1000/1000
Hot
Most Recent
Nanomaterials are significant carriers for enzymes in heterogeneous biocatalysis. Large amounts of the active phase can be immobilized due to the large specific surface area. An interesting approach combines the stabilization of enzymes in ionic liquids and an immobilization of the active phase on a solid support, which allows to biocatalyst's recycling and its application in continuous flow and batch processes.
Type | Nanomaterial | Ionic Liquid | Enzyme | Reaction | Ref. |
---|---|---|---|---|---|
SILLP | Chitosan–silica hybrid |
Imidazolium [BF4]− | PLL (2482 U/g 1, 132.1 mg/g 2) |
Triacetin hydrolysis 35 °C, 10 cycles |
[3] |
SILLP | Chitosan–Fe3O4 hybrid |
Imidazolium [PF6]− |
PPL (2879 U/g, 118 mg/g) |
Triacetin hydrolysis 50 °C, 10 cycles |
[4] |
SILLP | Fe3O4 | Imidazolium [PF6]− |
CRL (132.3 U/g, 639 mg/g) |
Oleic acid esterification 30 °C, 5 cycles |
[5] |
SILLP | Fe3O4 | Imidazolium [Cl]− |
Penicillin G acylase (261 U/g, 209 mg/g) |
Penicillin G potassium salts hydrolysis 37 °C, 10 cycles |
[6] |
SILLP | Fe3O4–silica hybrid |
Imidazolium [Cl]− |
CRL | Palm stearin interesterification 45 °C, 4 cycles |
[7] |
SILLP | MWCNTs | Imidazolium [PF6]− |
CALB (19,354 U/g, 96 mg/g) |
Triacetin hydrolysis 60 °C, 4 cycles |
[8] |
SILLP | MWCNTs | Imidazolium [PF6]− |
CALB (25,350 U/g, 114 mg/g) |
Triacetin hydrolysis 60 °C, 4 cycles |
[9] |
SILLP | MWCNTs | Imidazolium [PF6]− |
CALB (13,636 U/g, 66 mg/g) |
Triacetin hydrolysis 60 °C, 4 cycles |
[10] |
SILP | MWCNTs | D-glucose based [NTf2]− |
CALB (42 mg/g) |
Acrylic acid esterification 25 °C, 5 cycles, Y = 99% 3 |
[11] |
SILLP | MWCNTs | Imidazolium [Oc2PO4]− |
CALB (64 mg/g) |
2-adamantanone oxidation 20 °C, 5 cycles, α = 91% 4 |
[12] |
SILP | MWCNTs | Imidazolium [NTf2]− |
CALB (22 mg/g) |
2-adamantanone oxidation 20 °C, 4 cycles, α = 99% |
[12] |
SILLP | Silica | Imidazolium [BF4]− |
PPL (975 U/mg) |
Triacetin hydrolysis 36 °C, 5 cycles |
[13] |
SILLP | Silica | Imidazolium [BF4]− |
PPL (975 U/mg) |
Triacetin hydrolysis 35 °C, 5 cycles |
[14] |
SILLP | Silica | Imidazolium [BF4]− |
BCL (10205 U/g, 230 mg/g) |
Triacetin hydrolysis 50 °C, 3 cycles |
[15] |
SILLP | Silica | Imidazolium [BF4]− |
PPL (720 U/g, 227.5 mg/g) |
Triacetin hydrolysis 35 °C, 4 cycles |
[16] |
SILLP | Silica | Imidazolium L-lysine |
PPL (244 U/g, 197 mg/g) |
Triacetin hydrolysis 50 °C, 5 cycles |
[17] |
SILLP | Silica | Imidazolium [BF4]− |
PPL (392 U/g, 245 mg/g) |
Triacetin hydrolysis 50 °C, 5 cycles |
[18] |
SILLP | Silica | Imidazolium [BF4]− |
PPL (760 U/g, 117 mg/g) |
Triacetin hydrolysis 45 °C, 5 cycles |
[19] |
SILLP | Silica | Imidazolium [BF4]− |
PPL (468 U/g, 186 mg/g) |
Triacetin hydrolysis 45 °C, 5 cycles |
[20] |
SILLP | Silica | Imidazolium [Cl]− |
Papain (0.8 U/mg, 261 mg/g) |
L-tyrosine synthesis 50 °C |
[21] |
SILLP | Organosilica | Imidazolium [Cl]− |
Amylase from Bacillus amyloliquefaciens (29.35 U/mg, 80 mg/g) |
Starch hydrolysis 70 °C, 4 cycles |
[22] |
SILLP | Silica | Imidazolium [BF4]− |
CALB (5044.44 U/g) |
Corn oil glycerolysis 50 °C, 5 cycles, α = 70.94% |
[23] |
SILP | Silica aerogel | Ammonium [C4H9COO]− |
BCL (83% 5) |
Olive oil hydrolysis 37 °C, 23 cycles |
[24] |
SILP | Silica aerogel | Ammonium [C4H9COO]− |
BCL (337 mg/g) |
Coconut oil esterification 40 °C, α = 70% |
[25] |
SILP | Silica | Phosphonium [NTf2]− |
BCL (91.1%) |
Olive oil hydrolysis 37 °C, 17 cycles |
[26] |