Ultrasound Imaging, in addition to providing useful indications for diagnosis, can also be used with greater certainty as regards patient follow-up, being repeated at relatively short distances, without causing biological damage. Differently than X-rays, sound waves can be represented as a mechanical longitudinal wave, which can manifest as particle displacement or pressure alterations.
1. Introduction
In recent years, increasing attention has been paid to the frequency with which the patients are subjected to diagnostic exams that exploit ionizing radiation, a cause of biological damage, for diagnosis and follow-up
[1][2]. Scientific progress has led in recent years to considerably lower the dose of radiation emitted by the latest-generation devices to obtain increasingly high-resolution diagnostic exams and applications in every branch of dentistry
[3][4]. Moreover, the possibility of applying ionizing-radiation-free diagnostic exams in dentistry, overcoming the limits of this application, has led scientific research in this area to obtain interesting results that bode well for the future. Magnetic resonance imaging (MRI) and ultrasound imaging represent the most interesting evolution of this topic, as underlined by numerous evidence obtained in every branch of dentistry from the application of these diagnostics exams
[5][6][7]. The main disadvantage of this examination remains the difficult visualization of tissues poor in water, which, however, has proven to be correctable by dedicated software, and can lead to excellent results. Patients suffering from claustrophobia, the presence of devices that prevent the examination from taking place, artifacts from materials and movements, the cost, the lack of availability, and the long examination time represent other disadvantages that will need to be improved in the future
[6][7].
To understand the physics of ultrasound, and the possible application in dentistry, it is necessary to define the most important physical quantities that participate in the aforementioned mechanism: frequency, propagation speed, pulsed ultrasound, interaction with tissues, angle of incidence, and attenuation
[8].
Frequency: This characteristic of ultrasonic waves is represented by cycles or pressure changes that occur in 1 s (Hertz). The aforementioned characteristic is determined exclusively by the sound source, and is not affected by the medium in which the wave is propagated. In this regard, it is fair to point out that ultrasound has an emission frequency greater than 20 kHz, at the upper limit of human hearing. Ultrasounds with frequencies up to 10 MHz are usually used in medical practice
[5][8]. Furthermore, an important and current field of development of ultrasound imaging is represented by the application of high-frequency ultrasound (HFUS), which includes an ultrasound probe frequency of more than 10 MHz. HFUS has shorter wavelengths and is absorbed more easily, and is therefore not as penetrating. This feature makes it possible to apply it in the study of superficial structures, and hence its increasing application in the field of dermatology. This application feature is also interesting for applications in dentistry
[8].
Propagation speed: This characteristic represents the speed at which ultrasound propagates through a medium; it is considered to be 1540 m/s for soft tissues. Unlike the frequency, this characteristic depends exclusively on the characteristics of the medium in which the wave propagates, density and rigidity above all.
Pulsed ultrasound: This represents an instrument that allows the emitting of short bursts of ultrasonic waves from a generator. For different clinical applications, different depths of resolution are needed, and pulsed rays (produced intermittently) are used. The duration of the pulse is about a millisecond.
Interaction of ultrasound with tissues: This feature describes what happens to an ultrasound beam that propagates through a medium. The reflection of the ray is called echo, and this is the fundamental property of this type of examination that allows the clinical evaluation of deep structures. The echoes’ generation and acquisition allow the evaluation of the depth of tissues at the level of their interface, allowing the analysis of the physical characteristics of different materials, studied as acoustic impedance. As long as the beam passes through media with the same acoustic impedance, it will not produce any reflection of the signal, and therefore no echo. It is important to underline that it is the difference between the acoustic impedances of neighboring tissues that determines the number of reflected echoes. The greater the echoes produced, the smaller the number of rays that make up the beam that crosses the second medium, and therefore the greater the intensity of the beam of rays that is reflected. In low-density tissue, the intensity of echoes produced at an interface between two layers is only a small percentage of the beam of rays. Precisely for this reason, if the interface is between two tissues with a large difference in densities, it will be impossible to read the areas of interest underlying this interface, and therefore the operator conducting the examination must avoid these areas, making this test sensitive to dependence on the operator who practices it, and requiring a rather long learning curve compared to other diagnostic exams
[8].
Angle of incidence: The importance of this property is given by the fact that if the ultrasound beam hits the border obliquely, it is partially reflected and part of this echo is not received by the probe, making the interactions with the tissues more complex, and therefore, the clinical evaluation of the image produced. The process by which part of the beam will be deflected, dependent on the speed of the ultrasound at the sides of the interface, is called refraction. Snell’s law describes this phenomenon, allowing the calculation of the amount of deflection of the beam, relating the angle of refraction with the speed of the ultrasonic beam crossing that interface.
The first pulse generated and echoes produced at the interfaces are the most relevant characteristics
[8]. Differential amplification can be used for the study of the weaker reflections that come from interfaces deep in the structures; typically, the pulses are a millisecond long
[8].
In describing the reflection and refraction of the rays and fundamental elements of this type of examination so far, we have considered only stationary interfaces. If the interfaces move relative to the sound source, the frequency of the echo will be changed. As the sound source approaches, it will seem to have increased. This phenomenon is described in what is referred to as the Doppler effect
[9]. In this technology, the transducer is stable, and the interfaces studied are often in motion. Depending on whether the movement of the interface is towards or away from the probe, the information received will be different. This application is extremely interesting in the diagnosis of blood vessels or vascular lesions
[10]. The instrumentation currently in use allows the calculation of the flow in each point of the image, and to associate a color scale with the entire image that highlights the entire flow captured at that moment. Moreover, Doppler displays flux size. Power Doppler is more flux sensitive.
In this brief description of the physical characteristics of this equipment, the formation of artifacts remains to be evaluated, which may not recommend its application in some clinical uses. An important problem encountered in diagnostic tests is represented by the presence of artifacts, which are incorrect representations of the figures. These phenomena are often produced by physical characteristics that modify the representation of the image, as regards the use of ionizing radiation, magnetic waves, or ultrasound beams, which in some cases can even lead to diagnostic errors. To be able to evaluate them correctly, it is necessary to evaluate the ultrasound image production process:
-
Sound waves move in straight lines.
-
Reflections are generated from structures along the central axis of the beam.
-
Amplitude of reflection corresponds to the reflector scattering strength.
-
Sound moves at exactly 1540 m/s.
-
Sound moves directly to the reflector and back.
2. Main Application of Ultrasound Imaging in Dentistry
The main application of ultrasound in dentistry in the past years has always been the diagnosis of pathologies of the major salivary glands, and sialolithiasis. Structural changes can be visualized as hyperechogenic and hypoechogenic areas, inhomogeneity, and altered echogenicity in general. A very interesting application is the study of Sjögren’s syndrome, as investigated by Jonsson et al.
[11]. This examination, due to its reduced invasiveness and absence of radiation, and an investigation of the health of the salivary glands is indicated in any case in which problems of the major salivary glands may present with symptoms such as dry mouth, dysphagia and obstruction of duct, inflammation, severe dental caries, or swelling
[12]. Moreover, an increasing amount of scientific evidence is being found in the study of periapical lesions, in the follow-up of their healing, and in the attempt to differentiate them in the different hypotheses of differential diagnosis. This examination represents the best diagnostic aid for these diagnoses, and has represented it for years as regards the study of the superficial structures of the head and neck area, such as the lymph nodes
[13]. Moreover, the approach to the condition of muscular health becomes increasingly central in establishing the correct balance even in orthodontic–gnathological treatments, the planning of which is increasingly facilitated by current 3D cephalometry software, MRI, and auxiliary study examinations of the occlusal balance
[4][7][14].
It is necessary to conduct comparative studies of the various systems used in oral ultrasound imaging to obtain a consensus or guidelines to provide clinicians with the decision-making criteria in the choice of a type of device. All the studied characteristics are indicated in Table 1.
Table 1. Technical characteristics.
3. Conclusions
In light of the results obtained in the various fields of study of the modern application techniques of this diagnostic test, it is essential to consider technological evolution as an objective to reduce the damage and the side effects of necessary diagnostic tests, which are increasingly prescribed for diagnosis, follow-up, and defensive medicine. The use of ultrasound in dentistry, if the investments allow the development of probes and instruments suitable for the oral cavity, will prove to be an important aid, similar to magnetic resonance, and which, despite the limitations of these tests, can represent a valid alternative, in certain contexts, that is always radiation-free.