Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 3500 word(s) 3500 2021-09-09 04:44:51 |
2 format correct -13 word(s) 3487 2021-09-22 05:58:50 |

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Sundvall, M. Targeting SUMO Pathway in Cancer. Encyclopedia. Available online: (accessed on 25 June 2024).
Sundvall M. Targeting SUMO Pathway in Cancer. Encyclopedia. Available at: Accessed June 25, 2024.
Sundvall, Maria. "Targeting SUMO Pathway in Cancer" Encyclopedia, (accessed June 25, 2024).
Sundvall, M. (2021, September 20). Targeting SUMO Pathway in Cancer. In Encyclopedia.
Sundvall, Maria. "Targeting SUMO Pathway in Cancer." Encyclopedia. Web. 20 September, 2021.
Targeting SUMO Pathway in Cancer

SUMOylation is a dynamic and reversible post-translational modification, characterized more than 20 years ago, that regulates protein function at multiple levels. Due to the reversible nature of this post-translational protein modification, the balance between SUMOylation and the removal of SUMO is critical. SUMO pathway regulates the hallmark properties of cancer cells. Moreover, alterations in activity and in levels of SUMO machinery components have been observed in human cancer. Many molecular mechanisms relevant to the pathogenesis of specific cancers involve SUMO, highlighting the potential relevance of SUMO machinery components as therapeutic targets. Early-phase clinical trials are currently evaluating the safety and efficacy of SUMO pathway inhibition in cancer patients.

cancer post-translational modification (PTM) small ubiquitin-like modifier (SUMO) protein inhibitor of activated STAT (PIAS) sentrin-specific protease (SENP)

1. Introduction

Cancer is consistently ranked among the leading causes of death worldwide [1]. Hallmarks of cancer cells include uncontrolled proliferation, inhibition of apoptosis and differentiation, immune evasion, and the potential to metastasize [2]. Cellular homeostasis and responses to various stimuli are regulated by a wide array of post-translational modifications (PTM), including phosphorylation, acetylation, hydroxylation, glycosylation, and methylation as well as small protein modifications, such as ubiquitination [3][4]. Dysregulation of PTMs is frequent in cancer and plays a significant role in the pathogenesis of the disease [5][6]. Ubiquitination and its analogous modifications neddylation and SUMOylation are increasingly viewed as key regulators of tumorigenesis of various cancers [7][8][9]. In this review, we discuss SUMOylation’s contribution to the malignant phenotype and the pathway’s role as a potential therapeutic target in cancers originating from different cell types and organs.

2. Basic Principles of SUMOylation and Its Role in Physiology

Small ubiquitin-like modifiers (SUMOs) are a group of ubiquitin-like small proteins that are attached to substrate proteins in a reversible post-translational modification termed SUMOylation that is highly conserved in eukaryotes [9][10]. The SUMO pathway is involved in several central cellular processes. Modification by SUMO mediates the protein–protein interactions of target substrates, and influences their subcellular localization, stability, and enzymatic function [9][11]. SUMOylation can simultaneously target several members of a protein group to modulate the activity of a specific pathway [12]. The SUMO pathway shares some structural and functional similarities with the ubiquitin pathway [11]. The global molecular structure of SUMO is similar to ubiquitin, and both have a ββαββαβ fold structure and a conserved position of a diglycine (GG) motif required for isopeptide bond formation [13][14].
To date, five isoforms of SUMO (SUMO1, 2, 3, 4, and 5) have been identified in the human genome [9]. SUMO1, SUMO2, and SUMO3 are ubiquitously expressed in tissues, while the expression of SUMO4 and SUMO5 is restricted only to specific tissues [9][15][16][17][18]. SUMO1, SUMO2, and SUMO3 account for most of SUMO modifications, whereas the functional roles of SUMO4 and SUMO5 are more unclear [15][18]. SUMO2 and SUMO3 both share 97% sequence identity, but share only 50% sequence similarity with SUMO1 [19]. Expression levels of SUMOs are dynamic and fluctuate between different developmental stages [17]. SUMOs can be covalently attached to a single lysine residue (monoSUMOylation) or to multiple lysine residues (multiSUMOylation) of the substrate (Figure 1). SUMO is preferentially attached to SUMO consensus ΨKxE motifs of substrates, in which Ψ denotes a hydrophobic amino acid, K is lysine, x is any amino acid and E is glutamic acid, although some substrates are also SUMOylated at lysines in non-consensus sites [10][20][21]. SUMO itself may also be SUMOylated (polySUMOylation) to form polymeric SUMO chains, which are restricted to SUMO2 and SUMO3 [22]. SUMO1 does not form chains efficiently and is predominantly associated with monoSUMOylation [22]. However, SUMO1 can be attached to SUMO2/3 chains, resulting in the termination of chain elongation [23]. Non-covalent attachment of SUMO is regulated through the SUMO interaction motif (SIM) of binding partners [24][25].
Figure 1. The enzymatic SUMO cascade. (A) SENPs cleave off amino acids from precursor SUMO to produce a mature SUMO. (B) SAE1/SAE2 forms of a thioester bond between SUMO’s GG and catalytic cysteine residue of SAE1/2. (C) Thioester bond is formed between SUMO’s GG and catalytic cysteine residue of Ubc9. (D) Ubc9 catalyzes formation of an isopeptide bond between GG and target substrate’s lysine residue often with assistance of an E3 ligase. (E) SENPs deconjugate SUMO from the substrate.
The enzymatic cascade regulating SUMOylation comprises SUMO E1-activating, E2-conjugating, E3 ligase and deconjugating enzymes (Figure 1) [9]. Maturation and deconjugation (deSUMOylation) of SUMO is regulated by the family of cysteine proteases, sentrin-specific proteases (SENP1, 2, 3, 5, 6, 7, and 8) [26]. SENP1–7 have specific, varying subcellular localizations and regulate SUMO processing, whereas SENP8 displays substrate specificity only for ubiquitin-like protein NEDD8 [26][27][28]. SUMO E1-activating enzyme (SAE1/2) activates mature SUMO and transfers it to the only known mammalian E2-conjugating enzyme, Ubc9 (encoded by UBE2I) [29][30][31]. Ubc9 alone is capable of conjugating SUMO to substrates in vitro. However, E3 ligase enzymes are required for specificity and efficiency of SUMOylation. The family of protein inhibitors of activated STAT (PIAS) is the major class of SUMO E3 ligases, and the human genome has four PIAS genes (PIAS1, 2, 3, and 4) that encode seven protein products, PIAS1, PIAS2a (PIASxα), PIAS2b (PIASxβ), PIAS3, PIAS3L, PIAS4 (PIASy), and PIASyE6− [32][33]. Other classes of SUMO E3 ligases include the well-characterized Ran-binding protein 2 (RanBP2), and few other E3 ligases, such as ZNF451, polycomb protein PC2 (also known as CBX4), and some members of the tripartite motif (TRIM) protein family [34][35][36][37][38].
The SUMO pathway undergoes constant cross talk with other post-translational modifications, including phosphorylation and methylation [39][40][41]. For instance, phosphorylation can influence SUMOylation of substrates containing the conserved phosphorylation-dependent SUMOylation motif (PDSM), which mediates phosphorylation-dependent SUMOylation of various transcriptional regulators [39]. In addition, lysine methylation of the KKxE motif can create a motif resembling the SUMO consensus site in substrates containing the KKxE motif [40]. HMGA2 SUMOylation is dependent on its methylation at K66 and K67 of KKAE motif by methyltransferase SET7/9. The KKxE motif is present in several other proteins, including the polyhomeotic complex 1 (PHC1), which also requires methylation for its complete SUMOylation.
The importance of SUMOylation in physiology is apparent from early development. A functional SUMO pathway is essential for embryogenesis. Loss of Ubc9 leads to severe defects of chromosome condensation and segregation, as well as disruption of nuclear organization, resulting in death at early embryonic development in mice [42]. SUMO1 knockout mice are viable, as SUMO2/3 can compensate for most functions of SUMO1 [17][43]. Interestingly, SUMO3−/− mice are also viable, but the knockout of SUMO2 leads to severe developmental defects and early death before adulthood, indicating that SUMO2 is essential for the development. Balance of SUMOylation and deSUMOylation is critical for embryonic development, as knockout of SENP1, SENP2, or SENP3 results in embryonic lethality in mice, suggesting non-redundancy and substrate specificity among SENPs [44][45][46]. SENP1−/− mice have severe fetal anemia and SENP2−/− mice display defects in trophoblast development, whereas conditional knockout Senp3+/− mice have impaired cytokine and inflammatory signaling. PIAS1−/− and PIAS4−/− knockout mice are produced at a lower frequency than the expected Mendelian ratio due to increased perinatal lethality, and both knockouts display defects in cytokine signaling [47][48]. Surviving PIAS1−/− mice are runts compared to their wild-type counterparts, whereas PIAS4−/− mice show no obvious phenotype. PIAS2−/− knockout mice have reduced testis weight and sperm count but remain viable and fertile [49]. PIAS3−/− mice are viable and show no overt phenotype but have an impaired visual response of medium wavelength cones [50].

3. Altered Expression and Prognostic Significance of SUMO Pathway in Cancer

Dysregulated mRNA and protein levels of the SUMO machinery components have been reported in tissue samples of cancer patients with potential prognostic associations (Table 1). In the majority of the published reports, the expression levels of SUMO pathway components are upregulated in cancer and are associated with a higher histological grade, higher stage, presence of metastases and poor prognosis. Interestingly, genome-wide analyses have identified concurrently increased levels of multiple SUMO machinery components in certain cancer types [51]. However, high expression has been associated with better prognosis in some cancer types. Downregulated expression levels in cancer tissues have consistently been reported for SENP2 [52][53][54][55][56][57] and PIAS2 [58][59][60]. The prognostic value of a single SUMO machinery component can also vary between cancer (sub)types, and, e.g., the value for PC2 [61][62] and PIAS4 [63][64] as prognostic biomarkers in breast cancer and for PIAS3 [65][66] in mesothelioma remains ambiguous (Table 1). Bioinformatic analyses of the SUMO machinery protein and mRNA levels, and their association with prognosis, utilizing datasets from various databases are generally well in line with the other published analyses of often smaller sample sizes [67][68][69]. Mass spectrometry-based methods might decrease variability in protein level analyses caused by the use of different antibodies, whereas IHC allows analysis of the subcellular localization of a protein, which might be crucial for the prognostic significance of the SUMO machinery components in particular [63][70][71].
Table 1. Prognostic value of SUMO pathway components.
High Expression Associates with
Poor Prognosis
High Expression Associates with
Good Prognosis
Cancer Type Protein(s) Cancer Type Protein(s)
adrenocortical PIAS3, PIAS4, SAE1, SAE2, SENP1, SENP3, SUMO1, SUMO2, SUMO4 bladder Ubc9
breast PC2, PIAS3, PIAS4, SAE1, SAE2, SENP5, SENP7L, SUMO1, SUMO2, SUMO3, Ubc9 breast PC2, PIAS1, PIAS4
colorectal SAE2, SENP1, SUMO1 cervical PIAS3
gastric PC2, PIAS2, SAE2, SUMO3, Ubc9 colorectal PC2
glioma SAE1, Ubc9 gastric PIAS1, PIAS4
hepatocellular PC2, PIAS2, PIAS3, PIAS4, SAE1, SAE2, SENP1, SENP3, SENP5, SENP6, SUMO2, Ubc9 glioma PIAS3
leukemia SAE1, SUMO3 leukemia PIAS2, SENP5, SENP7
lung PC2, SAE1, SAE2, SENP1, SUMO2/3, SUMO4, Ubc9 lung PIAS3
melanoma (cutaneous) SAE1 melanoma (cutaneous) PIAS1, SENP5, SENP7
melanoma (uveal) SAE1, SAE2, SUMO3 melanoma (uveal) SENP2, Ubc9
mesothelioma PIAS3, PIAS4, SAE1, SAE2, SENP1 mesothelioma PC2, PIAS3, SENP2
multiple myeloma Ubc9 ovarian PIAS2
osteosarcoma PC2, SENP3 pancreatic SENP3
ovarian SENP3, SENP5 pheochromocytoma and paraganglioma Ubc9
pancreatic SENP2, (SUMO1 and SUMO2/3 together), Ubc9 renal PIAS1, PIAS2
prostate PIAS1, SAE1, SENP1, SENP5, SUMO1, SUMO2 testicular germ cell PIAS2
renal PC2, PIAS3, RSUME, SAE1, SENP1, SENP3, SENP5, SUMO1, SUMO2, Ubc9 thymoma PIAS4, SAE1, SAE2, SENP1, Ubc9
sarcoma PC2, PIAS2, PIAS3, SENP6, SENP7    
thyroid PIAS2, SAE1    
uterine corpus endometrial PC2, SAE2, SENP2, SENP5, SUMO4    

Regulation of SUMO Machinery Expression and Activity in Cancer

Dysregulation of SUMO pathway components in cancer tissues is often detectable already at the mRNA level. The expression of SUMO machinery components can be epigenetically altered by DNA methylation. For instance, promoter hypomethylation of SENP6 induces expression of SENP6 in hepatocellular carcinoma (HCC) tissues, and elevated SENP6 mRNA and protein levels are associated with promotion of HCC tumorigenesis [72][73]. At the post-transcriptional level, numerous miRNAs are implicated in SUMO regulation, and inverse expression levels of SUMO components and their miRNA-regulators are found in several cancers [74][75][76][77][78]. For example, a low expression of miR-145 is correlated with high expression of SENP1 in prostate cancer cells, and introduction of miR-145 causes cell cycle arrest via inhibition of SENP1 [76]. Oncogenic miRNA-9 and miRNA-181a inhibit PIAS3 in IL-6high breast cancer to promote expansion of early-stage myeloid-derived suppressor cells, resulting in suppression of T-cell immunity [79].
Dysregulation of the expression of SUMO machinery components in protein level can also occur in cancer. Post-translational regulation by, e.g., ubiquitin and subsequent proteasomal degradation may be involved, resulting in alterations in expression levels in cancer [80][81]. Moreover, reactive oxygen species (ROS) typically present in cancer influence protein expression levels of SENPs [82][83]. For instance, the ROS-induced increase in SENP3 level can drive carcinogenesis of head and neck cancer via deSUMOylation and subsequent hyperphosphorylation of STAT3 [83].
In addition to changes in expression levels, catalytic activity of select SUMO pathway components can directly be regulated by conditions typical in cancer, such as hypoxia [84][85]. Hypoxia induces a rapid and reversible inhibition of catalytic activity of SENP1 and SENP3, resulting in altered SUMOylation of a subset of proteins, such as the co-repressor BHLHE40 that is implicated in metabolic reprogramming upon hypoxia.

4. Genetic Changes Targeting SUMO Machinery in Cancer

4.1. Germline Variants

In breast cancer patients, genetic variation of UBE2I can influence the characteristics of tumors [86][87]. Single nucleotide polymorphisms (SNPs) rs7187167, rs11248866, rs8052688, and rs8063 are associated with low-grade (grade 1) tumors, with the strongest tumor grade association displayed by rs7187167 found to be an independent predictor of tumor grade. Moreover, SNP variant rs17354559 of PIAS3 may be of functional relevance in breast cancer, although the variant was not evaluated experimentally [87]. Furthermore, the genetic variability of SENP1 and SENP2 may play a role in the occurrence of breast cancer [88]. The rs12297820 variant of SENP1 is associated with metastatic status in breast cancer. Women carrying allele C and genotype C/C in the rs12297820 polymorphic site have an increased risk of metastases, while allele T is associated with reduced risk of metastases. Genetic variability of SENP2 may influence the risk and subtype of breast cancer, as allele C and genotype C/C in rs6762208 site correlates with reduced risk, and the A/A genotype is associated with the lack of an estrogen receptor.
Studies performed in a Chinese population indicate that genetic variation of PC2 may influence the occurrence of gastric cancer [89]. Polymorphism rs77447679 is significantly associated with the risk of gastric cancer, as patients carrying the C/A genotype have approximately a 1.7 times higher risk of gastric cancer when compared to the baseline CC genotype, but its mode of action as a potential promoter of tumorigenesis in the context of gastric cancer is still unclear.
Microphthalmia-associated transcription factor (MITF) is a target for a germline missense substitution Mi-E318K at the SUMO consensus motif of MITF (IKQE -> IKQK) required for covalent SUMO binding, leading to the impairment of MITF SUMOylation [90][91]. The prevalence of Mi-E318K mutation is approximately five times higher in patients affected by melanoma, renal cell carcinoma (RCC), or both cancers compared with healthy controls. Overall, the data indicates that mutation of MITF generates a genetic predisposition for the development of melanoma and RCC. MITF plays a critical role in melanocyte development and melanoma carcinogenesis by controlling the expression of several melanoma-associated genes that regulate proliferation and invasion, including MET5 and CDKN2A/p16INK4A5 [92]. MITF also enhances the transcriptional activity of HIF1α, which is a critical target for kidney cancer susceptibility genes [93][94]. The SUMOylation of MITF represses its transcriptional activity, and accordingly the SUMO-deficient Mi-E318K displays significantly increased overall transcriptional activity when compared to its wild-type counterpart [91]. Interestingly, Mi-E318K and wild-type MITF show similar transcriptional activity on promoters of MET and CDKN2A, while the activity of HIF1α is promoted more efficiently by Mi-E318K. A specific Mi-E318K signature comprising 32 genes mostly associated with cell growth, proliferation, and inflammation has been identified in RCC cells, implicating that Mi-E318K can alter the transcription of its target genes. Mi-E318K also enhances the invasion, migration, and colony-forming potential of melanoma and RCC cells but does not significantly increase their proliferation rate.

4.2. Somatic Mutations

Mutations targeting SUMO machinery have been identified that may contribute to development of cancer. Amplification of distal regions of chromosome 3q is a common event in lung cancer [95]. A network of four genes, SENP2, DCUN1D1, DVL3, and UBXN7 was identified as a candidate driver of the 3q26-29 amplicon that occurs in 70–85% of squamous cell carcinomas (SCCs) of the lung [96][97]. In addition to lung cancer, amplifications of 3q26 are also frequent in other epithelial cancers, including head and neck cancer, cervical cancer, and ovarian cancer, which may indicate for SENP2 amplification [97]. As another example, the SENP5-encompassing 3q27.2-q29 region is amplified in 11% of penile squamous cell carcinoma patients, which may indicate enhanced SENP5 activity [98]. Furthermore, the amplification of PIAS1 and/or focal adhesion kinase (FAK) occurs in 8% of non-small-cell lung cancer (NSCLC) cell lines and in a small subset of patient-derived primary NSCLCs and potentially drives lung carcinogenesis [99]. Only a few cases of somatic mutations targeting SUMO pathway components resulting in the expression of altered protein have been characterized. The t(12;15)(q13;q25) chromosomal translocation was found to fuse SENP1 and the mesoderm development candidate 2 (MESDC2) in a patient with infantile sacrococcygeal teratoma [100]. The reciprocal fusion genes encode aberrant proteins that display deSUMOylation capacities similar compared with wild-type SENP1. Another example is the fusion between SENP6 (also known as SUSP1) and T-cell lymphoma breakpoint associated target 1 (TCBA1) that creates a SENP6–TCBA1 chimeric gene found in a T-cell lymphoblastic lymphoma cell line [101].
Somatic lysine mutations targeting the SUMO acceptor sites of substrate proteins may also lead to the dysregulation of SUMOylation and alter protein function in cancer. Interestingly, lysine mutations have been identified in cancer patients with potential functional relevance, but the extent of lysine mutations leading to aberrant SUMOylation is unknown [102][103].

5. SUMOylation Regulates Key Cancer Genes and Hallmark Properties of Cancer Cells

5.1. Substrates of SUMO Relevant for Cancer

Oncogenic signaling of growth promoting MYC in cancer cells is dependent on a functional SUMO machinery, indicating that dynamic SUMOylation and deSUMOylation are essential for the regulation of MYC [104]. However, the regulation is context-dependent, and SUMOylation is reported to both upregulate and suppress MYC activity, depending on the specific cell type [105][106][107]. SUMOylation has been suggested to be essential for KRAS/RAF-driven tumorigenesis [108] and is involved in the regulation of major growth-promoting intracellular signaling pathways and their downstream targets. SUMOylation enhances growth-promoting activities of oncogenic AKT, and a mutant form of AKT expressed in several cancers displays elevated levels of SUMOylation [109]. PIAS4-mediated SUMOylation of AMP-activated protein kinase (AMPK) in turn attenuates the inhibitory effect of AMPK towards growth-promoting mTORC1 signaling [110]. SUMOylation of hypoxia inducible factors 1 (HIF1) and 2 (HIF2) is essential for the regulation of several key processes during hypoxia, including angiogenesis, glucose metabolism and erythropoiesis [44][82][85][111][112]. SUMO machinery also mediates NF-κB signaling upon genotoxic stress through the regulation of the NF-κB essential modifier (NEMO) [113]. Furthermore, SUMOylation regulates activation of Wnt/β-catenin signaling via SUMO modification of transducin β-like protein TBL1-TBLR1 complex [114].
SUMOylation modulates several tumor suppressors, such as Rb, as well as p53 and its negative regulator MDM2, regulating cell cycle progression and stress responses [115][116][117][118][119][120]. SUMOylation positively regulates the activity of tumor suppressor PTEN, which is a negative regulator of the oncogenic phosphatidylinositol-3 kinase (PI3K)-AKT pathway and is involved in DNA damage response (DDR) [121]. SUMO machinery influences membrane association and subcellular localization of PTEN, controlling its tumor-suppressive functions in both cytoplasm and nucleus, suppressing tumor growth and, in contrast to other reports, suggesting that SUMOylation is a positive regulator of the PI3K-AKT-mTOR pathway [122][123][124].

5.2. SUMOylation in Cellular Processes Relevant for Cancer

The SUMO pathway regulates various essential cellular processes involved in tumorigenesis, including cell cycle progression, stress responses such as DDR, and response to hypoxia, angiogenesis, invasion, stem-like cell properties, and immune responses [44][125][126][127][128][129][130]. For example, PIAS1 and PIAS4 are promoters of double-strand break repair, and SENPs are critical for mediating chromosome structure and homologous recombination as well as nonhomologous end joining [125][131][132][133]. Moreover, SUMOylation influences DNA replication by targeting translesion polymerase eta (polη) to replication forks [134].
SUMO may be involved in the epigenetic regulation of gene expression in cancer. SUMOylation of histones is involved in regulation of chromatin dynamics [135]. SUMOylation may also influence the activity of methyltransferases, such as DNMT1, MLL1/MML2 complex and G9a [136][137][138]. PIAS1 has been shown to control epigenetic silencing of specific gene sets in certain contexts [139][140]. During T-cell differentiation PIAS1 maintains a repressive chromatin state of the FOXP3 promoter by recruitment of DNA methyltransferases and heterochromatin protein 1, which restricts the differentiation of natural regulatory T-cells (Tregs) [139].
The SUMO pathway regulates angiogenesis in response to hypoxia through modulation of vascular endothelial growth factor (VEGF) expression levels [44][141][142]. Furthermore, SUMOylation is involved in cellular migration and epithelial mesenchymal transition (EMT) via multiple mechanisms [143][144][145][146][147][148]. The SUMO pathway is also implicated in regulation of stem-like cell properties of cancer cells e.g., via PIAS3 and STAT3 [129][149].
SUMO machinery is a critical regulator of innate immune responses via the modulation of type I interferon (IFN) and NF-κB signaling [130][150]. The SUMO pathway regulates the production and activity of IFNs by inhibiting or stimulating the transcription of IFN regulatory transcription factors (IRFs), such as IRF3 and IRF7 [151][152][153][154]. The SUMOylation of IRFs represses the transactivating capacity of IRFs, resulting in diminished transcription of type I IFN genes and attenuation of immune response activation [152][155]. SUMO also impacts IFN production via the modulation of GMP–AMP synthase (cGAS) and the stimulator of interferon genes (STING) [156][157]. SUMO also influences the activity of NF-κB signaling regulators, NEMO and IκBα, affecting immune response activation [158][159][160][161][162]. SENP3-mediated deSUMOylation regulates antitumor immune response functions of Tregs, macrophages, and dendritic cells [163][164][165]. The loss of SENP3 deSUMOylase activity in Tregs results in dysregulation T-cell homeostasis and SENP3 deficiency in macrophages facilitates macrophage polarization towards the pro-tumor M2 subtype. Overall, SUMOylation is considered to have a net inhibitory effect on immune response activation [150][166][167]. Depletion of Ubc9 or SAE1/2 induces a strong inflammatory response and enhances protection of viral infections in hematological xenograft mouse models.

The article is from 10.3390/cancers13174402, a comprehensive review that also in detail discusses the SUMO-modulated molecular mechanisms and scientific rationale of targeting the SUMO pathway in different cancer types, using the best-characterized hematological malignancies and solid tumors as examples. Moreover, the properties and activity of pharmacological preclinical inhibitors of the SUMO pathway components (SAE1/2, Ubc9 and SENPs) as well as the clinical development of the SAE inhibitor, TAK-981, which is the only SUMO pathway inhibitor that has progressed to clinical trials in cancer patients are explored.


  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249.
  2. Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674.
  3. Prabakaran, S.; Lippens, G.; Steen, H.; Gunawardena, J. Post-translational modification: Nature’s escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip. Rev. Syst. Biol. Med. 2012, 4, 565–583.
  4. Conibear, A.C. Deciphering protein post-translational modifications using chemical biology tools. Nat. Rev. Chem. 2020, 4, 674–695.
  5. Chen, L.; Liu, S.; Tao, Y. Regulating tumor suppressor genes: Post-translational modifications. Signal Transduct. Target. Ther. 2020, 5, 90.
  6. Xue, X.; Zhang, X.; Sun, F.; Wang, J. Emerging Role of Protein Post-Translational Modification in the Potential Clinical Application of Cancer. Nano Life 2020, 10, 2040008.
  7. Zhou, L.; Jiang, Y.; Luo, Q.; Li, L.; Jia, L. Neddylation: A novel modulator of the tumor microenvironment. Mol. Cancer 2019, 18, 77.
  8. Deng, L.; Meng, T.; Chen, L.; Wei, W.; Wang, P. The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct. Target. Ther. 2020, 5, 11.
  9. Celen, A.B.; Sahin, U. Sumoylation on its 25th anniversary: Mechanisms, pathology, and emerging concepts. FEBS J. 2020, 287, 3110–3140.
  10. Geiss-Friedlander, R.; Melchior, F. Concepts in sumoylation: A decade on. Nat. Rev. Mol. Cell Biol. 2007, 8, 947–956.
  11. Sundvall, M. Role of ubiquitin and SUMO in intracellular trafficking. Curr. Issues Mol. Biol. 2020, 35, 99–108.
  12. Psakhye, I.; Jentsch, S. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 2012, 151, 807–820.
  13. Vijay-Kumar, S.; Bugg, C.E.; Cook, W.J. Structure of ubiquitin refined at 1.8 Å resolution. J. Mol. Biol. 1987, 194, 531–544.
  14. Bayer, P.; Arndt, A.; Metzger, S.; Mahajan, R.; Melchior, F.; Jaenicke, R.; Becker, J. Structure determination of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol. 1998, 280, 275–286.
  15. Guo, D.; Li, M.; Zhang, Y.; Yang, P.; Eckenrode, S.; Hopkins, D.; Zheng, W.; Purohit, S.; Podolsky, R.H.; Muir, A.; et al. A functional variant of SUMO4, a new IκBα modifier, is associated with type diabetes. Nat. Genet. 2004, 36, 837–841.
  16. Bohren, K.M.; Nadkarni, V.; Song, J.H.; Gabbay, K.H.; Owerbach, D. A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus. J. Biol. Chem. 2004, 279, 27233–27238.
  17. Wang, L.; Wansleeben, C.; Zhao, S.; Miao, P.; Paschen, W.; Yang, W. SUMO 2 is essential while SUMO 3 is dispensable for mouse embryonic development. EMBO Rep. 2014, 15, 878–885.
  18. Liang, Y.C.; Lee, C.C.; Yao, Y.L.; Lai, C.C.; Schmitz, M.L.; Yang, W.M. SUMO5, a novel poly-SUMO isoform, regulates PML nuclear bodies. Sci. Rep. 2016, 6, 26509.
  19. Gareau, J.R.; Lima, C.D. The SUMO pathway: Emerging mechanisms that shape specificity, conjugation and recognition. Nat. Rev. Mol. Cell Biol. 2010, 11, 861–871.
  20. Hendriks, I.A.; D’Souza, R.C.J.; Yang, B.; Verlaan-De Vries, M.; Mann, M.; Vertegaal, A.C.O. Uncovering global SUMOylation signaling networks in a site-specific manner. Nat. Struct. Mol. Biol. 2014, 21, 927–936.
  21. Tammsalu, T.; Matic, I.; Jaffray, E.G.; Ibrahim, A.F.M.; Tatham, M.H.; Hay, R.T. Proteome-wide identification of SUMO2 modification sites. Sci. Signal. 2014, 7, rs2.
  22. Tatham, M.H.; Jaffray, E.; Vaughan, O.A.; Desterro, J.M.P.; Botting, C.H.; Naismith, J.H.; Hay, R.T. Polymeric Chains of SUMO-2 and SUMO-3 are Conjugated to Protein Substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 2001, 276, 35368–35374.
  23. Matic, I.; van Hagen, M.; Schimmel, J.; Macek, B.; Ogg, S.C.; Tatham, M.H.; Hay, R.T.; Lamond, A.I.; Mann, M.; Vertegaal, A.C.O. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol. Cell. Proteom. 2008, 7, 132–144.
  24. Song, J.; Durrin, L.K.; Wilkinson, T.A.; Krontiris, T.G.; Chen, Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. USA 2004, 101, 14373–14378.
  25. Hecker, C.M.; Rabiller, M.; Haglund, K.; Bayer, P.; Dikic, I. Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem. 2006, 281, 16117–16127.
  26. Kunz, K.; Piller, T.; Müller, S. SUMO-specific proteases and isopeptidases of the SENP family at a glance. J. Cell Sci. 2018, 131, jcs211904.
  27. Gan-Erdene, T.; Nagamalleswari, K.; Yin, L.; Wu, K.; Pan, Z.Q.; Wilkinson, K.D. Identification and characterization of DEN1, a deneddylase of the ULP family. J. Biol. Chem. 2003, 278, 28892–28900.
  28. Nayak, A.; Müller, S. SUMO-specific proteases/isopeptidases: SENPs and beyond. Genome Biol. 2014, 15, 422.
  29. Johnson, E.S.; Schwienhorst, I.; Dohmen, R.J.; Blobel, G. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO J. 1997, 16, 5509–5519.
  30. Desterro, J.M.P.; Rodriguez, M.S.; Kemp, G.D.; Ronald, T.H. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem. 1999, 274, 10618–10624.
  31. Okuma, T.; Honda, R.; Ichikawa, G.; Tsumagari, N.; Yasuda, H. In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem. Biophys. Res. Commun. 1999, 254, 693–698.
  32. Rytinki, M.M.; Kaikkonen, S.; Pehkonen, P.; Jääskeläinen, T.; Palvimo, J.J. PIAS proteins: Pleiotropic interactors associated with SUMO. Cell. Mol. Life Sci. 2009, 66, 3029–3041.
  33. Rabellino, A.; Andreani, C.; Scaglioni, P.P. The Role of PIAS SUMO E3-Ligases in Cancer. Cancer Res. 2017, 77, 1542–1547.
  34. Pichler, A.; Gast, A.; Seeler, J.S.; Dejean, A.; Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 2002, 108, 109–120.
  35. Cappadocia, L.; Pichler, A.; Lima, C.D. Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase. Nat. Struct. Mol. Biol. 2015, 22, 968–975.
  36. Kagey, M.H.; Melhuish, T.A.; Wotton, D. The polycomb protein Pc2 is a SUMO E3. Cell 2003, 113, 127–137.
  37. Chu, Y.; Yang, X. SUMO E3 ligase activity of TRIM proteins. Oncogene 2011, 30, 1108–1116.
  38. Li, M.; Xu, X.; Chang, C.W.; Liu, Y. TRIM28 functions as the SUMO E3 ligase for PCNA in prevention of transcription induced DNA breaks. Proc. Natl. Acad. Sci. USA 2020, 117, 23588–23596.
  39. Hietakangas, V.; Anckar, J.; Blomster, H.A.; Fujimoto, M.; Palvimo, J.J.; Nakai, A.; Sistonen, L. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl. Acad. Sci. USA 2006, 103, 45–50.
  40. Stabell, M.; Sæther, T.; Røhr, Å.K.; Gabrielsen, O.S.; Myklebost, O. Methylation-dependent SUMOylation of the architectural transcription factor HMGA2. Biochem. Biophys. Res. Commun. 2021, 552, 91–97.
  41. Anckar, J.; Sistonen, L. SUMO: Getting it on. Biochem. Soc. Trans. 2007, 35, 1409–1413.
  42. Nacerddine, K.; Lehembre, F.; Bhaumik, M.; Artus, J.; Cohen-Tannoudji, M.; Babinet, C.; Pandolfi, P.P.; Dejean, A. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice. Dev. Cell 2005, 9, 769–779.
  43. Zhang, F.-P.; Mikkonen, L.; Toppari, J.; Palvimo, J.J.; Thesleff, I.; Jänne, O.A. Sumo-1 Function Is Dispensable in Normal Mouse Development. Mol. Cell. Biol. 2008, 28, 5381–5390.
  44. Cheng, J.; Kang, X.; Zhang, S.; Yeh, E.T.H. SUMO-Specific Protease 1 Is Essential for Stabilization of HIF1α during Hypoxia. Cell 2007, 131, 584–595.
  45. Chiu, S.Y.; Asai, N.; Costantini, F.; Hsu, W. SUMO-specific protease 2 is essential for modulating p53-mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biol. 2008, 6, e310.
  46. Lao, Y.; Yang, K.; Wang, Z.; Sun, X.; Zou, Q.; Yu, X.; Cheng, J.; Tong, X.; Yeh, E.T.H.; Yang, J.; et al. DeSUMOylation of MKK7 kinase by the SUMO2/3 protease SENP3 potentiates lipopolysaccharide-induced inflammatory signaling in macrophages. J. Biol. Chem. 2018, 293, 3965–3980.
  47. Liu, B.; Mink, S.; Wong, K.A.; Stein, N.; Getman, C.; Dempsey, P.W.; Wu, H.; Shuai, K. PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity. Nat. Immunol. 2004, 5, 891–898.
  48. Roth, W.; Sustmann, C.; Kieslinger, M.; Gilmozzi, A.; Irmer, D.; Kremmer, E.; Turck, C.; Grosschedl, R. PIASy-Deficient Mice Display Modest Defects in IFN and Wnt Signaling. J. Immunol. 2004, 173, 6189–6199.
  49. Santti, H.; Mikkonen, L.; Anand, A.; Hirvonen-Santti, S.; Toppari, J.; Panhuysen, M.; Vauti, F.; Perera, W.; Corte, G.; Wurst, W.; et al. Disruption of the murine PIASx gene results in reduced testis weight. J. Mol. Endocrinol. 2005, 34, 645–654.
  50. Campla, C.K.; Breit, H.; Dong, L.; Gumerson, J.D.; Roger, J.E.; Swaroop, A. Pias3 is necessary for dorso-ventral patterning and visual response of retinal cones but is not required for rod photoreceptor differentiation. Biol. Open 2017, 6, 881–890.
  51. Lee, J.S.; Chu, I.S.; Heo, J.; Calvisi, D.F.; Sun, Z.; Roskams, T.; Durnez, A.; Demetris, A.J.; Thorgeirsson, S.S. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 2004, 40, 667–676.
  52. Shen, H.J.; Zhu, H.Y.; Yang, C.; Ji, F. SENP2 regulates hepatocellular carcinoma cell growth by modulating the stability of β-catenin. Asian Pac. J. Cancer Prev. 2012, 13, 3583–3587.
  53. Tan, M.Y.; Mu, X.Y.; Liu, B.; Wang, Y.; Bao, E.D.; Qiu, J.X.; Fan, Y. SUMO-specific protease 2 suppresses cell migration and invasion through inhibiting the expression of MMP13 in bladder cancer cells. Cell. Physiol. Biochem. 2013, 32, 542–548.
  54. Pei, H.; Chen, L.; Liao, Q.M.; Wang, K.J.; Chen, S.G.; Liu, Z.J.; Zhang, Z.C. Sumo-specific protease 2 (Senp2) functions as a tumosuppressor in osteosarcoma via sox9 degradation. Exp. Ther. Med. 2018, 16, 5359–5365.
  55. Chen, X.L.; Wang, S.F.; Liang, X.T.; Liang, H.X.; Wang, T.T.; Wu, S.Q.; Qiu, Z.J.; Zhan, R.; Xu, Z.S. SENP2 exerts an anti-tumor effect on chronic lymphocytic leukemia cells through the inhibition of the Notch and NF-κB signaling pathways. Int. J. Oncol. 2019, 54, 455–466.
  56. Xie, H.; Gu, Y.; Wang, W.; Wang, X.; Ye, X.; Xin, C.; Lu, M.; Reddy, B.A.; Shu, P. Silencing of SENP2 in Multiple Myeloma Induces Bortezomib Resistance by Activating NF-κB Through the Modulation of IκBα Sumoylation. Sci. Rep. 2020, 10, 766.
  57. Li, X.; Meng, Y. SUMOylation Regulator-Related Molecules Can Be Used as Prognostic Biomarkers for Glioblastoma. Front. Cell Dev. Biol. 2021, 9, 689.
  58. Taheri, M.; Oskooei, V.K.; Ghafouri-Fard, S. Protein inhibitor of activated STAT genes are differentially expressed in breast tumor tissues. Pers. Med. 2019, 16, 277–285.
  59. Tuccilli, C.; Baldini, E.; Sorrenti, S.; Di Gioia, C.; Bosco, D.; Ascoli, V.; Mian, C.; Barollo, S.; Rendina, R.; Coccaro, C.; et al. Papillary thyroid cancer is characterized by altered expression of genes involved in the sumoylation process. J. Biol. Regul. Homeost. Agents 2015, 29, 655–662.
  60. Wang, J.; Ni, J.; Yi, S.; Song, D.; Ding, M. Protein inhibitor of activated STAT xα depresses cyclin D and cyclin D kinase, and contributes to the inhibition of osteosarcoma cell progression. Mol. Med. Rep. 2016, 13, 1645–1652.
  61. Zeng, J.S.; Zhang, Z.D.; Pei, L.; Bai, Z.Z.; Yang, Y.; Yang, H.; Tian, Q.H. CBX4 exhibits oncogenic activities in breast cancer via Notch1 signaling. Int. J. Biochem. Cell Biol. 2018, 95, 1–8.
  62. Li, X.; Gou, J.; Li, H.; Yang, X. Bioinformatic analysis of the expression and prognostic value of chromobox family proteins in human breast cancer. Sci. Rep. 2020, 10, 17739.
  63. Alshareeda, A.T.; Negm, O.H.; Green, A.R.; Nolan, C.; Tighe, P.; Albarakati, N.; Sultana, R.; Madhusudan, S.; Ellis, I.O.; Rakha, E.A. SUMOylation proteins in breast cancer. Breast Cancer Res. Treat. 2014, 144, 519–530.
  64. Agboola, A.; Musa, A.; Banjo, A.; Ayoade, B.; Deji-Agboola, M.; Nolan, C.; Rakha, E.; Ellis, I.; Green, A. PIASγ expression in relation to clinicopathological, tumour factors and survival in indigenous black breast cancer women. J. Clin. Pathol. 2014, 67, 301–306.
  65. Dabir, S.; Kluge, A.; Kresak, A.; Yang, M.; Fu, P.; Groner, B.; Wildey, G.; Dowlati, A. Low PIAS3 expression in malignant mesothelioma is associated with increased STAT3 activation and poor patient survival. Clin. Cancer Res. 2014, 20, 5124–5132.
  66. Wu, G.; Xu, Y.; Ruan, N.; Li, J.; Lv, Q.; Zhang, Q.; Chen, Y.; Wang, Q.; Xia, Q.; Li, Q. Genetic alteration and clinical significance of sumoylation regulators in multiple cancer types. J. Cancer 2020, 11, 6823–6833.
  67. Yang, Y.; Liang, Z.; Xia, Z.; Wang, X.; Ma, Y.; Sheng, Z.; Gu, Q.; Shen, G.; Zhou, L.; Zhu, H.; et al. SAE1 promotes human glioma progression through activating AKT SUMOylation-mediated signaling pathways. Cell Commun. Signal. 2019, 17, 1–14.
  68. Li, J.; Xu, Y.; Long, X.D.; Wang, W.; Jiao, H.K.; Mei, Z.; Yin, Q.Q.; Ma, L.N.; Zhou, A.W.; Wang, L.S.; et al. Cbx4 governs HIF-1α to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity. Cancer Cell 2014, 25, 118–131.
  69. Jiao, H.K.; Xu, Y.; Li, J.; Wang, W.; Mei, Z.; Long, X.D.; Chen, G.Q. Prognostic significance of Cbx4 expression and its beneficial effect for transarterial chemoembolization in hepatocellular carcinoma. Cell Death Dis. 2015, 6, e1689.
  70. Chanda, A.; Chan, A.; Deng, L.; Kornaga, E.N.; Enwere, E.K.; Morris, D.G.; Bonni, S. Identification of the SUMO E3 ligase PIAS1 as a potential survival biomarker in breast cancer. PLoS ONE 2017, 12, e0177639.
  71. Wang, B.; Tang, J.; Liao, D.; Wang, G.; Zhang, M.; Sang, Y.; Cao, J.; Wu, Y.; Zhang, R.; Li, S.; et al. Chromobox homolog 4 is correlated with prognosis and tumor cell growth in hepatocellular carcinoma. Ann. Surg. Oncol. 2013, 20, 684–692.
  72. Qian, J.; Luo, Y.; Gu, X.; Wang, X. Inhibition of SENP6-Induced Radiosensitization of Human Hepatocellular Carcinoma Cells by Blocking Radiation-Induced NF-κB Activation. Cancer Biother. Radiopharm. 2013, 28, 196–200.
  73. Stefanska, B.; Cheishvili, D.; Suderman, M.; Arakelian, A.; Huang, J.; Hallett, M.; Han, Z.G.; Al-Mahtab, M.; Akbar, S.M.F.; Khan, W.A.; et al. Genome-wide study of hypomethylated and induced genes in patients with liver cancer unravels novel anticancer targets. Clin. Cancer Res. 2014, 20, 3118–3132.
  74. Zhao, Z.; Tan, X.; Zhao, A.; Zhu, L.; Yin, B.; Yuan, J.; Qiang, B.; Peng, X. microRNA-214-mediated UBC9 expression in glioma. BMB Rep. 2012, 45, 641–646.
  75. Yang, H.; Tang, Y.; Guo, W.; Du, Y.; Wang, Y.; Li, P.; Zang, W.; Yin, X.; Wang, H.; Chu, H.; et al. Up-regulation of microRNA-138 induce radiosensitization in lung cancer cells. Tumor Biol. 2014, 35, 6557–6565.
  76. Wang, C.; Tao, W.; Ni, S.; Chen, Q.; Zhao, Z.; Ma, L.; Fu, Y.; Jiao, Z. Tumor-suppressive microRNA-145 induces growth arrest by targeting SENP1 in human prostate cancer cells. Cancer Sci. 2015, 106, 375–382.
  77. Zheng, C.; Li, J.; Wang, Q.; Liu, W.; Zhou, J.; Liu, R.; Zeng, Q.; Peng, X.; Huang, C.; Cao, P.; et al. MicroRNA-195 functions as a tumor suppressor by inhibiting CBX4 in hepatocellular carcinoma. Oncol. Rep. 2015, 33, 1115–1122.
  78. Chen, Y.; Du, J.; Wang, Y.; Shi, H.; Jiang, Q.; Wang, Y.; Zhang, H.; Wei, Y.; Xue, W.; Pu, Z.; et al. MicroRNA-497-5p induces cell cycle arrest of cervical cancer cells in s phase by targeting cbx4. Onco-Targets Ther. 2019, 12, 10535–10545.
  79. Jiang, M.; Zhang, W.; Zhang, R.; Liu, P.; Ye, Y.; Yu, W.; Guo, X.; Yu, J. Cancer exosome-derived miR-9 and miR-181a promote the development of early-stage MDSCs via interfering with SOCS3 and PIAS3 respectively in breast cancer. Oncogene 2020, 39, 4681–4694.
  80. Kluge, A.; Dabir, S.; Vlassenbroeck, I.; Eisenberg, R.; Dowlati, A. Protein inhibitor of activated STAT3 expression in lung cancer. Mol. Oncol. 2011, 5, 256–264.
  81. Brantley, E.C.; Nabors, L.B.; Gillespie, G.Y.; Choi, Y.H.; Palmer, C.A.; Harrison, K.; Roarty, K.; Benveniste, E.N. Loss of protein inhibitors of activated STAT-3 expression in glioblastoma multiforme tumors: Implications for STAT-3 activation and gene expression. Clin. Cancer Res. 2008, 14, 4694–4704.
  82. Huang, C.; Han, Y.; Wang, Y.; Sun, X.; Yan, S.; Yeh, E.T.H.; Chen, Y.; Cang, H.; Li, H.; Shi, G.; et al. SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation. EMBO J. 2009, 28, 2748–2762.
  83. Zhou, Z.; Wang, M.; Li, J.; Xiao, M.; Chin, Y.E.; Cheng, J.; Yeh, E.T.H.; Yang, J.; Yi, J. SUMOylation and SENP3 regulate STAT3 activation in head and neck cancer. Oncogene 2016, 35, 5826–5838.
  84. Kunz, K.; Wagner, K.; Mendler, L.; Hölper, S.; Dehne, N.; Müller, S. SUMO Signaling by Hypoxic Inactivation of SUMO-Specific Isopeptidases. Cell Rep. 2016, 16, 3075–3086.
  85. Kang, X.; Li, J.; Zou, Y.; Yi, J.; Zhang, H.; Cao, M.; Yeh, E.T.H.; Cheng, J. PIASy stimulates HIF1α SUMOylation and negatively regulates HIF1α activity in response to hypoxia. Oncogene 2010, 29, 5568–5578.
  86. Dünnebier, T.; Bermejo, J.L.; Haas, S.; Fischer, H.P.; Pierl, C.B.; Justenhoven, C.; Brauch, H.; Baisch, C.; Gilbert, M.; Harth, V.; et al. Common variants in the UBC9 gene encoding the SUMO-conjugating enzyme are associated with breast tumor grade. Int. J. Cancer 2009, 125, 596–602.
  87. Dünnebier, T.; Bermejo, J.L.; Haas, S.; Fischer, H.P.; Pierl, C.B.; Justenhoven, C.; Brauch, H.; Baisch, C.; Gilbert, M.; Harth, V.; et al. Polymorphisms in the UBC9 and PIAS3 genes of the SUMO-conjugating system and breast cancer risk. Breast Cancer Res. Treat. 2010, 121, 185–194.
  88. Mirecka, A.; Morawiec, Z.; Wozniak, K. Genetic Polymorphism of SUMO-Specific Cysteine Proteases—SENP1 and SENP2 in Breast Cancer. Pathol. Oncol. Res. 2016, 22, 817–823.
  89. Luo, Y.; You, S.; Wang, J.; Fan, S.; Shi, J.; Peng, A.; Yu, T. Association between sumoylation-related gene rs77447679 polymorphism and risk of gastric cancer(GC) in a Chinese population. J. Cancer 2017, 8, 3226–3231.
  90. Murakami, H.; Arnheiter, H. Sumoylation modulates transcriptional activity of MITF in a promoter-specific manner. Pigment Cell Res. 2005, 18, 265–277.
  91. Bertolotto, C.; Lesueur, F.; Giuliano, S.; Strub, T.; De Lichy, M.; Bille, K.; Dessen, P.; D’Hayer, B.; Mohamdi, H.; Remenieras, A.; et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 2011, 480, 94–98.
  92. King, R.; Weilbaecher, K.N.; McGill, G.; Cooley, E.; Mihm, M.; Fisher, D.E. Microphthalmia transcription factor: A sensitive and specific melanocyte marker for melanoma diagnosis. Am. J. Pathol. 1999, 155, 731–738.
  93. Buscà, R.; Berra, E.; Gaggioli, C.; Khaled, M.; Bille, K.; Marchetti, B.; Thyss, R.; Fitsialos, G.; Larribère, L.; Bertolotto, C.; et al. Hypoxia-inducible factor 1α is a new target of microphthalmia- associated transcription factor (MITF) in melanoma cells. J. Cell Biol. 2005, 170, 49–59.
  94. Linehan, W.M.; Srinivasan, R.; Schmidt, L.S. The genetic basis of kidney cancer: A metabolic disease. Nat. Rev. Urol. 2010, 7, 277–285.
  95. Levin, N.A.; Bnorka, P.M.; Warnock, M.L.; Gray, J.W.; Christman, M.F. Identification of novel regions of altered DNA copy number in small cell lung tumors. Genes Chromosom. Cancer 1995, 13, 175–185.
  96. Wang, J.; Qian, J.; Hoeksema, M.D.; Zou, Y.; Espinosa, A.V.; Rahman, S.M.J.; Zhang, B.; Massion, P.P. Integrative genomics analysis identifies candidate drivers at 3q26-29 amplicon in squamous cell carcinoma of the lung. Clin. Cancer Res. 2013, 19, 5580–5590.
  97. Fields, A.P.; Justilien, V.; Murray, N.R. The chromosome 3q26 OncCassette: A multigenic driver of human cancer. Adv. Biol. Regul. 2016, 60, 47–63.
  98. La-Touche, S.; Lemetre, C.; Lambros, M.; Stankiewicz, E.; Ng, C.K.Y.; Weigelt, B.; Rajab, R.; Tinwell, B.; Corbishley, C.; Watkin, N.; et al. DNA Copy Number Aberrations, and Human Papillomavirus Status in Penile Carcinoma. Clinico-Pathological Correlations and Potential Driver Genes. PLoS ONE 2016, 11, e0146740.
  99. Constanzo, J.D.; Tang, K.J.; Rindhe, S.; Melegari, M.; Liu, H.; Tang, X.; Rodriguez-Canales, J.; Wistuba, I.; Scaglioni, P.P. PIAS1-FAK Interaction Promotes the Survival and Progression of Non-Small Cell Lung Cancer. Neoplasia 2016, 18, 282–293.
  100. Veltman, I.M.; Vreede, L.A.; Cheng, J.; Looijenga, L.H.J.; Janssen, B.; Schoenmakers, E.F.P.M.; Yeh, E.T.H.; van Kessel, A.G. Fusion of the SUMO/Sentrin-specific protease 1 gene SENP1 and the embryonic polarity-related mesoderm development gene MESDC2 in a patient with an infantile teratoma and a constitutional t(12;15)(q13;q25). Hum. Mol. Genet. 2005, 14, 1955–1963.
  101. Tagawa, H.; Miura, I.; Suzuki, R.; Suzuki, H.; Hosokawa, Y.; Seto, M. Molecular cytogenetic analysis of the breakpoint region at 6q21-22 in T-cell lymphoma/leukemia cell lines. Genes Chromosom. Cancer 2002, 34, 175–185.
  102. Xu, H.D.; Shi, S.P.; Chen, X.; Qiu, J.D. Systematic analysis of the genetic variability that impacts sumo conjugation and their involvement in human diseases. Sci. Rep. 2015, 5, 10900.
  103. Chen, L.; Miao, Y.; Liu, M.; Zeng, Y.; Gao, Z.; Peng, D.; Hu, B.; Li, X.; Zheng, Y.; Xue, Y.; et al. Pan-cancer analysis reveals the functional importance of protein lysine modification in cancer development. Front. Genet. 2018, 9, 254.
  104. Kessler, J.D.; Kahle, K.T.; Sun, T.; Meerbrey, K.L.; Schlabach, M.R.; Schmitt, E.M.; Skinner, S.O.; Xu, Q.; Li, M.Z.; Hartman, Z.C.; et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 2012, 335, 348–353.
  105. González-Prieto, R.; Cuijpers, S.A.G.; Kumar, R.; Hendriks, I.A.; Vertegaal, A.C.O. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4. Cell Cycle 2015, 14, 1859–1872.
  106. Rabellino, A.; Melegari, M.; Tompkins, V.S.; Chen, W.; Van Ness, B.G.; Teruya-Feldstein, J.; Conacci-Sorrell, M.; Janz, S.; Scaglioni, P.P. PIAS1 Promotes Lymphomagenesis through MYC Upregulation. Cell Rep. 2016, 15, 2266–2278.
  107. Sun, X.X.; Chen, Y.; Su, Y.; Wang, X.; Chauhan, K.M.; Liang, J.; Daniel, C.J.; Sears, R.C.; Dai, M.S. SUMO protease SENP1 deSUMOylates and stabilizes c-Myc. Proc. Natl. Acad. Sci. USA 2018, 115, 10983–10988.
  108. Yu, B.; Swatkoski, S.; Holly, A.; Lee, L.C.; Giroux, V.; Lee, C.S.; Hsu, D.; Smith, J.L.; Yuen, G.; Yue, J.; et al. Oncogenesis driven by the Ras/Raf pathway requires the SUMO E2 ligase Ubc9. Proc. Natl. Acad. Sci. USA 2015, 112, E1724–E1733.
  109. Li, R.; Wei, J.; Jiang, C.; Liu, D.; Deng, L.; Zhang, K.; Wang, P. Akt SUMOylation regulates cell proliferation and tumorigenesis. Cancer Res. 2013, 73, 5742–5753.
  110. Yan, Y.; Ollila, S.; Wong, I.P.L.; Vallenius, T.; Palvimo, J.J.; Vaahtomeri, K.; Mäkelä, T.P. SUMOylation of AMPKα1 by PIAS4 specifically regulates mTORC1 signalling. Nat. Commun. 2015, 6, 8979.
  111. Bae, S.H.; Jeong, J.W.; Park, J.A.; Kim, S.H.; Bae, M.K.; Choi, S.J.; Kim, K.W. Sumoylation increases HIF-1α stability and its transcriptional activity. Biochem. Biophys. Res. Commun. 2004, 324, 394–400.
  112. Carbia-Nagashima, A.; Gerez, J.; Perez-Castro, C.; Paez-Pereda, M.; Silberstein, S.; Stalla, G.K.; Holsboer, F.; Arzt, E. RSUME, a Small RWD-Containing Protein, Enhances SUMO Conjugation and Stabilizes HIF-1α during Hypoxia. Cell 2007, 131, 309–323.
  113. Lee, M.H.; Mabb, A.M.; Gill, G.B.; Yeh, E.T.H.; Miyamoto, S. NF-κB Induction of the SUMO Protease SENP2: A Negative Feedback Loop to Attenuate Cell Survival Response to Genotoxic Stress. Mol. Cell 2011, 43, 180–191.
  114. Choi, H.K.; Choi, K.C.; Yoo, J.Y.; Song, M.; Ko, S.J.; Kim, C.H.; Ahn, J.H.; Chun, K.H.; Yook, J.I.; Yoon, H.G. Reversible SUMOylation of TBL1-TBLR1 Regulates β-Catenin-Mediated Wnt Signaling. Mol. Cell 2011, 43, 203–216.
  115. Sharma, P.; Kuehn, M.R. SENP1-modulated sumoylation regulates retinoblastoma protein (RB) and Lamin A/C interaction and stabilization. Oncogene 2016, 35, 6429–6438.
  116. Gostissa, M.; Hengstermann, A.; Fogal, V.; Sandy, P.; Schwarz, S.E.; Scheffner, M.; Del Sal, G. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J. 1999, 18, 6462–6471.
  117. Rodriguez, M.S.; Desterro, J.M.P.; Lain, S.; Midgley, C.A.; Lane, D.P.; Hay, R.T. SUMO-1 modification activates the transcriptional response of p53. EMBO J. 1999, 18, 6455–6461.
  118. Xirodimas, D.P.; Chisholm, J.; Desterro, J.M.; Lane, D.P.; Hay, R.T. P14ARF promotes accumulation of SUMO-1 conjugated (H)Mdm2. FEBS Lett. 2002, 528, 207–211.
  119. Chen, L.; Chen, J. MDM2-ARF complex regulates p53 sumoylation. Oncogene 2003, 22, 5348–5357.
  120. Jiang, M.; Chiu, S.Y.; Hsu, W. SUMO-specific protease 2 in Mdm2-mediated regulation of p53. Cell Death Differ. 2011, 18, 1005–1015.
  121. Lee, Y.-R.; Chen, M.; Pandolfi, P.P. The functions and regulation of the PTEN tumour suppressor: New modes and prospects. Nat. Rev. Mol. Cell Biol. 2018, 19, 547–562.
  122. Huang, J.; Yan, J.; Zhang, J.; Zhu, S.; Wang, Y.; Shi, T.; Zhu, C.; Chen, C.; Liu, X.; Cheng, J.; et al. SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane. Nat. Commun. 2012, 3, 911.
  123. Bassi, C.; Ho, J.; Srikumar, T.; Dowling, R.J.O.; Gorrini, C.; Miller, S.J.; Mak, T.W.; Neel, B.G.; Raught, B.; Stambolic, V. Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. Science 2013, 341, 395–399.
  124. Wang, W.; Chen, Y.; Wang, S.; Hu, N.; Cao, Z.; Wang, W.; Tong, T.; Zhang, X. PIASxα ligase enhances SUMO1 modification of PTEN Protein as a SUMO E3 Ligase. J. Biol. Chem. 2014, 289, 3217–3230.
  125. Galanty, Y.; Belotserkovskaya, R.; Coates, J.; Polo, S.; Miller, K.M.; Jackson, S.P. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 2009, 462, 935–939.
  126. Shim, H.S.; Wei, M.; Brandhorst, S.; Longo, V.D. Starvation promotes REV1 SUMOylation and p53-dependent sensitization of melanoma and breast cancer cells. Cancer Res. 2015, 75, 1056–1067.
  127. Niskanen, E.A.; Malinen, M.; Sutinen, P.; Toropainen, S.; Paakinaho, V.; Vihervaara, A.; Joutsen, J.; Kaikkonen, M.U.; Sistonen, L.; Palvimo, J.J. Global SUMOylation on active chromatin is an acute heat stress response restricting transcription. Genome Biol. 2015, 16, 153.
  128. Zhu, X.; Ding, S.; Qiu, C.; Shi, Y.; Song, L.; Wang, Y.; Wang, Y.; Li, J.; Wang, Y.; Sun, Y.; et al. SUMOylation negatively regulates angiogenesis by targeting endothelial NOTCH signaling. Circ. Res. 2017, 121, 636–649.
  129. Zhang, C.; Mukherjee, S.; Tucker-Burden, C.; Ross, J.L.; Chau, M.J.; Kong, J.; Brat, D.J. TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3. Mol. Oncol. 2017, 11, 280–294.
  130. Hannoun, Z.; Maarifi, G.; Chelbi-Alix, M.K. The implication of SUMO in intrinsic and innate immunity. Cytokine Growth Factor Rev. 2016, 29, 3–16.
  131. Garvin, A.J.; Densham, R.M.; Blair-Reid, S.A.; Pratt, K.M.; Stone, H.R.; Weekes, D.; Lawrence, K.J.; Morris, J.R. The deSUMOylase SENP7 promotes chromatin relaxation for homologous recombination DNA repair. EMBO Rep. 2013, 14, 975–983.
  132. Wagner, K.; Kunz, K.; Piller, T.; Tascher, G.; Hölper, S.; Stehmeier, P.; Keiten-Schmitz, J.; Schick, M.; Keller, U.; Müller, S. The SUMO Isopeptidase SENP6 Functions as a Rheostat of Chromatin Residency in Genome Maintenance and Chromosome Dynamics. Cell Rep. 2019, 29, 480–494.e5.
  133. Garvin, A.J.; Walker, A.K.; Densham, R.M.; Chauhan, A.S.; Stone, H.R.; Mackay, H.L.; Jamshad, M.; Starowicz, K.; Daza-Martin, M.; Ronson, G.E.; et al. The deSUMOylase SENP2 coordinates homologous recombination and nonhomologous end joining by independent mechanisms. Genes Dev. 2019, 33, 333–347.
  134. Despras, E.; Sittewelle, M.; Pouvelle, C.; Delrieu, N.; Cordonnier, A.M.; Kannouche, P.L. Rad18-dependent SUMOylation of human specialized DNA polymerase eta is required to prevent under-replicated DNA. Nat. Commun. 2016, 7, 13326.
  135. Ryu, H.-Y.; Hochstrasser, M. Histone sumoylation and chromatin dynamics. Nucleic Acids Res. 2021, 49, 6043–6052.
  136. Lee, B.; Muller, M.T. SUMOylation enhances DNA methyltransferase 1 activity. Biochem. J. 2009, 421, 449–461.
  137. Nayak, A.; Viale-Bouroncle, S.; Morsczeck, C.; Muller, S. The SUMO-specific isopeptidase SENP3 regulates MLL1/MLL2 methyltransferase complexes and controls osteogenic differentiation. Mol. Cell 2014, 55, 47–58.
  138. Srinivasan, S.; Shankar, S.R.; Wang, Y.; Taneja, R. SUMOylation of G9a regulates its function as an activator of myoblast proliferation. Cell Death Dis. 2019, 10, 250.
  139. Liu, B.; Tahk, S.; Yee, K.M.; Fan, G.; Shuai, K. The ligase PIAS1 restricts natural regulatory T cell differentiation by epigenetic repression. Science 2010, 330, 521–525.
  140. Liu, B.; Tahk, S.; Yee, K.M.; Yang, R.; Yang, Y.; Mackie, R.; Hsu, C.; Chernishof, V.; O’Brien, N.; Jin, Y.; et al. PIAS1 regulates breast tumorigenesis through selective epigenetic gene silencing. PLoS ONE 2014, 9, e89464.
  141. Bawa-Khalfe, T.; Cheng, J.; Lin, S.H.; Ittmann, M.M.; Yeh, E.T.H. SENP1 induces prostatic intraepithelial neoplasia through multiple mechanisms. J. Biol. Chem. 2010, 285, 25859–25866.
  142. Wang, Q.; Xia, N.; Li, T.; Xu, Y.; Zou, Y.; Zuo, Y.; Fan, Q.; Bawa-Khalfe, T.; Yeh, E.T.H.; Cheng, J. SUMO-specific protease 1 promotes prostate cancer progression and metastasis. Oncogene 2013, 32, 2493–2498.
  143. Castillo-Lluva, S.; Tatham, M.H.; Jones, R.C.; Jaffray, E.G.; Edmondson, R.D.; Hay, R.T.; Malliri, A. SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat. Cell Biol. 2010, 12, 1078–1085.
  144. Li, C.; McManus, F.P.; Plutoni, C.; Pascariu, C.M.; Nelson, T.; Alberici Delsin, L.E.; Emery, G.; Thibault, P. Quantitative SUMO proteomics identifies PIAS1 substrates involved in cell migration and motility. Nat. Commun. 2020, 11, 834.
  145. Long, J.; Matsuura, I.; He, D.; Wang, G.; Shuai, K.; Liu, F. Repression of Smad transcriptional activity by PIASy, an inhibitor of activated STAT. Proc. Natl. Acad. Sci. USA 2003, 100, 9791–9796.
  146. Chandhoke, A.S.; Karve, K.; Dadakhujaev, S.; Netherton, S.; Deng, L.; Bonni, S. The ubiquitin ligase Smurf2 suppresses TGFβ-induced epithelial-mesenchymal transition in a sumoylation-regulated manner. Cell Death Differ. 2016, 23, 876–888.
  147. Jang, D.; Kwon, H.; Choi, M.; Lee, J.; Pak, Y. Sumoylation of Flotillin-1 promotes EMT in metastatic prostate cancer by suppressing Snail degradation. Oncogene 2019, 38, 3248–3260.
  148. Chanda, A.; Ikeuchi, Y.; Karve, K.; Sarkar, A.; Chandhoke, A.S.; Deng, L.; Bonni, A.; Bonni, S. PIAS1 and TIF1γ collaborate to promote SnoN SUMOylation and suppression of epithelial–mesenchymal transition. Cell Death Differ. 2021, 28, 267–282.
  149. Jiao, J.; Zhang, R.; Li, Z.; Yin, Y.; Fang, X.; Ding, X.; Cai, Y.; Yang, S.; Mu, H.; Zong, D.; et al. Nuclear Smad6 promotes gliomagenesis by negatively regulating PIAS3-mediated STAT3 inhibition. Nat. Commun. 2018, 9, 2504.
  150. Adorisio, S.; Fierabracci, A.; Muscari, I.; Liberati, A.M.; Ayroldi, E.; Migliorati, G.; Thuy, T.T.; Riccardi, C.; Delfino, D.V. SUMO proteins: Guardians of immune system. J. Autoimmun. 2017, 84, 21–28.
  151. Ran, Y.; Liu, T.-T.; Zhou, Q.; Li, S.; Mao, A.-P.; Li, Y.; Liu, L.-J.; Cheng, J.-K.; Shu, H.-B. SENP2 negatively regulates cellular antiviral response by deSUMOylating IRF3 and conditioning it for ubiquitination and degradation. J. Mol. Cell Biol. 2011, 3, 283–292.
  152. Liang, Q.; Deng, H.; Li, X.; Wu, X.; Tang, Q.; Chang, T.-H.; Peng, H.; Rauscher, F.J.; Ozato, K.; Zhu, F. Tripartite Motif-Containing Protein 28 Is a Small Ubiquitin-Related Modifier E3 Ligase and Negative Regulator of IFN Regulatory Factor 7. J. Immunol. 2011, 187, 4754–4763.
  153. Kubota, T.; Matsuoka, M.; Xu, S.; Otsuki, N.; Takeda, M.; Kato, A.; Ozato, K. PIASy inhibits virus-induced and interferon-stimulated transcription through distinct mechanisms. J. Biol. Chem. 2011, 286, 8165–8175.
  154. Chang, T.-H.; Xu, S.; Tailor, P.; Kanno, T.; Ozato, K. The Small Ubiquitin-like Modifier-Deconjugating Enzyme Sentrin-Specific Peptidase 1 Switches IFN Regulatory Factor 8 from a Repressor to an Activator during Macrophage Activation. J. Immunol. 2012, 189, 3548–3556.
  155. Kubota, T.; Matsuoka, M.; Chang, T.H.; Tailor, P.; Sasaki, T.; Tashiro, M.; Kato, A.; Ozato, K. Virus infection triggers SUMOylation of IRF3 and IRF7, leading to the negative regulation of type I interferon gene expression. J. Biol. Chem. 2008, 283, 25660–25670.
  156. Hu, M.M.; Yang, Q.; Xie, X.Q.; Liao, C.Y.; Lin, H.; Liu, T.T.; Yin, L.; Shu, H.B. Sumoylation Promotes the Stability of the DNA Sensor cGAS and the Adaptor STING to Regulate the Kinetics of Response to DNA Virus. Immunity 2016, 45, 555–569.
  157. Cui, Y.; Yu, H.; Zheng, X.; Peng, R.; Wang, Q.; Zhou, Y.; Wang, R.; Wang, J.; Qu, B.; Shen, N.; et al. SENP7 Potentiates cGAS Activation by Relieving SUMO-Mediated Inhibition of Cytosolic DNA Sensing. PLoS Pathog. 2017, 13, e1006156.
  158. Desterro, J.M.P.; Rodriguez, M.S.; Hay, R.T. SUMO-1 modification of IκBα inhibits NF-κB activation. Mol. Cell 1998, 2, 233–239.
  159. Huang, T.T.; Wuerzberger-Davis, S.M.; Wu, Z.H.; Miyamoto, S. Sequential Modification of NEMO/IKKγ by SUMO-1 and Ubiquitin Mediates NF-κB Activation by Genotoxic Stress. Cell 2003, 115, 565–576.
  160. Zhao, T.; Yang, L.; Sun, Q.; Arguello, M.; Ballard, D.W.; Hiscott, J.; Lin, R. The NEMO adaptor bridges the nuclear factor-κB and interferon regulatory factor signaling pathways. Nat. Immunol. 2007, 8, 592–600.
  161. Liu, X.; Chen, W.; Wang, Q.; Li, L.; Wang, C. Negative Regulation of TLR Inflammatory Signaling by the SUMO-deconjugating Enzyme SENP6. PLoS Pathog. 2013, 9, e1003480.
  162. Liu, X.; Wang, Q.; Chen, W.; Wang, C. Dynamic regulation of innate immunity by ubiquitin and ubiquitin-like proteins. Cytokine Growth Factor Rev. 2013, 24, 559–570.
  163. Yu, X.; Lao, Y.; Teng, X.L.; Li, S.; Zhou, Y.; Wang, F.; Guo, X.; Deng, S.; Chang, Y.; Wu, X.; et al. SENP3 maintains the stability and function of regulatory T cells via BACH2 deSUMOylation. Nat. Commun. 2018, 9, 3157.
  164. Xiao, M.; Bian, Q.; Lao, Y.; Yi, J.; Sun, X.; Sun, X.; Yang, J. SENP3 loss promotes M2 macrophage polarization and breast cancer progression. Mol. Oncol. 2021.
  165. Hu, Z.; Teng, X.L.; Zhang, T.; Yu, X.; Ding, R.; Yi, J.; Deng, L.; Wang, Z.; Zou, Q. SENP3 senses oxidative stress to facilitate STING-dependent dendritic cell antitumor function. Mol. Cell 2021, 81, 940–952.e5.
  166. Decque, A.; Joffre, O.; Magalhaes, J.G.; Cossec, J.C.; Blecher-Gonen, R.; Lapaquette, P.; Silvin, A.; Manel, N.; Joubert, P.E.; Seeler, J.S.; et al. Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing. Nat. Immunol. 2016, 17, 140–149.
  167. Crowl, J.T.; Stetson, D.B. SUMO2 and SUMO3 redundantly prevent a noncanonical type I interferon response. Proc. Natl. Acad. Sci. USA 2018, 115, 6798–6803.
Subjects: Oncology
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to :
View Times: 523
Revisions: 2 times (View History)
Update Date: 22 Sep 2021
Video Production Service