Submitted Successfully!
To reward your contribution, here is a gift for you: A free trial for our video production service.
Thank you for your contribution! You can also upload a video entry or images related to this topic.
Version Summary Created by Modification Content Size Created at Operation
1 + 2047 word(s) 2047 2021-06-24 10:38:04 |
2 Format correct Meta information modification 2047 2021-07-22 14:57:58 |

Video Upload Options

Do you have a full video?


Are you sure to Delete?
If you have any further questions, please contact Encyclopedia Editorial Office.
Villagra, C. Agriculture and Pollinator Biodiversity. Encyclopedia. Available online: (accessed on 15 June 2024).
Villagra C. Agriculture and Pollinator Biodiversity. Encyclopedia. Available at: Accessed June 15, 2024.
Villagra, Cristian. "Agriculture and Pollinator Biodiversity" Encyclopedia, (accessed June 15, 2024).
Villagra, C. (2021, July 22). Agriculture and Pollinator Biodiversity. In Encyclopedia.
Villagra, Cristian. "Agriculture and Pollinator Biodiversity." Encyclopedia. Web. 22 July, 2021.
Agriculture and Pollinator Biodiversity

Pollinator biodiversity is greatly affected by industrialized agriculture practices. Agroecological alternatives for food production must be implemented. 

agroecology sacrifice zones Apoidea water deficit pesticides Food sovereignty food security

1. Introduction

Industrial agriculture (hereafter “IA”) promoted by the Green Revolution has arguably brought about significant increases in food production globally over the past 70 years [1]. These models involve the use of a «technical package» with strong dependency on fossil fuels, which include large-scale monocrop landscapes of improved/selected seeds, increased mechanization, and the incorporation of “external inputs” to enhance plant growth and yield such as the introduction of managed pollinators, synthetic fertilizers and pesticides [2].
Agroecology (AE) takes advantage of local biotic components and abiotic conditions found in the agricultural landscape, seeking to match crops with local abiotic conditions and promote beneficial associated organisms [3]; highlighting the value of local knowledge and biodiversity that benefits agricultural production [4]. For instance, AE considers available organisms that improve crop productivity such as pollination, biological control, and decomposition as “resource biota” [5][6]. Through this lens, local diversity is regarded as a natural “internal input” (Figure 1; Figure 2), as opposed to “external inputs” required for IA production, enhancing sustainable food production in agroecologically-managed fields. Internal input provides different ecosystem services and ecological interactions [7][8]. The latter includes pollinators, predators, parasites, and herbivores as well as non-crop vegetation, soil invertebrates, and microorganisms, among other components of local biodiversity helping crop yield [9].
Figure 1. Schematic representation of industrial agriculture intensive management. Arrows and positive sings represent favorable influences between elements depicted by icons and tittles. “T” ending lines and negative signs symbolize unfavorable impacts. Landscape homogenization, the simplification of rural ecosystems that takes place under industrial agriculture, is illustrated with a bulldozer. The application of external inputs such as pesticides, GMOs, and managed exotic biological control agents and pollinators, is shown as an operator spraying agrochemicals. Landscape homogenization and external inputs are used to sustain crop yield production (represented by various fruits) under industrialized schemes. Nonetheless industrial agriculture’s landscape homogenization and external inputs are at the same time causing a decline of local biodiversity (e.g., beneficial microorganisms, plants, and animals), which despite not being recognized by industrial agriculture, are contributing to crop yield as internal inputs (in calypso lines). This component is illustrated by a slide of soil showing different wild lifeforms and their positive influences by calypso color lines. Among beneficial organisms present in agricultural landscapes are wild pollinators, represented by native bees. These are being exemplified in this figure by three specimens (with large to small species) by genera: Bombus, Anthidium, and Lasioglossum native species. Native bees’ positive interactions with crop yield and the remaining internal inputs the other components of this diagram are shown with red lines and arrows. Images in grey highlight detrimental effects on illustrated components (e.g., internal inputs and native bees).


  1. Khush, G.S. Green Revolution: Preparing for the 21st Century. Genome 1999, 42, 646–655.
  2. Lin, B.B.; Chappell, M.J.; Vandermeer, J.; Smith, G.; Quintero, E.; Bezner-Kerr, R.; Griffith, D.M.; Ketcham, S.; Latta, S.C.; McMichael, P.; et al. Effects of Industrial Agriculture on Climate Change and the Mitigation Potential of Small-Scale Agro-Ecological Farms. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2011, 6, 1–19.
  3. Gurr, G.; Wratten, S.; Altieri, M. Ecological Engineering for Pest Management. Advances in Habitat Manipulation for Arthropods; CSIRO: Collingwood, VIC, Canada, 2004.
  4. González-Chang, M.; Dörner, J.; Zúñiga, F. Agroecología y Sistemas Agrícolas Sustentables. Agro Sur 2018, 46, 1–2.
  5. Southwood, R.E.; Way, M.J. Ecological Background to Pest Management. In Concepts of Pest Management; Rabb, R.C., Guthrie, F.E., Eds.; North Carolina State University: Raleigh, NC, USA, 1970; pp. 6–29.
  6. Altieri, M.A. The Ecological Role of Biodiversity in Agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31.
  7. Maran, A.M.; Weintraub, M.N.; Pelini, S.L. Does Stimulating Ground Arthropods Enhance Nutrient Cycling in Conventionally Managed Corn Fields? Agric. Ecosyst. Environ. 2020, 297, 106934.
  8. Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological Intensification: Harnessing Ecosystem Services for Food Security. Trends Ecol. Evol. 2013, 28, 230–238.
  9. Altieri, M.A. Biodiversity and Pest Management in Agroecosystems; Haworth Press: New York, NY, USA, 1994.
  10. Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14.
  11. Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 347.
  12. Desing, H.; Brunner, D.; Takacs, F.; Nahrath, S.; Frankenberger, K.; Hischier, R. A Circular Economy within the Planetary Boundaries: Towards a Resource-Based, Systemic Approach. Resour. Conserv. Recycl. 2020, 155, 104673.
  13. Heck, V.; Hoff, H.; Wirsenius, S.; Meyer, C.; Kreft, H. Land Use Options for Staying within the Planetary Boundaries—Synergies and Trade-Offs between Global and Local Sustainability Goals. Glob. Environ. Chang. 2018, 49, 73–84.
  14. Parraguez-Vergara, E.; Contreras, B.; Clavijo, N.; Villegas, V.; Paucar, N.; Ther, F. Does Indigenous and Campesino Traditional Agriculture Have Anything to Contribute to Food Sovereignty in Latin America? Evidence from Chile, Peru, Ecuador, Colombia, Guatemala and Mexico. Int. J. Agric. Sustain. 2018, 16, 326–341.
  15. Mickey, S. Learning Native Wisdom: What Traditional Cultures Teach Us About Subsistence, Sustainability, and Spirituality. Worldviews Glob. Relig. Cult. Ecol. 2013, 13, 136–139.
  16. Grey, S.; Patel, R. Food Sovereignty as Decolonization: Some Contributions from Indigenous Movements to Food System and Development Politics. Agric. Human Values 2015, 32, 431–444.
  17. Kaluza, B.F.; Wallace, H.M.; Heard, T.A.; Minden, V.; Klein, A.; Leonhardt, S.D. Social Bees Are Fitter in More Biodiverse Environments. Sci. Rep. 2018, 8, 12353.
  18. Kremen, C. Reframing the Land-sparing/Land-sharing Debate for Biodiversity Conservation. Ann. N. Y. Acad. Sci. 2015, 1355, 52–76.
  19. Ricketts, T.H.; Regetz, J.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Bogdanski, A.; Gemmill-Herren, B.; Greenleaf, S.S.; Klein, A.M.; Mayfield, M.M.; et al. Landscape Effects on Crop Pollination Services: Are There General Patterns? Ecol. Lett. 2008, 11, 499–515.
  20. Kremen, C.; Williams, N.M.; Bugg, R.L.; Fay, J.P.; Thorp, R.W. The Area Requirements of an Ecosystem Service: Crop Pollination by Native Bee Communities in California. Ecol. Lett. 2004, 7, 1109–1119.
  21. Bailey, S.; Requier, F.; Nusillard, B.; Roberts, S.P.M.; Potts, S.G.; Bouget, C. Distance from Forest Edge Affects Bee Pollinators in Oilseed Rape Fields. Ecol. Evol. 2014, 4, 370–380.
  22. Gray, C.L.; Hill, S.L.L.; Newbold, T.; Hudson, L.N.; Boïrger, L.; Contu, S.; Hoskins, A.J.; Ferrier, S.; Purvis, A.; Scharlemann, J.P.W. Local Biodiversity Is Higher inside than Outside Terrestrial Protected Areas Worldwide. Nat. Commun. 2016, 7.
  23. Felipe Viana, B. How Well Do We Understand Landscape Effects on Pollinators and Pollination Services? J. Pollinat. Ecol. 2012, 7, 31–40.
  24. Sobreiro, A.I. Recover and They’ll Come: Flower Visiting Bees Benefit from the Continuous of Micro- Environments Set by Regenerating Forest Fragments. Sociobiology 2021, 68, 1–17.
  25. Chape, S.; Harrison, J.; Spalding, M.; Lysenko, I. Measuring the Extent and Effectiveness of Protected Areas as an Indicator for Meeting Global Biodiversity Targets. Philos. Trans. R. Soc. B Biol. Sci. 2005, 360, 443–455.
  26. Steffan-Dewenter, I.; Tscharntke, T. Effects of Habitat Isolation on Pollinator Communities and Seed Set. Oecologia 1999, 121, 432–440.
  27. Park, M.G.; Blitzer, E.J.; Gibbs, J.; Losey, J.E.; Danforth, B.N. Negative Effects of Pesticides on Wild Bee Communities Can Be Buffered by Landscape Context. Proc. R. Soc. B Biol. Sci. 2015, 282.
  28. Carrié, R.; Andrieu, E.; Ouin, A.; Steffan-Dewenter, I. Interactive Effects of Landscape-Wide Intensity of Farming Practices and Landscape Complexity on Wild Bee Diversity. Landsc. Ecol. 2017, 32, 1631–1642.
  29. Morandin, L.A.; Kremen, C. Hedgerow Restoration Promotes Pollinator Populations and Exports Native Bees to Adjacent Fields. Ecol. Appl. 2013, 23, 829–839.
  30. Blaauw, B.R.; Isaacs, R. Larger Patches of Diverse Floral Resources Increase Insect Pollinator Density, Diversity, and Their Pollination of Native Wildflowers. Basic Appl. Ecol. 2014, 15, 701–711.
  31. Hopfenmüller, S.; Steffan-Dewenter, I.; Holzschuh, A. Trait-Specific Responses of Wild Bee Communities to Landscape Composition, Configuration and Local Factors. PLoS ONE 2014, 9.
  32. Alomar, D.; González-Estévez, M.A.; Traveset, A.; Lázaro, A. The Intertwined Effects of Natural Vegetation, Local Flower Community, and Pollinator Diversity on the Production of Almond Trees. Agric. Ecosyst. Environ. 2018, 264, 34–43.
  33. Riojas-López, M.E.; Díaz-Herrera, I.A.; Fierros-López, H.E.; Mellink, E. The Effect of Adjacent Habitat on Native Bee Assemblages in a Perennial Low-Input Agroecosystem in a Semiarid Anthropized Landscape. Agric. Ecosyst. Environ. 2019, 272, 199–205.
  34. Burkle, L.A.; Delphia, C.M.; O’Neill, K.M. A Dual Role for Farmlands: Food Security and Pollinator Conservation. J. Ecol. 2017, 105, 890–899.
  35. Krewenka, K.M.; Holzschuh, A.; Tscharntke, T.; Dormann, C.F. Landscape Elements as Potential Barriers and Corridors for Bees, Wasps and Parasitoids. Biol. Conserv. 2011, 144, 1816–1825.
  36. Boscolo, D.; Tokumoto, P.M.; Ferreira, P.A.; Ribeiro, J.W.; Santos, J.S. dos. Positive Responses of Flower Visiting Bees to Landscape Heterogeneity Depend on Functional Connectivity Levels. Perspect. Ecol. Conserv. 2017, 15, 18–24.
  37. Klein, A.M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of Pollinators in Changing Landscapes for World Crops. Proc. R. Soc. B Biol. Sci. 2007, 274, 303–313.
  38. Williams, N.M.; Kremen, C. Resource Distributions among Habitats Determine Solitary Bee Offspring Production in a Mosaic Landscape. Ecol. Appl. 2007, 17, 910–921.
  39. Nicholls, C.I.; Altieri, M.A. Plant Biodiversity Enhances Bees and Other Insect Pollinators in Agroecosystems. A Review. Agron. Sustain. Dev. 2013, 33, 257–274.
  40. Wojtjowsjki, P.A. Agroecological Economics. Sustainability and Biodiversity; Elsevier: London, UK, 2008.
  41. Nicholls, C.I.; Altieri, M.A.; Vazquez, L. Agroecology: Principles for the Conversion and Redesign of Farming Systems. J. Ecosyst. Ecography 2016, 01.
  42. Altieri, M.A.; Toledo, V.M. The Agroecological Revolution in Latin America: Rescuing Nature, Ensuring Food Sovereignty and Empowering Peasants. J. Peasant Stud. 2011, 38, 587–612.
  43. Forrest, J.R.K.; Thorp, R.W.; Kremen, C.; Williams, N.M. Contrasting Patterns in Species and Functional-Trait Diversity of Bees in an Agricultural Landscape. J. Appl. Ecol. 2015, 52, 706–715.
  44. Altieri, M.A. Agroecology: The Science of Sustainable Agriculture, 2nd ed.; CRC Press Taylor & Francis Group: New York, NY, USA, 2018.
  45. Altieri, M.A.; Rosset, P. Agroecology and the Conversion of Large-Scale Conventional Systems to Sustainable Management. Int. J. Environ. Stud. 1996, 50, 165–185.
  46. Jacobi, J.; Mathez-Stiefel, S.L.; Gambon, H.; Rist, S.; Altieri, M. Whose Knowledge, Whose Development? Use and Role of Local and External Knowledge in Agroforestry Projects in Bolivia. Environ. Manage. 2017, 59, 464–476.
  47. Holt-Giménez, E.; Altieri, M.A. Agroecology, Food Sovereignty, and the New Green Revolution. Agroecol. Sustain. Food Syst. 2013, 37, 90–102.
  48. Nicholls, C.I.; Altieri, M.A. Pathways for the Amplification of Agroecology. Agroecol. Sustain. Food Syst. 2018, 42, 1170–1193.
  49. Landaverde-González, P.; Quezada-Euán, J.J.G.; Theodorou, P.; Murray, T.E.; Husemann, M.; Ayala, R.; Moo-Valle, H.; Vandame, R.; Paxton, R.J. Sweat Bees on Hot Chillies: Provision of Pollination Services by Native Bees in Traditional Slash-and-Burn Agriculture in the Yucatán Peninsula of Tropical Mexico. J. Appl. Ecol. 2017, 54, 1814–1824.
  50. Catacora-Vargas, G.; Piepenstock, A.; Sotomayor, C.; Cuentas, D.; Cruz, A.; Delgado, F. Brief Historical Review of Agroecology in Bolivia. Agroecol. Sustain. Food Syst. 2017, 41, 429–447.
  51. Tscharntke, T.; Clough, Y.; Wanger, T.C.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.; Whitbread, A. Global Food Security, Biodiversity Conservation and the Future of Agricultural Intensification. Biol. Conserv. 2012, 151, 53–59.
  52. Altieiri, M.A. Agroecology, Small Farms, and Food Sovereignty. Mon. Rev. 2009, 61.
  53. Pinstrup-Andersen, P. Food Security: Definition and Measurement. Food Secur. 2009, 1, 5–7.
  54. Altieri, M.A.; Nicholls, C.I. Agroecology: Challenges and Opportunities for Farming in the Anthropocene. Int. J. Agric. Nat. Resour. 2020, 47, 204–215.
  55. Matsuda, T.; Wolff, J.; Yanagawa, T. Risk and the Regulation of New Technologies; Unive, K., Yanagawa, T., Eds.; Springer & Kobe University: Kobe, Japan, 2021.
  56. Shaw, A.; Wilson, K. The Bill and Melinda Gates Foundation and the Necro-Populationism of ‘Climate-Smart’ Agriculture. Gend. Place Cult. 2020, 27, 370–393.
  57. Shields, M.W.; Johnson, A.C.; Pandey, S.; Cullen, R.; González-Chang, M.; Wratten, S.D.; Gurr, G.M. History, Current Situation and Challenges for Conservation Biological Control. Biol. Control. 2019, 25–35.
  58. Laterra, P.; Barral, P.; Carmona, A.; Nahuelhual, L. Focusing Conservation Efforts on Ecosystem Service Supply May Increase Vulnerability of Socio-Ecological Systems. PLoS ONE 2016, 11, 100875.
  59. Wilting, H.C.; Schipper, A.M.; Bakkenes, M.; Meijer, J.R.; Huijbregts, M.A.J. Quantifying Biodiversity Losses Due to Human Consumption: A Global-Scale Footprint Analysis. Environ. Sci. Technol. 2017, 51, 3298–3306.
  60. Birch, K.; Levidow, L.; Papaioannou, T. Sustainable Capital? The Neoliberalization of Nature and Knowledge in the European “Knowledge-Based Bio-Economy”. Sustainability 2010, 2, 2898–2918.
  61. Silva, F.; Carvalheiro, L.G.; Aguirre-Gutiérrez, J.; Lucotte, M.; Guidoni-Martins, K.; Mertens, F. Virtual Pollination Trade Uncovers Global Dependence on Biodiversity of Developing Countries. AAAS Sci. Adv. 2021, 7, eabe6636.
  62. Altieri, M.A.; Rojas, A. Ecological Impacts of Chile’s Neoliberal Policies, with Special Emphasis on Agroecosystems. Environ. Dev. Sustain. 1999, 1, 55–72.
  63. Kay, C. Chile’s Neoliberal Agrarian Transformation and the Peasantry. J. Agrar. Chang. 2002, 2, 464–501.
  64. Aitken, D.; Rivera, D.; Godoy-Faúndez, A.; Holzapfel, E. Water Scarcity and the Impact of the Mining and Agricultural Sectors in Chile. Sustainability 2016, 8, 128.
  65. Freitas, B.M.; Imperatriz-Fonseca, V.L.; Medina, L.M.; Kleinert, A.D.M.P.; Galetto, L.; Nates-Parra, G.; Javier, J. Diversity, Threats and Conservation of Native Bees in the Neotropics. Apidologie 2009, 332–346.
  66. Pérez-Méndez, N.; Andersson, G.K.S.; Requier, F.; Hipólito, J.; Aizen, M.A.; Morales, C.L.; García, N.; Gennari, G.P.; Garibaldi, L.A. The Economic Cost of Losing Native Pollinator Species for Orchard Production. J. Appl. Ecol. 2020, 57, 599–608.
  67. Hamilton, C.; Bonneuil, C.; Gemenne, F. The Anthropocene and the Global Environmental Crisis; Hamilton, C., Bonneuil, C., Gemenne, F., Eds.; Routledge, Taylor and Francis Group: London, UK; New York, NY, USA, 2015.
Contributor MDPI registered users' name will be linked to their SciProfiles pages. To register with us, please refer to :
View Times: 1.1K
Entry Collection: Environmental Sciences
Revisions: 2 times (View History)
Update Date: 22 Jul 2021
Video Production Service