.; Maciel, V.N.; Barbosa, F.S.; Carvalho, L.M.; Bueno, L.L.; et al. Ketamine can be produced by Pochonia chlamydosporia: An old molecule and a new anthelmintic? Parasit. Vectors 2020, 13, 527–531.
  28. Castro, L.S.; Martins, I.V.F.; Menezes, T.V.; Araújo, J.V.; Tunholi-Alves, M.V.; Bittencourt, V.R.E.P. Ovicidal potential of Pochonia chlamydosporia isolate Pc-10 (Ascomycota: Sordariomycetes) on egg masses of the snail Pseudosuccinea columella (Mollusca: Gastropoda). J. Invert. Pathol. 2019, 166, 107212–107217.
  29. Arias, M.S.; Cazapal-Monteiro, C.F.; Suárez, J.; Miguélez, S.; Francisco, I.; Arroyo, F.L.; Suárez, J.L.; Paz-Silva, A.; Sánchez-Andrade, R.; De Gives, P.M. Mixed production of filamentous fungal spores for preventing soil-transmitted helminth zoonoses: A preliminary analysis. Biomed Res. Int. 2013, 567876.
  30. Cortiñas, F.J.; Cazapal-Monteiro, C.F.; Hernández, J.A.; Arroyo, F.L.; Miguélez, S.; Suárez, J.; de Arellano, M.E.L.; Sánchez-Andrade, R.; de Gives, P.M.; Paz-Silva, A.; et al. Potential use of Mucor circinelloides for the biological control of certain helminths affecting livestock reared in a care farm. Biocontrol Sci. Technol. 2015, 25, 1443–1452.
  31. Arroyo, F.; Hernández, J.A.; Cazapal-Monteiro, C.F.; Pedreira, J.; Sanchís, J.; Romasanta, Á.; Sánchez-Andrade, R.; Paz-Silva, A.; Arias, M.S. Effect of the filamentous fungus Mucor circinelloides on the development of eggs of the rumen fluke Calicophoron daubneyi (Paramphistomidae). J. Parasitol. 2017, 103, 199–206.
  32. Cazapal-Monteiro, C.F.; Hernández, J.A.; Arroyo, F.L.; Miguélez, S.; Romasanta, Á.; Paz-Silva, A.; Sánchez-Andrade, R.; Arias, M.S. Analysis of the effect of soil saprophytic fungi on the eggs of Baylisascaris procyonis. Parasitol. Res. 2015, 114, 2443–2450.
  33. Hernández, J.A.; Cazapal-Monteiro, C.F.; Sanchís, J.; Sánchez-Andrade, R.; Paz-Silva, A.; Arias, M.S. Potential usefulness of filamentous fungi to prevent zoonotic soil-transmitted helminths. Vector Borne Zoon. Dis. 2018, 18, 690–696.
  34. Hernández, J.A.; Cazapal-Monteiro, C.F.; Arroyo, F.L.; Silva, M.I.; Palomero, A.M.; Paz-Silva, A.; Sánchez-Andrade, R.; Arias, M.S. Biological control of soil transmitted helminths (STHs) in a zoological park by using saprophytic fungi. Biol. Control. 2018, 122, 24–30.
  35. Hernández, J.A.; Sánchez-Andrade, R.; Cazapal-Monteiro, C.F.; Arroyo, F.L.; Sanchís, J.M.; Paz-Silva, A.; Arias, M.S. A combined effort to avoid strongyle infection in horses in an oceanic climate region: Rotational grazing and parasiticidal fungi. Parasite Vector 2018, 11, 240.
  36. Macpherson, C.N.L. The epidemiology and public health importance of toxocariasis: A zoonosis of global importance. Int. J. Parasitol. 2013, 43, 999–1008.
  37. Overgaauw, P.A.M.; Van Knapen, F. Veterinary and public health aspects of Toxocara spp. Vet. Parasitol. 2013, 193, 398–403.
  38. Chen, J.; Liu, Q.; Liu, G.H.; Zheng, W.B.; Hong, S.J.; Sugiyama, H.; Zhu, X.Q.; Elsheikha, H.M. Toxocariasis: A silent threatwith a progressive public health impact. Infect. Dis. Pover. 2018, 7, 59.
  39. Lim-Leroy, A.; Chua, T.H. Prevalence and risk factors of geohelminthiasis among the rural village children in Kota Marudu, Sabah, Malaysia. PLoS ONE 2020, 15, e0239680.
  40. Kopp, S.R.; Kotze, A.C.; Mccarthy, J.S.; Coleman, G.T. High-level pyrantel resistance in the hookworm Ancylostoma caninum. Vet. Parasitol. 2007, 143, 299–304.
  41. Sunderkötter, C.; Stebut, E.V.; Schöfer, H.; Mempel, M.; Reinel, D.; Wolf, G.; Meyer, V.; Nast, A.; Burchard, G. S1 guideline diagnosis and therapy of cutaneous larva migrans (creeping disease). J. Dtsch. Dermatol. Ges. 2014, 12, 86–91.
  42. Jimenez-Castro, P.D.J.; Howel, S.B.; Schaefer, J.J.; Avramenko, R.W.; Gilleard, J.S.; Kaplan, R.M. Multiple drug resistance in the canine hookworm Ancylostoma caninum: An emerging threat? Parasit. Vectors 2019, 12, 576.
  43. Frassy, L.N.; Braga, F.R.; Silva, A.R.; Araújo, J.V.; Ferreira, S.R.; Freitas, L.G. Destruição de ovos de Toxocara canis pelo fungo nematófago Pochonia chlamydosporia. Rev. Soc. Bras. Med. Trop. 2010, 43, 102–104.
  44. Ursache, A.L.; Mirean, V.; Dumitrache, M.; Andrei, L.; Stefanut, L.; Cozma, V.; Catana, R.; Cernea, M. Is routine disinfection effincient in preventing contamination with Toxocara canis eggs? J. Helmintol. 2019, 12, e60.
  45. Batista, S.P.; Silva, F.F.; Valencio, B.A.; Carvalho, G.M.M.; Santos, A.; Costa, F.T.R.; Feitosa, T.F.; Vilela, V.L.R. Parasitos zoonóticos em solos de praças públicas no município de Sousa, Paraíba. Rev. Bras. Ciênc. Veter. 2019, 26, 82–86.
  46. Gorgônio, S.A.; Sousa, D.L.C.; Bezerra, C.S.; Monteiro, G.D.F.; Paulo, F.S.; Costa, P.W.L.; Alexandre, J.A.F.; Silva, W.W.; Vilela, V.L.R.; Feitosa, T.F.; et al. Agentes parasitários de importância em Saúde Única em solos de praças públicas em condições semiáridas. Res. Soc. Dev. 2021, 10, e51810111970.
  47. Martins, R.S.; Alves, V.M.T. Análises de areia de parques públicos nos munícipios de Castelo e Cachoeiro de Itapemirim, Espirito Santo. PubVet 2018, 12, 1–9.
  48. Morrondo, P.; Diez-Morrondo, C.; Pedreira, J.; Diez-Baños, N.; Sánchez-Andrade, R.; Paz-Silva, A.; Diéz-Baños, P. Toxocara canis larvae viability after disinfectant-exposition. Parasitol. Res. 2006, 99, 558–561.
  49. Verocai, G.G.; Tavares, P.V.; Ribeiro, F.A.; Correia, T.R.; Scott, F.B. Effects of disinfectants on Toxocara canis embryogenesis and larval establishment in mice tissues. Zoonoses Public Health 2010, 57, e213–e216.
  50. Braga, F.R.; Carvalho, R.O.; Araujo, J.M.; Silva, A.R.; Araújo, J.V.; Lima, W.S.; Tavela, A.O.; Rodrigo, S.F. Predatory activity of the fungi Duddingtonia flagrans, Monacrosporium thaumasium, Monacrosporium sinense and Arthrobotrys robusta on Angiostrongylus vasorum first stage larvae. J. Helminthol. 2009, 83, 303–308.
  51. Lima, J.A.C.; Ferraz, C.M.; Sobral, S.A.; Geniêr, H.L.A.; Soares, F.E.F.; Loureiro, D.B., Jr.; Lima, M.R.; Araújo, J.V.; Tobias, F.L.; Vilela, V.L.R.; et al. Combined use of chemical and biological compounds to control hookworm. J. Helminthol. 2020, 94, 1–4.
  52. Soares, F.E.F.; Queiróz, J.H.; Araújo, J.V.; Rodrigues, M.G.R.; Tavela, A.O.; Aguiar, A.R.; Lacerda, T.; Ferraz, C.M.; Rangel, M.C.V.; Sena, T.; et al. Action of proteases of the nematophagous fungi Pochonia chlamydosporia on Ascaris suum eggs of collared peccary (Pecari tajacu). Afr. J. Microbiol. Res. 2015, 9, 1833–1886.
  53. Araujo, J.V.; Santos, M.A.; Ferraz, S.; Maia, A.S. Antagonistic effect of predacious fungi Arthrobotrys on infective Haemonchus placei larvae. J. Helminthol. 1993, 67, 136–138.
  54. Mendoza-de-Gives, P.; Davies, K.G.; Clarck, S.J.; Behnke, J.M. Predatory behaviour of trapping fungi against srf mutants of Caenorhabditis elegans and different plant and animal parasitic nematodes. Parasitology 1999, 119, 95–104.
  55. Lysek, H.; Fassatiová, O.; Pineda, N.C.; Hernández, N.L. Ovicidal fungi in soils of Cuba. Folia Parasitol. 1982, 29, 265–270.
  56. Braga, F.R.; Araújo, J.V.; Campos, A.K.; Silva, A.R.; Araujo, J.M.; Carvalho, R.O.; Correa, D.N.; Pereira, C.A.J. In vitro evaluation of the effect of the nematophagous fungi Duddingtonia flagrans, Monacrosporium sinense and Pochonia chlamydosporia on Schistosoma mansoni eggs. World J. Microbiol. Biotechnol. 2008, 24, 2713–2716.
  57. Palomero, A.M.; Cazapal-Monteiro, C.F.; Valderrábano, E.; Paz-Silva, A.; Sánchez-Andrade, R.; Arias, M.S. Soil fungi enable the control of gastrointestinal nematodes in wild bovidae captive in a zoological park: A 4-year trial. Parasitology 2020, 147, 791–798.
  58. Braga, F.R.; Araujo, J.M.; Silva, A.R.; Araújo, J.V.; Carvalho, R.O.; Soares, F.E.F.; Queiroz, J.H.; Geniêr, H.L.A. Ovicidal action of a crude enzymatic extract of fungus Pochonia chlamydosporia against Ancylostoma sp eggs. Rev. Soc. Bras. Med. Trop. 2011, 44, 116–118.
  59. Zhong, W.; Chen, Y.; Gong, S.; Qiao, J.; Meng, Q.; Zhang, X.; Wang, X.; Huang, Y.; Tian, L.; Niu, Y. Enzymological properties and nematode-degrading activity of recombinant chitinase AO-379 of Arthrobotrys oligospora. Kafkas Üniversitesi Vet. Fakültesi Derg. 2019, 25, 435–444.
  60. Costa-Silva, L.P.; Pinto-Oliveira, J.; Keijok, W.J.; Silva, A.R.; Aguiar, A.R.; Guimarães, M.C.C.; Ferraz, C.M.; Araújo, J.V.; Tobias, F.L.; Braga, F.R. Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans. Int. J. Nanomed. 2017, 12, 6373–6381.
  61. Barbosa, A.C.M.S.; Silva, L.P.C.; Ferraz, C.M.; Tobias, F.L.; Araújo, J.V.; Loureiro, B.; Braga, G.M.A.M.; Veloso, F.B.R.; Soares, F.E.F.; Fronza, M.; et al. Nematicidal activity of silver nanoparticles from the fungus Duddingtonia flagrans. Int. J. Nanomed. 2019, 14, 2341–2348.
  62. Alghuthaymi, M.A.; Almoammar, H.; Rai, M.; Said-Galiev, E.; Abd-Elsalam, K.A. Myconanoparticles: Synthesis and their role in phytopathogens management. Biotechnol. Biotechnol. Equip. 2015, 29, 231–236.
  63. Wang, Y.; Sun, L.; Yi, S.; Huang, Y.; Lenaghan, S.C.; Zhang, M. Naturally occurring nanoparticles from Arthrobotrys oligospora as a potential immunostimulatory and antitumor agent. Adv. Funct. Mater. 2013, 26, 2175–2184.
  64. Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2017, 12, 908–931.
More
Information
Subjects: Microbiology
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 342
Revision: 1 time (View History)
Update Date: 30 Nov 2021
1000/1000