Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 1289 word(s) 1289 2021-09-09 04:42:29 |
2 h + 11 word(s) 1300 2021-09-30 04:31:33 |

Video Upload Options

Do you have a full video?

Confirm

Are you sure to Delete?
Cite
If you have any further questions, please contact Encyclopedia Editorial Office.
Llobat, L. Feline Leishmaniosis. Encyclopedia. Available online: https://encyclopedia.pub/entry/14758 (accessed on 29 March 2024).
Llobat L. Feline Leishmaniosis. Encyclopedia. Available at: https://encyclopedia.pub/entry/14758. Accessed March 29, 2024.
Llobat, Lola. "Feline Leishmaniosis" Encyclopedia, https://encyclopedia.pub/entry/14758 (accessed March 29, 2024).
Llobat, L. (2021, September 29). Feline Leishmaniosis. In Encyclopedia. https://encyclopedia.pub/entry/14758
Llobat, Lola. "Feline Leishmaniosis." Encyclopedia. Web. 29 September, 2021.
Feline Leishmaniosis
Edit

Leishmaniosis is the third most important vector-borne disease in humans, preceded by malaria and lymphatic filariasis, and it is considered endemic in tropical and subtropical areas, where higher temperatures favor development of its vector, sandflies. This zoonotic disease is caused by infection of protozoa Leishmania spp. and the most serious mucocutaneous and visceral form is produced by Leishmania infantum, which predominates in the Mediterranean region. The usual hosts for this parasite are dogs and humans, but an increment in cases of L. infantum infection has been observed in cats in the last years. This increase could be due to the use of sandflies repellents in dogs, obligating the parasite to looking for other hosts. The role of cats in the epidemiology of this disease is unknown, although increase of prevalence of feline leishmaniosis has been observed in endemic areas in the last years. Diagnostic techniques and treatments in cats are not standardized, which makes it difficult to establish prevalence and epidemiology of feline leishmaniosis. Furthermore, the clinical signs and immune response against Leishmania in cats are different to those in dogs, with an observed increment of drug resistance. It is necessary to increase our knowledge about L. infantum infection in cats, including clinical signs, transmission, treatments, and the role of cats in the increasing of zoonoses. Finally, new alternative treatments are required for controlling the spread of this disease in all species of mammals.

cats feline leishmaniosis Leishmania infantum zoonoses

1. Introduction

Leishmaniosis is a disease caused by the infection of protozoan parasite Leishmania spp. and transmitted by sandflies of the family Psychodidae (genus Phlebotomus in the Mediterranean region) [1][2][3][4]. The World Health Organization (WHO) estimates between 700,000 and 1,000,000 new cases in humans annually. This parasitosis is the third most important vector-born disease in humans, only preceded by malaria and lymphatic filariases, and it is considered endemic in tropical and subtropical areas, where the higher temperatures favor the development of sandflies [5]. Humans, together with domestic dogs (Canis lupus familiaris), are the main hosts, in which the diseases, caused by Leishmania infantum, represent an important problem for public health [6]. Infection in other animals, such as cats (Felis catus), wild canids, and horses, has been reported [7][8][9]. Although dogs used to be considered uniquely and mainly responsible for the spread of the disease to human, the increase in the number of cases diagnosed in domestic cats [10][11], and L. infantum parasites detected in cats sharing the same genetic characteristics with L. infantum strains isolated from humans and dogs [12][13][14], indicate that this species may play an important role currently in the epidemiology of infection in humans and dogs.
The first case of feline leishmaniosis (FL) was detected by Sergent et al. (1912) in Argelia [15]. FL cases have been described later in Europe, Latin America, and Asia, and their prevalence has increased considerably in recent years, with results of prevalence from 1.3% in Portugal or Qatar, to 22.5% and 25% in Brazil and Iran, respectively [10][16][17][18][19][20][21]. Although the highest prevalence of feline leishmaniosis has been found in countries where the disease is endemic, there are cases reported in other areas as well, such as the United States [22]. This FL rise could be connected with a host change due to the use of sandfly repellents in dogs, making them look for other hosts in which feed on [23][24]. In fact, the number of human leishmaniosis is also increasing, probably because the human companion animal bond is becoming higher with dogs and cats, rising the probability of infection [25]. Furthermore, some studies indicate that the use of secondary hosts by the parasite could be related to an increase in the virulence of L. infantum in humans. Concretely, human leishmaniosis outbreak in Spain with high virulence seems to be related to wild hares and wild rabbit’s infection. Both species were found to be asymptomatic reservoirs for the parasite in an area with a low dog population density [26][27]. Early detection of infection in dogs and cats, together with its surveillance and treatments, are strategies to control and avoid human infection, following the “One Health” concept. In addition, and considering cats as emergent hosts with a possible role in the spread of the disease, a new evaluation for the epidemiology and control in this species is necessary [6][28]. However, detection in cats is often confused with other infections, as the clinical signs of leishmaniasis in cats are nonspecific. Furthermore, in some cases, disease appears without clinical signs, making its detection and control more difficult. Moreover, immunosuppression provoked by viruses such as those causing leukemia or feline immunodeficiency can increase parasite multiplication [7]. Due to the scarce information about the role of cats in the distribution of the disease or as reservoir, it is necessary to carry out studies focused on FL, as it could also constitute a point of infection for humans.

2. Epidemiology of Feline Leishmaniosis

Leishmaniosis is a zoonotic disease produced by parasites of genus Leishmania, mainly by the species L. infantum or L. chagasi in America [25]. Its principal host is domestic dogs (Canis lupus familiaris), but parasites have been isolated in rodents, lagomorphs, and wild canids, although the role of these species in the spread of the disease is not clear [8][26][29][30][31][32][33][34][35][36][37].
In cats, different species of Leishmania spp. have been identified, such as L. infantum, L. mexicana, L. venezuelensis, L. braziliensis, and L. amazonensis [25][38]. Recently, the first case of FL caused by L. amazonensis has been reported [39]. The transmission between host species is carried out through the bite of two genera of mosquitoes, Phlebotomus spp. and Lutzomyia spp. (Psychodidae) [19][25], but L. infantum has been isolated in fleas, ticks, and other arthropods, so they could also play an important role in the transmission even in cats [40][41]. Despite the fact that vertical and horizontal transmission are not well studied in felines [42], Vioti et al. (2021) have demonstrated by in vivo studies that infected cats are capable of transmitting L. infantum to sandflies [43]. Positive tests of L. infantum in cats have been reported in different countries in Europe and with different methods in the last twenty years (Table 1), showing the increasing relevance of cats in the transmission of the disease. Moreover, the existence of asymptomatic infection by L. infantum in apparently healthy stray cats has been demonstrated in Spain [44], which increases the importance of carrying out studies in cats as transmitters of the infection, mainly in endemic areas.
Table 1. Countries where high positive percentage of cases of L. infantum infection in cats have been reported and detection method (IFAT: immunofluorescence antibody test; DAT: direct agglutination test; PCR: polymerase chain reaction; ELISA: enzyme-linked immunosorbent assay). The material analyzed was serum samples for IFAT and ELISA tests, and whole blood for PCR test. * In this study, the authors analyze the antibodies to Leishmania spp.
Country Method of Detection Positive % Founded References
Albania IFAT and PCR 0.7 [45]
Cyprus ELISA and PCR 5.8 [46]
Greece (Macedonia and Thessaly) IFAT, ELISA and PCR 46.0 [47][48]
Italy (Sicily) ELISA and PCR 36.0 [49]
Portugal (Lisbon) IFAT and PCR 20.4 [24]
Portugal (Madeira Island) DAT 0.0 [50]
Spain (South) IFAT and PCR 48.3 [7]
Germany IFAT and PCR 4.0 [51]
Qatar (Doha) PCR 1.3 [21]
Brazil (Amazon region) IFAT 30.5 [52]
Angola (Luanda) * DAT 3.9 [53]
Iran (Kerman) PCR 13.9 [54]
Israel ELISA 75.0 [55]
Different prevalence of infection according to sex in non-neutering animals has never been observed, but factors such as age; neutering status; or co-infection with viruses as feline immunodeficiency virus (FIV) or feline leukemia virus (FeLV), mycoplasmas or other parasites, including Toxoplasma gondii (Protozoa), seem to be considered a determinant factor [53][56][57][58]. Table 2 summarizes the different organisms, including bacteria, viruses, and other protozoan detected in co-infection with L. infantum in cats.
Table 2. Organisms (including bacteria, viruses, and protists) founded in co-infection with L. infantum in cats.
Organisms Reference
Hepatozoon felis and Candidatus mycoplasma haemominutum [59]
Toxoplasma gondii [53][60]
Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) [56][61]
Mycoplasma spp., FIV and FeLV [57]
Toxoplasma gondii and FIV [58]
Rickettsia felis [62]
Ehrlichia spp. and Bartonella spp. [63]
Babesia spp. (only in wild cats) [64]
Hepatozoon spp. (only in wild cats) [64]

References

  1. Werneck, G.L. Visceral Leishmaniasis in Brazil: Rationale and Concerns Related to Reservoir Control. Rev. Saude Publica 2014, 48, 851–856.
  2. Rombolà, P.; Barlozzari, G.; Carvelli, A.; Scarpulla, M.; Iacoponi, F.; Macrì, G. Seroprevalence and Risk Factors Associated with Exposure to Leishmania Infantum in Dogs, in an Endemic Mediterranean Region. PLoS ONE 2021, 16, e0244923.
  3. Trájer, A.J.; Sebestyén, V. The Changing Distribution of Leishmania Infantum Nicolle, 1908 and Its Mediterranean Sandfly Vectors in the Last 140 Kys. Sci. Rep. 2019, 9, 11820.
  4. Muñoz, C.; Martínez-de la Puente, J.; Figuerola, J.; Pérez-Cutillas, P.; Navarro, R.; Ortuño, M.; Bernal, L.J.; Ortiz, J.; Soriguer, R.; Berriatua, E. Molecular Xenomonitoring and Host Identification of Leishmania Sand Fly Vectors in a Mediterranean Periurban Wildlife Park. Transbound. Emerg. Dis. 2019, 66, 2546–2561.
  5. Solano-Gallego, L.; Koutinas, A.; Miró, G.; Cardoso, L.; Pennisi, M.G.; Ferrer, L.; Bourdeau, P.; Oliva, G.; Baneth, G. Directions for the Diagnosis, Clinical Staging, Treatment and Prevention of Canine Leishmaniosis. Vet. Parasitol. 2009, 165, 1–18.
  6. Maia, C.; Campino, L. Cytokine and Phenotypic Cell Profiles of Leishmania Infantum Infection in the Dog. J. Trop. Med. 2012, 2012, 541571.
  7. Martín-Sánchez, J.; Acedo, C.; Muñoz-Pérez, M.; Pesson, B.; Marchal, O.; Morillas-Márquez, F. Infection by Leishmania Infantum in Cats: Epidemiological Study in Spain. Vet. Parasitol. 2007, 145, 267–273.
  8. Sobrino, R.; Ferroglio, E.; Oleaga, A.; Romano, A.; Millan, J.; Revilla, M.; Arnal, M.C.; Trisciuoglio, A.; Gortázar, C. Characterization of Widespread Canine Leishmaniasis among Wild Carnivores from Spain. Vet. Parasitol. 2008, 155, 198–203.
  9. Fernández-Bellon, H.; Solano-Gallego, L.; Bardagí, M.; Alberola, J.; Ramis, A.; Ferrer, L. Immune Response to Leishmania Infantum in Healthy Horses in Spain. Vet. Parasitol. 2006, 135, 181–185.
  10. Pennisi, M.G.; Persichetti, M.F. Feline Leishmaniosis: Is the Cat a Small Dog? Vet. Parasitol. 2018, 251, 131–137.
  11. Spada, E.; Canzi, I.; Baggiani, L.; Perego, R.; Vitale, F.; Migliazzo, A.; Proverbio, D. Prevalence of Leishmania Infantum and Co-Infections in Stray Cats in Northern Italy. Comp. Immunol. Microbiol. Infect. Dis. 2016, 45, 53–58.
  12. Pereira, A.; Parreira, R.; Cristóvão, J.M.; Castelli, G.; Bruno, F.; Vitale, F.; Campino, L.; Maia, C. Phylogenetic Insights on Leishmania Detected in Cats as Revealed by Nucleotide Sequence Analysis of Multiple Genetic Markers. Infect. Genet. Evol. 2020, 77, 104069.
  13. Millán, J.; Zanet, S.; Gomis, M.; Trisciuoglio, A.; Negre, N.; Ferroglio, E. An Investigation into Alternative Reservoirs of Canine Leishmaniasis on the Endemic Island of Mallorca (Spain). Transbound. Emerg. Dis. 2011, 58, 352–357.
  14. Cardoso, L.; Schallig, H.; Persichetti, M.F.; Pennisi, M.G. New Epidemiological Aspects of Animal Leishmaniosis in Europe: The Role of Vertebrate Hosts Other Than Dogs. Pathogens 2021, 10, 307.
  15. Sergent, E.; Sergent, E.T.; Lombard, J.; Quilichini, M. La Leishmaniose à Alger. Infection Simultanée d’un Enfant, d’un Chien et d’un Chat Dans La Même Habitation. Bull. Soc. Pathol. Exot. 1912, 5, 93–98.
  16. Akhtardanesh, B.; Sharifi, I.; Mohammadi, A.; Mostafavi, M.; Hakimmipour, M.; Pourafshar, N.G. Feline Visceral Leishmaniasis in Kerman, Southeast of Iran: Serological and Molecular Study. J. Vector Borne Dis. 2017, 54, 96–102.
  17. Benassi, J.C.; Benvenga, G.U.; Ferreira, H.L.; Pereira, V.F.; Keid, L.B.; Soares, R.; de Sousa Oliveira, T.M.F. Detection of Leishmania Infantum DNA in Conjunctival Swabs of Cats by Quantitative Real-Time PCR. Exp. Parasitol. 2017, 177, 93–97.
  18. Berenguer, L.K.A.R.; de Andrade Gomes, C.F.C.; de Oliveira Nascimento, J.; Bernardi, J.C.M.; Lima, V.F.S.; de Oliveira, J.B.; Ramos, C.A.D.N.; Ramos, R.A.N.; Alves, L.C. Leishmania Infantum Infection in a Domestic Cat: A Real Treat or an Occasional Finding? Acta Parasitol. 2020.
  19. Pennisi, M.G. Leishmaniosis of Companion Animals in Europe: An Update. Vet. Parasitol. 2015, 208, 35–47.
  20. Foroughi-Parvar, F.; Sarkari, B.; Asgari, Q.; Hatam, G. FML-ELISA a Novel Diagnostic Method for Detection of Feline Leishmaniasis in Two Endemic Areas of Iran. J. Parasit. Dis. 2021, 45, 279–284.
  21. Lima, C.; Colella, V.; Latrofa, M.S.; Cardoso, L.; Otranto, D.; Alho, A.M. Molecular Detection of Leishmania spp. in Dogs and a Cat from Doha, Qatar. Parasit. Vectors 2019, 12, 125.
  22. Hopke, K.; Meyers, A.; Auckland, L.; Hamer, S.; Florin, D.; Diesel, A.; Patterson, A. Leishmania Mexicana in a Central Texas Cat: Clinical Presentation, Molecular Identification, Sandfly Vector Collection and Novel Management. JFMS Open Rep. 2021, 7, 2055116921999595.
  23. Basso, M.A.; Marques, C.; Santos, M.; Duarte, A.; Pissarra, H.; Carreira, L.M.; Gomes, L.; Valério-Bolas, A.; Tavares, L.; Santos-Gomes, G.; et al. Successful Treatment of Feline Leishmaniosis Using a Combination of Allopurinol and N-Methyl-Glucamine Antimoniate. JFMS Open Rep. 2016, 2, 2055116916630002.
  24. Maia, C.; Gomes, J.; Cristóvão, J.; Nunes, M.; Martins, A.; Rebêlo, E.; Campino, L. Feline Leishmania Infection in a Canine Leishmaniasis Endemic Region, Portugal. Vet. Parasitol. 2010, 174, 336–340.
  25. Gramiccia, M. Recent Advances in Leishmaniosis in Pet Animals: Epidemiology, Diagnostics and Anti-Vectorial Prophylaxis. Vet. Parasitol. 2011, 181, 23–30.
  26. Jiménez, M.; González, E.; Martín-Martín, I.; Hernández, S.; Molina, R. Could Wild Rabbits (Oryctolagus Cuniculus) Be Reservoirs for Leishmania Infantum in the Focus of Madrid, Spain? Vet. Parasitol. 2014, 202, 296–300.
  27. Mas, A.; Martínez-Rodrigo, A.; Orden, J.A.; Molina, R.; Jiménez, M.; Jiménez, M.Á.; Carrión, J.; Domínguez-Bernal, G. Properties of Virulence Emergence of Leishmania Infantum Isolates from Phlebotomus Perniciosus Collected during the Human Leishmaniosis Outbreak in Madrid, Spain. Hepatic Histopathology and Immunological Parameters as Virulence Markers in the Mouse Model. Transbound. Emerg. Dis. 2020.
  28. Oliveira, G.C.; Paiz, L.M.; Menozzi, B.D.; Lima, M.D.S.; Moraes, C.C.G.D.; Langoni, H. Antibodies to Leishmania spp. in Domestic Felines. Rev. Bras. Parasitol. Vet. 2015, 24, 464–470.
  29. Biglino, A.; Bolla, C.; Concialdi, E.; Trisciuoglio, A.; Romano, A.; Ferroglio, E. Asymptomatic Leishmania Infantum Infection in an Area of Northwestern Italy (Piedmont Region) Where Such Infections Are Traditionally Nonendemic. J. Clin. Microbiol. 2010, 48, 131–136.
  30. Dujardin, J.-C.; Campino, L.; Cañavate, C.; Dedet, J.-P.; Gradoni, L.; Soteriadou, K.; Mazeris, A.; Ozbel, Y.; Boelaert, M. Spread of Vector-Borne Diseases and Neglect of Leishmaniasis, Europe. Emerg. Infect. Dis. 2008, 14, 1013–1018.
  31. Helhazar, M.; Leitão, J.; Duarte, A.; Tavares, L.; da Fonseca, I.P. Natural Infection of Synathropic Rodent Species Mus Musculus and Rattus Norvegicus by Leishmania Infantum in Sesimbra and Sintra--Portugal. Parasit. Vectors 2013, 6, 1–6.
  32. Maroli, M.; Feliciangeli, M.D.; Bichaud, L.; Charrel, R.N.; Gradoni, L. Phlebotomine Sandflies and the Spreading of Leishmaniases and Other Diseases of Public Health Concern. Med. Vet. Entomol. 2013, 27, 123–147.
  33. Millán, J.; Ferroglio, E.; Solano-Gallego, L. Role of Wildlife in the Epidemiology of Leishmania Infantum Infection in Europe. Parasitol. Res. 2014, 113, 2005–2014.
  34. Molina, R.; Jiménez, M.I.; Cruz, I.; Iriso, A.; Martín-Martín, I.; Sevillano, O.; Melero, S.; Bernal, J. The Hare (Lepus Granatensis) as Potential Sylvatic Reservoir of Leishmania Infantum in Spain. Vet. Parasitol. 2012, 190, 268–271.
  35. Moreno, I.; Álvarez, J.; García, N.; de la Fuente, S.; Martínez, I.; Marino, E.; Toraño, A.; Goyache, J.; Vilas, F.; Domínguez, L.; et al. Detection of Anti-Leishmania Infantum Antibodies in Sylvatic Lagomorphs from an Epidemic Area of Madrid Using the Indirect Immunofluorescence Antibody Test. Vet. Parasitol. 2014, 199, 264–267.
  36. Poeppl, W.; Herkner, H.; Tobudic, S.; Faas, A.; Auer, H.; Mooseder, G.; Burgmann, H.; Walochnik, J. Seroprevalence and Asymptomatic Carriage of Leishmania spp. in Austria, a Non-Endemic European Country. Clin. Microbiol. Infect. 2013, 19, 572–577.
  37. Scarlata, F.; Vitale, F.; Saporito, L.; Reale, S.; Vecchi, V.L.; Giordano, S.; Infurnari, L.; Occhipinti, F.; Titone, L. Asymptomatic Leishmania Infantum/Chagasi Infection in Blood Donors of Western Sicily. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 394–396.
  38. Soares, C.S.A.; Duarte, S.C.; Sousa, S.R. What Do We Know about Feline Leishmaniosis? J. Feline Med. Surg. 2016, 18, 435–442.
  39. Carneiro, L.A.; Dos Santos, T.V.; do Rêgo Lima, L.V.; Ramos, P.K.S.; Campos, M.B.; Silveira, F.T. First Report on Feline Leishmaniasis Caused by Leishmania (Leishmania) Amazonensis in Amazonian Brazil. Vet. Parasitol. Reg. Stud. Rep. 2020, 19, 100360.
  40. Colombo, F.A.; Odorizzi, R.M.F.N.; Laurenti, M.D.; Galati, E.A.B.; Canavez, F.; Pereira-Chioccola, V.L. Detection of Leishmania (Leishmania) Infantum RNA in Fleas and Ticks Collected from Naturally Infected Dogs. Parasitol. Res. 2011, 109, 267–274.
  41. Salvatore, D.; Aureli, S.; Baldelli, R.; Di Francesco, A.; Tampieri, M.P.; Galuppi, R. Molecular Evidence of Leishmania Infantum in Ixodes Ricinus Ticks from Dogs and Cats, in Italy. Vet. Ital. 2014, 50, 307–312.
  42. Pennisi, M.G.; Hartmann, K.; Lloret, A.; Addie, D.; Belák, S.; Boucraut-Baralon, C.; Egberink, H.; Frymus, T.; Gruffydd-Jones, T.; Hosie, M.J.; et al. Leishmaniosis in Cats: ABCD Guidelines on Prevention and Management. J. Feline Med. Surg. 2013, 15, 638–642.
  43. Vioti, G.; da Silva, M.D.; Galvis-Ovallos, F.; Alves, M.L.; da Silva, D.T.; Leonel, J.A.F.; Pereira, N.W.B.; Benassi, J.C.; Spada, J.C.P.; Maia, C.; et al. Xenodiagnosis in Four Domestic Cats Naturally Infected by Leishmania Infantum. Transbound. Emerg. Dis. 2021.
  44. Alcover, M.M.; Basurco, A.; Fernandez, A.; Riera, C.; Fisa, R.; Gonzalez, A.; Verde, M.; Garrido, A.M.; Ruíz, H.; Yzuel, A.; et al. A Cross-Sectional Study of Leishmania Infantum Infection in Stray Cats in the City of Zaragoza (Spain) Using Serology and PCR. Parasit. Vectors 2021, 14, 178.
  45. Silaghi, C.; Knaus, M.; Rapti, D.; Kusi, I.; Shukullari, E.; Hamel, D.; Pfister, K.; Rehbein, S. Survey of Toxoplasma Gondii and Neospora Caninum, Haemotropic Mycoplasmas and Other Arthropod-Borne Pathogens in Cats from Albania. Parasit. Vectors 2014, 7, 62.
  46. Attipa, C.; Papasouliotis, K.; Solano-Gallego, L.; Baneth, G.; Nachum-Biala, Y.; Sarvani, E.; Knowles, T.G.; Mengi, S.; Morris, D.; Helps, C.; et al. Prevalence Study and Risk Factor Analysis of Selected Bacterial, Protozoal and Viral, Including Vector-Borne, Pathogens in Cats from Cyprus. Parasit. Vectors 2017, 10, 130.
  47. Chatzis, M.K.; Xenoulis, P.G.; Leontides, L.; Kasabalis, D.; Mylonakis, M.E.; Andreadou, M.; Ikonomopoulos, J.; Saridomichelakis, M.N. Evaluation of Clinicopathological Abnormalities in Sick Cats Naturally Infected by Leishmania Infantum. Heliyon 2020, 6, e05177.
  48. Chatzis, M.K.; Andreadou, M.; Leontides, L.; Kasabalis, D.; Mylonakis, M.; Koutinas, A.F.; Rallis, T.; Ikonomopoulos, J.; Saridomichelakis, M.N. Cytological and Molecular Detection of Leishmania Infantum in Different Tissues of Clinically Normal and Sick Cats. Vet. Parasitol. 2014, 202, 217–225.
  49. Priolo, V.; Martínez-Orellana, P.; Pennisi, M.G.; Masucci, M.; Prandi, D.; Ippolito, D.; Bruno, F.; Castelli, G.; Solano-Gallego, L. Leishmania Infantum-Specific IFN-γ Production in Stimulated Blood from Cats Living in Areas Where Canine Leishmaniosis Is Endemic. Parasit. Vectors 2019, 12, 133.
  50. Neves, M.; Lopes, A.P.; Martins, C.; Fino, R.; Paixão, C.; Damil, L.; Lima, C.; Alho, A.M.; Schallig, H.D.F.H.; Dubey, J.P.; et al. Survey of Dirofilaria Immitis Antigen and Antibodies to Leishmania Infantum and Toxoplasma Gondii in Cats from Madeira Island, Portugal. Parasit. Vectors 2020, 13, 117.
  51. Schäfer, I.; Kohn, B.; Volkmann, M.; Müller, E. Retrospective Evaluation of Vector-Borne Pathogens in Cats Living in Germany (2012-2020). Parasit. Vectors 2021, 14, 123.
  52. Rocha, A.V.V.O.; Moreno, B.F.S.; Cabral, A.D.; Louzeiro, N.M.; Miranda, L.M.; Dos Santos, V.M.B.; da Costa, A.P.; Nogueira, R.D.M.S.; Marcili, A.; Sperança, M.A.; et al. Diagnosis and Epidemiology of Leishmania Infantum in Domestic Cats in an Endemic Area of the Amazon Region, Brazil. Vet. Parasitol. 2019, 273, 80–85.
  53. Lopes, A.P.; Oliveira, A.C.; Granada, S.; Rodrigues, F.T.; Papadopoulos, E.; Schallig, H.; Dubey, J.P.; Cardoso, L. Antibodies to Toxoplasma Gondii and Leishmania spp. in Domestic Cats from Luanda, Angola. Vet. Parasitol. 2017, 239, 15–18.
  54. Akhtardanesh, B.; Moeini, E.; Sharifi, I.; Saberi, M.; Sadeghi, B.; Ebrahimi, M.; Otranto, D. Leishmania Infection in Cats Positive for Immunodeficiency Virus and Feline Leukemia Virus in an Endemic Region of Iran. Vet. Parasitol. Reg. Stud. Rep. 2020, 20, 100387.
  55. Baneth, G.; Nachum-Biala, Y.; Zuberi, A.; Zipori-Barki, N.; Orshan, L.; Kleinerman, G.; Shmueli-Goldin, A.; Bellaiche, M.; Leszkowicz-Mazuz, M.; Salant, H.; et al. Leishmania Infection in Cats and Dogs Housed Together in an Animal Shelter Reveals a Higher Parasite Load in Infected Dogs despite a Greater Seroprevalence among Cats. Parasit. Vectors 2020, 13, 115.
  56. Iatta, R.; Furlanello, T.; Colella, V.; Tarallo, V.D.; Latrofa, M.S.; Brianti, E.; Trerotoli, P.; Decaro, N.; Lorusso, E.; Schunack, B.; et al. A Nationwide Survey of Leishmania Infantum Infection in Cats and Associated Risk Factors in Italy. PLoS Negl. Trop. Dis. 2019, 13, e0007594.
  57. Marcondes, M.; Hirata, K.Y.; Vides, J.P.; Sobrinho, L.S.V.; Azevedo, J.S.; Vieira, T.S.W.J.; Vieira, R.F.C. Infection by Mycoplasma spp., Feline Immunodeficiency Virus and Feline Leukemia Virus in Cats from an Area Endemic for Visceral Leishmaniasis. Parasit. Vectors 2018, 11, 131.
  58. Miró, G.; Rupérez, C.; Checa, R.; Gálvez, R.; Hernández, L.; García, M.; Canorea, I.; Marino, V.; Montoya, A. Current Status of L. Infantum Infection in Stray Cats in the Madrid Region (Spain): Implications for the Recent Outbreak of Human Leishmaniosis? Parasit. Vectors 2014, 7, 112.
  59. Attipa, C.; Neofytou, K.; Yiapanis, C.; Martínez-Orellana, P.; Baneth, G.; Nachum-Biala, Y.; Brooks-Brownlie, H.; Solano-Gallego, L.; Tasker, S. Follow-up Monitoring in a Cat with Leishmaniosis and Coinfections with Hepatozoon Felis and “Candidatus Mycoplasma Haemominutum”. JFMS Open Rep. 2017, 3, 2055116917740454.
  60. Duarte, A.; Castro, I.; Pereira da Fonseca, I.M.; Almeida, V.; Madeira de Carvalho, L.M.; Meireles, J.; Fazendeiro, M.I.; Tavares, L.; Vaz, Y. Survey of Infectious and Parasitic Diseases in Stray Cats at the Lisbon Metropolitan Area, Portugal. J. Feline Med. Surg. 2010, 12, 441–446.
  61. Grevot, A.; Jaussaud Hugues, P.; Marty, P.; Pratlong, F.; Ozon, C.; Haas, P.; Breton, C.; Bourdoiseau, G. Leishmaniosis Due to Leishmania Infantum in a FIV and FelV Positive Cat with a Squamous Cell Carcinoma Diagnosed with Histological, Serological and Isoenzymatic Methods. Parasite 2005, 12, 271–275.
  62. Morelli, S.; Crisi, P.E.; Di Cesare, A.; De Santis, F.; Barlaam, A.; Santoprete, G.; Parrinello, C.; Palermo, S.; Mancini, P.; Traversa, D. Exposure of Client-Owned Cats to Zoonotic Vector-Borne Pathogens: Clinic-Pathological Alterations and Infection Risk Analysis. Comp. Immunol. Microbiol. Infect. Dis. 2019, 66, 101344.
  63. Pedrassani, D.; Biolchi, J.; Gonçalves, L.R.; Mendes, N.S.; Zanatto, D.C.D.S.; Calchi, A.C.; Machado, R.Z.; André, M.R. Molecular Detection of Vector-Borne Agents in Cats in Southern Brazil. Rev. Bras. Parasitol. Vet. 2019, 28, 632–643.
  64. Ortuño, M.; Nachum-Biala, Y.; García-Bocanegra, I.; Resa, M.; Berriatua, E.; Baneth, G. An Epidemiological Study in Wild Carnivores from Spanish Mediterranean Ecosystems Reveals Association between Leishmania Infantum, Babesia spp. and Hepatozoon spp. Infection and New Hosts for Hepatozoon Martis, Hepatozoon Canis and Sarcocystis spp. Transbound. Emerg. Dis. 2021.
More
Information
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to https://encyclopedia.pub/register :
View Times: 570
Revisions: 2 times (View History)
Update Date: 07 Oct 2021
1000/1000